
ON QUASI-ALBANESE MAPS

OSAMU FUJINO

Abstract. We discuss Iitaka’s theory of quasi-Albanese maps in
details. We also give a detailed proof of Kawamata’s theorem
on the quasi-Albanese maps for varieties of the logarithmic Ko-
daira dimension zero. Note that Iitaka’s theory is an application
of Deligne’s mixed Hodge theory for smooth algebraic varieties.
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1. Introduction

In this paper, we discuss Iitaka’s theory of quasi-Albanese maps. We
give a detailed proof of:

Theorem 1.1 (see [I1] and Theorem 3.16). Let X be a smooth algebraic
variety defined over C. Then there exists a morphism α : X → A to a
quasi-abelian variety A such that
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(i) for any other morphism β : X → B to a quasi-abelian variety
B, there is a morphism f : A→ B such that β = f ◦ α

X

α

��

β // B

A
f

>>~~~~~~~~

and
(ii) f is uniquely determined.

A quasi-abelian variety in Theorem 1.1 is sometimes called a semi-
abelian variety in the literature, which is an extension of an abelian
variety by an algebraic torus as an algebraic group. Note that if X
is complete in Theorem 1.1 then A is nothing but the Albanese vari-
ety of X. Theorem 1.1 depends on Deligne’s theory of mixed Hodge
structures for smooth complex algebraic varieties.

We also give a detailed proof of Kawamata’s theorem on the quasi-
Albanese maps for varieties of the logarithmic Kodaira dimension zero.

Theorem 1.2 (see [K2] and Theorem 10.1). Let X be a smooth variety
such that the logarithmic Kodaira dimension κ(X) of X is zero. Then
the quasi-Albanese map α : X → A is dominant and has irreducible
general fibers.

The original proof of Theorem 1.2 in [K2] needs some deep results
on the theory of variations of (mixed) Hodge structure. They are the
hardest parts of [K2] to follow. In Section 7, we give many supple-
mentary comments on various semipositivity theorems, which clarify
Kawamata’s original approach to Theorem 1.2 in [K2]. In Section 8,
we explain how to avoid using the theory of variations of (mixed) Hodge
structure for the proof of Theorem 1.2. A vanishing theorem in [F2]
related to the theory of mixed Hodge structures is sufficient for the
proof of Theorem 1.2.

One of the main motivations of this paper is to understand Theorem
1.2 in detail. The original proof of Theorem 1.2 in [K2] looks inaccessi-
ble because the theory of variations of (mixed) Hodge structure was not
fully matured when [K2] was written around 1980. In [K2], Kawamata
could and did use only [D1], [Gri], and [S] for the Hodge theory. Al-
though the semipositivity theorem in [F2] (see also [FF] and [FFS]) does
not recover Kawamata’s statement on semipositivity (see [K2, Theo-
rem 32]), it is natural and is sufficient for us to carry out Kawamata’s
proof of Theorem 1.2 in [K2] with some suitable modifications. The
author has been unable to follow [K2, Theorem 32]. Moreover, the van-
ishing theorem in [F2] gives a more elementary approach to Theorem
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1.2 and makes Theorem 1.2 independent of the theory of variations of
(mixed) Hodge structure. The author hopes that this paper will make
Iitaka’s theory of quasi-Albanese maps and Kawamata’s result on the
quasi-Albanese maps of varieties of the logarithmic Kodaira dimension
zero accessible.

We summarize the contents of this paper. In Section 2, we collect
some basic definitions and results of the logarithmic Kodaira dimen-
sions and the quasi-abelian varieties in the sense of Iitaka. Section 3
is devoted to the theory of quasi-Albanese maps and varieties due to
Shigeru Iitaka. We explain it in details following Iitaka’s paper [I1]
with many supplementary arguments. Theorem 3.16, which is The-
orem 1.1, is the main result of this section. In Section 4, we prove
some basic properties of quasi-abelian varieties for the reader’s conve-
nience. In Section 5, we quickly explain a birational characterization of
abelian varieties and a bimeromorphic characterization of complex tori
without proof. In Section 6, we recall the subadditivity of the logarith-
mic Kodaira dimensions in some special cases. We use them for the
proof of Theorem 1.2. Section 7 is devoted to the explanation of some
semipositivity theorems related to the theory of variations of (mixed)
Hodge structure. We hope that this section will help the reader to
understand [K2]. In Section 8, we discuss some weak positivity theo-
rems. Our approach in Section 8 does not use the theory of variations
of (mixed) Hodge structure. We use a generalization of the Kollár van-
ishing theorem. This section makes Theorem 1.2 independent of the
theory of variations of (mixed) Hodge structure. In Section 9, we dis-
cuss finite covers of quasi-abelian varieties. We need them for the proof
of Theorem 1.2. In Section 10, we prove Theorem 1.2 in details.

Acknowledgments. The author was partially supported by Grant-in-
Aid for Young Scientists (A) 24684002 and Grant-in-Aid for Scientific
Research (S) 24224001 from JSPS. He thanks Kentaro Mitsui for an-
swering his questions. He also would like to thank Professor Noboru
Nakayama for a useful comment.

We will work over C, the complex number filed, throughout this
paper. We will use the standard notation as in [F4]. The theory of
algebraic groups which are not affine nor projective is not so easy to
access. So we make efforts to minimize the use of the general theory of
algebraic groups for the reader’s convenience. In this paper, we do not
even use [D2, Lemme (10.1.3.3)].
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2. Preliminaries

In this section, we collect some basic definitions and results on the
logarithmic Kodaira dimensions and the quasi-abelian varieties (see,
for example, [I1], [I2], [I4], [I5], and so on). For the basic properties of
the Kodaira dimensions and some related topics, see, for example, [U]
and [Mo].

2.1 (Logarithmic Kodaira dimensions and irregularities). First, we re-
call the logarithmic Kodaira dimensions and the logarithmic irregular-
ities following Iitaka. For the details, see [I1], [I2], [I4], and [I5].

Definition 2.2 (Logarithmic Kodaira dimension). Let X be an al-
gebraic variety. By Nagata, we have a complete algebraic variety X
which contains X as a dense Zariski open subset. By Hironaka, we have
a smooth projective variety W and a projective birational morphism
µ : W → X such that if W = µ−1(X), then D = W−W = µ−1(X−X)
is a simple normal crossing divisor on W . The logarithmic Kodaira di-
mension κ(X) of X is defined as

κ(X) = κ(W,KW +D)

where κ denotes Iitaka’s D-dimension.

Definition 2.3 (Logarithmic irregularity). Let X be an algebraic va-
riety. We take (W,D) as in Definition 2.2. Then we put

q(X) = dimCH
0(W,Ω1

W
(logD))

and call it the logarithmic irregularity of X. We put

T1(X) = H0(W,Ω1
W

(logD))

following Iitaka [I1].

It is easy to see:

Lemma 2.4. κ(X), q(X), and T1(X) are well-defined, that is, they
are independent of the choice of the pair (W,D).

This lemma is well known. We give a proof for the reader’s conve-
nience.

Proof. By Hironaka’s resolution, it is sufficient to prove that

κ(W,KW +D) = κ(W 1, KW 1
+D1)

and

H0(W,Ω1
W

(logD)) = H0(W 1,Ω
1
W 1

(logD1))
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where f : W 1 → W is a projective birational morphism from a smooth
projective variety W 1 and D1 = Suppf ∗D. By the local calculation,
we see that

f ∗Ω1
W

(logD) ⊂ Ω1
W 1

(logD1).(♥)

Therefore, we obtain

H0(W,Ω1
W

(logD)) ⊂ H0(W 1,Ω
1
W 1

(logD1)).

On the other hand, it is obvious that

H0(W 1,Ω
1
W 1

(logD1)) ⊂ H0(W,Ω1
W

(logD))

since Ω1
W

(logD) is locally free. Thus, we have

H0(W 1,Ω
1
W 1

(logD1)) = H0(W,Ω1
W

(logD)).

By (♥), we have

KW 1
+D1 = f ∗(KW +D) + E

where E is an effective f -exceptional divisor on W 1. Therefore, it is
obvious that

κ(W,KW +D) = κ(W 1, KW 1
+D1)

holds. �
Lemma 2.5. Let X be a variety and let U be a nonempty Zariski open
set of X. Then we have

κ(X) ≤ κ(U)

and
q(X) ≤ q(U).

Proof. It is obvious by the definitions of κ and q. �
We may sometimes use Lemma 2.5 implicitly. Although we do not

need Lemma 2.6 in this paper, it may help us understand κ.

Lemma 2.6. Let X be a smooth variety. Assume that F is a closed
subset of X with codimXF ≥ 2. Then we have

κ(X) = κ(X − F ).

Proof. We take a smooth complete algebraic variety X such that D =
X −X is a simple normal crossing divisor on X. Then we have

κ(X) = κ(X,KX +D)

by definition. Let F be the closure of F in X. Note that codimXF ≥ 2.
We take a resolution

f : Y → X
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such that f is an isomorphism over X − F and that Suppf−1(F ) and
Supp

(
f−1(F ) ∪ f ∗D

)
are simple normal crossing divisors on Y . We

put ∆1 = Suppf ∗D and ∆2 = Supp
(
f−1(F ) ∪ f ∗D

)
. Then we have

KY + ∆1 = f ∗(KX +D) + E

where E is an effective f -exceptional divisor on Y . Therefore, we obtain

κ(X) = κ(X,KX +D) = κ(Y,KY + ∆1).

By definition,
κ(X − F ) = κ(Y,KY + ∆2).

Since ∆2−∆1 is an effective f -exceptional divisor on Y by codimXF ≥
2, we have

κ(X − F ) = κ(Y,KY + ∆2) = κ(X,KX +D) = κ(X).

This is the desired equality. �
2.7 (Quasi-abelian varieties in the sense of Iitaka). From now on, we
quickly recall the basic properties of quasi-abelian varieties in the sense
of Iitaka (see [I1] and [I2]). This paper shows that Iitaka’s definition
of quasi-abelian varieties is reasonable and natural from the viewpoint
of the birational geometry.

Definition 2.8 (Quasi-abelian varieties in the sense of Iitaka). Let G
be a connected algebraic group. Then we have the Chevalley decom-
position (see, for example, [C, Theorem 1.1]):

1 → G → G→ A → 1

in which G is the maximal affine algebraic subgroup of G and A is an
abelian variety. If G is an algebraic torus Gd

m of dimension d, then G
is called a quasi-abelian variety (in the sense of Iitaka).

Note that the definition of quasi-abelian varieties in the sense of
Iitaka (see Definition 2.8) is different from the definition in [AK, 3. Quasi-
Abelian Varieties]. We also note that if G is a quasi-abelian variety in
the sense of Iitaka then G is a quasi-abelian variety in the sense of [AK]
(see, for example, [AK, 3.2.21 Main Theorem]).

Remark 2.9. It is well known that every algebraic group is quasi-
projective (see, for example, [C, Corollary 1.2]).

Although we do not need the following fact, we can easily check:

Remark 2.10. Let G be a connected algebraic group. Then G is a
quasi-abelian variety if and only if G contains no Ga as an algebraic
subgroup (see [I2, Lemma 3]).
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We note the following important property.

Lemma 2.11 (see [I2, Lemma 4]). A quasi-abelian variety is a com-
mutative algebraic group.

Proof. We take τ ∈ G and consider the group homomorphism:

Ψτ (σ) = τστ−1 : G → G.

Since G is rational and A is an abelian variety, we see that Ψτ : G → G.
Therefore, we obtain

G 3 τ 7→ Ψτ ∈ Hom(G,G).

Note that Hom(G,G) is discrete because G is an algebraic torus. Thus,
we obtain Ψ1 = Ψτ . Therefore, G is contained in the center of G.
Moreover, if σ, τ ∈ G, then we have

[τ, σ] = τστ−1σ−1 ∈ G
since A is commutative. Let ρ be any element of G. Then it is easy to
see that

[τρ, σ] = [τ, σ]

since G is contained in the center of G. Note that G is a principal
G-bundle over A as a complex manifold. Therefore, the morphism

G 3 τ 7→ [τ, σ] ∈ G
factors through a holomorphic map

A → G,
which is obviously trivial since A is complete. Hence, we obtain

[τ, σ] = 1

for every σ, τ ∈ G. This implies that G is commutative. �
Remark 2.12. Let G be a quasi-abelian variety. By Lemma 2.11, G is
a commutative group. Therefore, from now on, we write the group law
in G additively if there is no danger of confusion. The unit element of
G is denoted by 0. Note that an algebraic torus Gd

m is a quasi-abelian
variety in the sense of Iitaka.

We sometimes treat quasi-abelian varieties as commutative complex
Lie groups.

Lemma 2.13. Let G be a quasi-abelian variety. Then the universal
cover of G is Cdim G and G is Cdim G/L for some lattice L as a complex
Lie group. Of course, L is nothing but the topological fundamental
group π1(G) of G. Note that the group law of G is induced by the usual
addition of Cdim G.
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Proof. By Lemma 2.11, G is a commutative complex Lie group. There-
fore, the universal cover is Cdim G and there is a discrete subgroup L of
Cdim G such that G = Cdim G/L as a complex Lie group. By construc-
tion, the group law in G is induced by the usual addition of Cdim G. See
also Example 2.14 and the proof of Lemma 3.8. �

In this paper, we mainly treat non-projective algebraic groups as
complex Lie groups. We note the following famous example by Serre. It
says that two different algebraic groups may be analytically isomorphic.
Of course, we can not directly use Serre’s GAGA principle for non-
projective varieties.

Example 2.14 (Serre, see [Mu, Footnote in page 33] and [Har, Chapter
VI, Example 3.2]). Let E be a smooth elliptic curve and let E be a
vector bundle of rank 2 on E, which is a non-trivial extension of OE

by itself:

0 −→ OE −→ E p−→ OE −→ 0.

We put X = PE(E). Let D be the section of π : X → E corresponding

to E p−→ OE → 0. We put G = X −D. Then G is an algebraic group
and its Chevalley decomposition is

0 −→ Ga −→ G
π−→ E −→ 0.

Note that G is analytically isomorphic to G2
m (see [Har, Chapter VI,

Example 3.2]). Therefore, G2
m and G are analytically isomorphic but

are two different algebraic groups.

In Section 3, we will discuss Iitaka’s quasi-Albanese maps and prove
the existence of quasi-Albanese maps and varieties in details.

Definition 2.15 (Quasi-Albanese maps). Let X be a smooth variety.
The quasi-Albanese map α : X → A is a morphism to a quasi-abelian
variety A such that

(i) for any other morphism β : X → B to a quasi-abelian variety
B, there is a morphism f : A→ B such that β = f ◦ α

X

α

��

β // B

A
f

>>~~~~~~~~

and
(ii) f is uniquely determined.

Note that A is usually called the quasi-Albanese variety of X.



ON QUASI-ALBANESE MAPS 9

If X is complete in Definition 2.15, then A is nothing but the Al-
banese variety of X.

3. Quasi-Albanese maps due to Iitaka

In this section, we discuss Iitaka’s quasi-Albanese maps and varieties
following [I1] and [I2]. We recommend the reader to study the basic
results on the Albanese maps and varieties before reading this section
(see, for example, [B, V.11–14], [U, §9], [GH, Chapter 2, Section 6],
and so on).

Let us start with the following easy lemma on singular homology
groups. In this section, X is a smooth complete algebraic variety and
D is a simple normal crossing divisor on X. The Zariski open set X \D
of X is denoted by V .

Lemma 3.1. Let X be a smooth complete algebraic variety and let D
be a simple normal crossing divisor on X. We put V = X \D. Then
the map

ι∗ : H1(V,Z) → H1(X,Z)

is surjective, where ι : V ↪→ X is the natural open immersion.

Proof. We put n = dimX. We have the following long exact sequence:

· · · −→ H2n−1(X,D; Z)
p−→ H2n−1(X,Z) −→ H2n−1(D,Z) −→ · · · .

Note that H2n−1(D,Z) = 0 since D is an (n − 1)-dimensional simple
normal crossing variety. Therefore, p is surjective. We also note that

H2n−1(X,D; Z) ' H2n−1
c (V,Z).

We have the following commutative diagram:

H2n−1
c (V,Z)

DV '
��

p // H2n−1(X,Z)

DX'
��

H1(V,Z) ι∗
// H1(X,Z).

Note that the duality maps DV and DX are both isomorphisms by
Poincaré duality. Since p is surjective, we see that ι∗ is also surjective.
For the details of Poincaré duality, see, for example, [Hat, Section
3.3]. �
Lemma 3.2. The natural injection

ι∗ : H1(X,C) → H1(V,C)

is nothing but

a1 ⊕ a2 : H1(X,OX) ⊕H0(X,Ω1
X) → H1(X,OX) ⊕H0(X,Ω1

X(logD))
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where a1 is the identity on H1(X,OX) and a2 is the natural inclusion

H0(X,Ω1
X) ↪→ H0(X,Ω1

X(logD))

by Deligne’s theory of mixed Hodge structures. Note that we have

b1(V ) − b1(X) = q(V ) − q(X)

where

q(V ) = dimH0(X,Ω1
X(logD)) and q(X) = dimH0(X,Ω1

X).

Of course,

b1(V ) = dimCH
1(V,C) and b1(X) = dimCH

1(X,C).

Proof. By Lemma 3.1, ι∗ is injective. By Deligne’s mixed Hodge theory
(see [D1]), we have

H1(V,C) = H1(X,OX) ⊕H0(X,Ω1
X(logD)).

By the Hodge decomposition, we have

H1(X,C) = H1(X,OX) ⊕H0(X,Ω1
X).

Since ι∗ : H1(X,C) → H1(V,C) is a morphism of mixed Hodge struc-
tures (see [D1]), we obtain the desired description of ι∗. �

Let us describe the theory of quasi-Albanese maps and varieties due
to Shigeru Iitaka (see [I1]).

3.3 (Quasi-Albanese maps and varieties). We take a basis

{ω1, · · · , ωq}

of H0(X,Ω1
X), where q = q(X) = dimH0(X,Ω1

X). Note that b1(X) =
2q by the Hodge theory. We take

ϕ1, · · · , ϕd ∈ H0(X,Ω1
X(logD))

with d = q(V ) − q(X) such that

{ω1, · · · , ωq, ϕ1, · · · , ϕd}

is a basis of H0(X,Ω1
X(logD)). Let

{ξ1, · · · , ξ2q}

be a basis of the free part of H1(X,Z). We take

η1, · · · , ηd ∈ Kerι∗ ⊂ H1(V,Z)

such that

{ξ1, · · · , ξ2q, η1, · · · , ηd}
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is a basis of the free part of H1(V,Z) (see Lemma 3.1). We put q =
q(V ),

Ai =

(∫
ξi

ω1, · · ·
∫

ξi

ωq,

∫
ξi

ϕ1, · · · ,
∫

ξi

ϕd

)
∈ Cq

for 1 ≤ i ≤ 2q, and

Bj =

(∫
ηj

ω1, · · ·
∫

ηj

ωq,

∫
ηj

ϕ1, · · · ,
∫

ηj

ϕd

)
∈ Cq

for 1 ≤ j ≤ d.

Lemma 3.4. Let γ be a torsion element of H1(V,Z). Then we have∫
γ

ω = 0

for every ω ∈ H0(X,Ω1
X(logD)).

Proof. It is obvious since

m

∫
γ

ω =

∫
mγ

ω = 0

if mγ = 0 in H1(V,Z). �

Lemma 3.5. We have ∫
ηj

ωk = 0

for every j and k.

Proof. We see that ∫
ηj

ωk =

∫
ηj

ι∗ωk =

∫
ι∗ηj

ωk = 0

since ι∗ηj = 0. �

Lemma 3.6 (see [I1, Lemma 2]). Let ϕ be an arbitrary element of
H0(X,Ω1

X(logD)). Assume that∫
η

ϕ = 0

for every η ∈ Kerι∗ ⊂ H1(V,Z). Then we have ϕ ∈ H0(X,Ω1
X).

Proof. Assume that ϕ ∈ H0(X,Ω1
X(logD)) \H0(X,Ω1

X). Then ϕ has
a pole along some Da, where Da is an irreducible component of D. Let
p be a general point of Da. We take a local holomorphic coordinate
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system (z1, · · · , zn) around p such that Da is defined by z1 = 0. In this
case, we can write

ϕ = α(z)
dz1

z1

+ β(z)

around p, where β(z) is a holomorphic 1-form. We may assume that
α(z) = α(z2, · · · , zn) by Weierstrass division theorem (see, for example,
[GH]). Since dϕ = 0, we obtain

dϕ = dα ∧ dz1

z1
+ dβ = 0.

Thus we have dα = 0. This means that α is a constant. Let us consider
a circle γa around Da at p. Then we obtain ι∗γa = 0 in H1(X,Z) and

0 =

∫
γa

ϕ = α

∫
γa

dz1

z1

= α2π
√
−1.

This implies that α = 0. Thus, ϕ is holomorphic at p. This is a
contradiction. Therefore, we have ϕ ∈ H0(X,Ω1

X). �

Lemma 3.7 (see [I2, Proposition 2]). The above vectors A1, · · · , A2q,
B1, · · · , Bd are R-C linearly independent. This means that if

2q∑
i=1

aiAi +
d∑

j=1

bjBj = 0

for ai ∈ R and bj ∈ C then ai = 0 for every i and bj = 0 for every j.

Proof. We put

Âi =

(∫
ξi

ω1, · · · ,
∫

ξi

ωq

)
for 1 ≤ i ≤ 2q. Then Â1, · · · , Â2q are R-linearly independent, which is
well known by the Hodge theory. By Lemma 3.5, we have ai = 0 for
every i. We put

B̂j =

(∫
ηj

ϕ1, · · · ,
∫

ηj

ϕd

)
for 1 ≤ j ≤ d. It is sufficient to prove that B̂1, · · · , B̂d are C-linearly

independent. If B̂1, · · · , B̂d are C-linearly dependent, then the rank of
the d× d matrix (∫

ηj

ϕi

)
i,j



ON QUASI-ALBANESE MAPS 13

is less than d. This means that there is (c1, · · · , cd) 6= 0 such that∫
ηj

d∑
i=1

ciϕi = 0

for every j. Therefore, we see that

d∑
i=1

ciϕi ∈ H0(X,Ω1
X)

by Lemma 3.6. This contradicts the choice of {ϕ1, · · · , ϕd}. Thus,

B̂1, · · · , B̂d are C-linearly independent. �
By the proof of Lemma 3.7, we can choose ϕ1, · · · , ϕd such that∫

ηj

ϕk = δjk.

We put

L =
∑

i

ZAi +
∑

j

ZBj,

L1 =
∑

i

ZÂi,

and

L0 =
∑

j

ZB̂j.

Then we get the following short exact sequence of complex Lie groups:

0 −→ Cd/L0 −→ Cq/L −→ Cq/L1 −→ 0.(♠)

Note that T = Cd/L0 is an algebraic torus Gd
m and that AX = Cq/L1

is the Albanese variety of X. More explicitly, if (z1, · · · , zd) is the
standard coordinate system of Cd, then the isomorphism

Cd/L0
∼−→ Gd

m

is given by

(z1, · · · , zd) 7→ (exp 2π
√
−1z1, · · · , exp 2π

√
−1zd).

We call

ÃV = Cq/L

the quasi-Albanese variety of V . By the above description, we see that

ÃV is a principal Gd
m-bundle over an abelian variety AX as a complex

manifold. We have to check:

Lemma 3.8. The quasi-Albanese variety ÃV is a quasi-abelian variety.
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Proof. We put A = ÃV and B = AX for simplicity. Note that A is a
principal Gd

m-bundle over B as a complex manifold. We consider the
following group homomorphism:

ρ : Gd
m → PGL(d,C)

given by

ρ(λ1, · · · , λd) =


1

λ1

. . .
λd

 .

By ρ, we obtain Pd-bundle Z = A ×ρ Pd over B = A/Gd
m which is a

compactification of A. It is easy to see that the divisor ∆ = Z \ A is
a simple normal crossing divisor on Z and is ample over B. Moreover,
we can easily see that Z → B and A → B are locally trivial in the
Zariski topology. We will see that the group law

ψ : A× A −→ A

in A as a complex Lie group is algebraic. By construction, the map ψ
can be extended to holomorphic maps

g1 : Z × A −→ Z and g2 : A× Z −→ Z

since Z is a Gd
m-equivariant embedding of A. Therefore, we obtain a

holomorphic map

g : Z × Z \ Σ −→ Z ↪→ PN ,

where Σ = (∆ × Z) ∩ (Z × ∆). Of course, g is an extension of ψ :
A× A → A. Note that codimZ×ZΣ ≥ 2. We consider g∗OPN (1). This
line bundle can be extended to a line bundle L on Z × Z. Moreover,
we can see

li := g∗Xi ∈ H0(Z × Z,L)

for 0 ≤ i ≤ N , where [X0 : · · · : XN ] are homogeneous coordinates of
PN . Therefore, we obtain a rational map h : Z × Z 99K Z, which is
given by the linear system spanned by {l0, · · · , lN} and is an extension
of g. Thus, the group law

ψ : A× A→ A

is algebraic since ψ = h|A×A. This means that A = ÃV is an algebraic

group. So, ÃV is a quasi-abelian variety. Note that the short exact
sequence (♠) is nothing but the Chevalley decomposition. �
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Lemma 3.9. Let ω be an element of H0(X,Ω1
X(logD)). We fix a point

0 ∈ V . Then we have a multivalued holomorphic function∫ p

0

ω

on V . For a point p ∈ V , we can define αV : V → ÃV by

αV (p) =

(∫ p

0

ω1, · · · ,
∫ p

0

ωq,

∫ p

0

ϕ1, · · · ,
∫ p

0

ϕd

)
∈ ÃV .

This map is independent of the choice of the path from 0 to p in V .
Thus we get a quasi-Albanese map:

αV : V → ÃV .

It is a holomorphic map.

Proof. Let γ be a 2-cycle on V . Then∫
∂γ

ω =

∫
γ

dω = 0

for every ω ∈ H0(X,Ω1
X(logD)). This is because ω is d-closed by

Deligne (see [D1]). Therefore, αV is well-defined. �

Lemma 3.10 (see [I1, Proposition 3]). The map αV in Lemma 3.9 is
algebraic.

Proof. Note that A = ÃV is a principal Gd
m-bundle over B = AX as a

complex manifold. We consider the group homomorphism

ρ′ : Gd
m → PGL(2,C) × PGL(2,C) × · · · × PGL(2,C)

given by

ρ′(λ1, · · · , λd) =

(
1 0
0 λ1

)
×
(

1 0
0 λ2

)
× · · · ×

(
1 0
0 λd

)
.

Then we obtain a Gd
m-equivariant embedding Z ′ = A×ρ′ (P1×· · ·×P1)

of A over B.

Claim. The holomorphic map

αV : V → ÃV

given in Lemma 3.9 can be extended to a rational map

βX : X 99K Z ′.
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Proof of Claim. We note that it is sufficient to prove that there exists
a meromorphic extension βX of αV since X and Z ′ are projective.
Let p be a point of D ⊂ X. Let (z1, · · · , zn) be a local holomorphic
coordinate system of X at p such that D is defined by z1 · · · zr = 0. In
this case, we can write

ϕi =
r∑

b=1

αib
dzb

zb

+ ϕ̃i

where αib ∈ C and ϕ̃i is a holomorphic 1-form for every i around p (see
the proof of Lemma 3.6). Let δa be a circle around Da = (za = 0) near
p. Then ι∗δa = 0. Therefore, we have

δa =
∑

j

mjaηj + δ̃a,

where mja ∈ Z and δ̃a is a torsion element. Thus we have

αia =
1

2π
√
−1

∫
δa

ϕi =
1

2π
√
−1

∑
j

mja

∫
ηj

ϕi =
mia

2π
√
−1

.

Without loss of generality, we may assume that 0 ∈ V is near p. For a
point p′ ∈ V near p, we have

exp

(
2π

√
−1

∫ p′

0

ϕi

)
= c exp

(∑
b

mib log zb(p
′)

)
· exp

(
2π

√
−1

∫ p′

0

ϕ̃i

)(♣)

= c
∏

b

zb(p
′)mib · exp

(
2π

√
−1

∫ p′

0

ϕ̃i

)
for some constant c. We consider the following commutative diagram:

V
αV //

� _

��

ÃV� _

��
X //___

��

Z ′

πZ′

��
B B

Note that X → B is nothing but the Albanese map of X. Let U be a
small open set of B in the classical topology. Then

π−1(U) ' U × C× × · · · × C×,
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where π : ÃV → B = AX , and

π−1
Z′ (U) ' U × P1 × · · · × P1

over U . Over U , it is easy to see that αV can be extended to a mero-
morphic map X 99K Z ′ in the sense of Remmmert by (♣) (see [GR,
Chapter 10, §6, 3. Graph of a Finite System of Meromorphic Func-
tions]). For the definition of meromorphic mappings in the sense of
Remmert, see, for example, [U, Definition 2.2]. Therefore, αV can be
extended to a meromorphic map βX from X to Z ′ in the sense of Rem-
mert. By Serre’s GAGA, a meromorphic map βX : X 99K Z ′ is a
rational map between smooth projective varieties. �

Thus we obtain that αV in Lemma 3.9 is algebraic. �

Lemma 3.11. We have that

(αV )∗ : H1(V,Z) → H1(ÃV ,Z)

is surjective. Moreover, we have

Ker(αV )∗ = H1(V,Z)tor,

where H1(V,Z)tor is the torsion part of H1(V,Z).

Proof. Let H1(V,Z)free be the free part of H1(V,Z). Note that ÃV =
Cq/L by construction, where

Cq = (H0(X,Ω1
X(logD)))∗

and L is an embedding of H1(V,Z)free into (H0(X,Ω1
X(logD)))∗. On

the other hand,

H1(ÃV ,Z) = π1(ÃV ) = L

by construction. By the construction of the lattice L, it is obvious that

(αV )∗ : H1(V,Z) → H1(ÃV ,Z)

is surjective and that

Ker(αV )∗ = H1(V,Z)tor.

This is the desired property. �

Lemma 3.12. We have that

α∗
V : T1(ÃV ) → T1(V )

is an isomorphism.
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Proof. By Lemma 3.11,

(αV )∗ : H1(V,Q) → H1(ÃV ,Q)

is an isomorphism. Therefore, we obtain

(αV )∗ : H1(ÃV ,Q) → H1(V,Q)

is also an isomorphism. Moreover, it is an isomorphism of mixed Hodge
structures (see [D1]). Therefore, we have an isomorphism

α∗
V : T1(ÃV ) → T1(V )

by Deligne (see [D1]). �

The following lemma is useful and important.

Lemma 3.13. Let W be a quasi-abelian variety. Then the quasi-
Albanese map

αW : W → ÃW

is an isomorphism.

Proof. By translation, we may assume that αW (0) = 0. Note that αW

induces a complex linear map

(αW )∗ : TW,0 → T
eAW ,0,

where TW,0 is the tangent space of W at 0 and T
eAW ,0 is the tangent

space of ÃW at 0. By considering the exponential maps, we can recover
αW by (αW )∗. In particular, αW is a homomorphism of complex Lie
groups. Since

(αW )∗ : H1(W,Z) → H1(ÃW ,Z)

is an isomorphism by Lemma 3.11, αW is an isomorphism of complex
Lie groups. Note that αW is algebraic. Therefore, αW is an isomor-
phism between smooth algebraic varieties. �

Lemma 3.14. Let f : V → T be a morphism to a quasi-abelian variety

T . Then there exists a unique algebraic morphism f̃ : ÃV → T such

that f = f̃ ◦ αV

V
f //

αV

��

T

ÃV

ef

>>~~~~~~~~

where αV : V → ÃV is a quasi-Albanese map of V .
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Proof. We take a point 0 ∈ V . By translations, we may assume that
αV (0) = 0 and f(0) = 0. Let {u1, · · · , uk} be a basis of T1(T ). We
may assume that

f ∗u1, · · · , f ∗ul

are linearly independent, where

l = dimC〈f∗u1, · · · , f ∗uk〉.
We take v1, · · · , vm ∈ T1(V ) such that

{v1, · · · , vm, f
∗u1, · · · , f ∗ul}

is a basis of T1(V ). Since f∗ : H1(V,Z) → H1(T,Z), by using the
basis {v1, · · · , vm, f

∗u1, · · · , f ∗ul} of T1(V ), we can easily construct a
holomorphic map

f̃ : ÃV
// ÃT

∼

α−1
T

// T

(see Lemma 3.13) satisfying f = f̃ ◦ αV . Therefore, there is a commu-
tative diagram:

T1(V ) T1(T )
f∗

oo

ef∗zzuuuuuuuuu

T1(ÃV )

α∗
V

OO

which determines f̃ ∗ uniquely. This is because α∗
V is an isomorphism

(see Lemma 3.12). Thus, f̃ is unique. This is because f̃ can be uniquely

recovered by f̃∗ (cf. the proof of Lemma 3.13). Therefore, all we have

to do is to prove that f̃ is algebraic. It is sufficient to prove that the
graph

Γ = {(x, f̃(x)) | x ∈ ÃV } ⊂ ÃV × T

is an algebraic variety. We consider the map

αn : V 2n = V × · · · × V → ÃV

given by

αn(z1, · · · , z2n) = αV (z1) + · · · + αV (zn) − αV (zn+1) − · · · − αV (z2n).

We put

Fn = Imαn,

that is, the Zariski closure of Imαn. Then Fn is an irreducible algebraic

subvariety of ÃV for every n such that

F1 ⊂ F2 ⊂ · · · ⊂ Fk ⊂ · · · .
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Therefore, there is a positive integer n0 such that

Fn0 = Fn0+1 = · · · .

Note that Fn0 is a quasi-abelian subvariety of ÃV because it is closed

under the group law of ÃV . Moreover, by the universality of ÃV proved
above, Fn0 is not contained in a quasi-abelian proper subvariety of

ÃV . This implies that Fn0 = ÃV . Note that f̃ is a homomorphism of
complex Lie groups. We consider the following commutative diagram:

V 2n0

αn0

��

fn0 // T

ÃV

ef

==||||||||

where

fn0(z1, · · · , z2n0) = f(z1) + · · · + f(zn0) − f(zn0+1) − · · · − f(z2n0).

We consider the Zariski closure of

{(αn0(x), fn0(x)) | x ∈ V 2n0} ⊂ Γ ⊂ ÃV × T.

Then it is an algebraic subvariety of ÃV × T and coincides with the

graph Γ. This implies that f̃ is algebraic. �

Lemma 3.15. Let f : V1 → V2 be a morphism between smooth algebraic

varieties. Then f induces an algebraic morphism f∗ : ÃV1 → ÃV2 which
satisfies the following commutative diagram.

V1

f //

αV1

��

V2

αV2

��

ÃV1 f∗
// ÃV2

Moreover, f∗ is unique.

Proof. It is almost obvious by Lemma 3.14. We apply Lemma 3.14

to the map αV2 ◦ f : V1 → ÃV2 . Then we obtain the desired map

f∗ : ÃV1 → ÃV2 uniquely. �

We summarize:

Theorem 3.16 (Iitaka’s quasi-Albanese varieties and maps). Let V be
a smooth algebraic variety. Then there exists a quasi-abelian variety

ÃV and a morphism αV : V → ÃV with the following property:
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for any quasi-abelian variety T and any morphism f :

V → T , there exists a unique morphism f̃ : ÃV → T

such that f̃ ◦ αV = f .

V
f //

αV

��

T

ÃV

ef

>>~~~~~~~~

The quasi-abelian variety ÃV , determined up to isomorphism by this
condition, is called the quasi-Albanese variety of V . The map αV :

V → ÃV is called the quasi-Albanese map of V . By the construction of

ÃV , ÃV is nothing but the Albanese variety of V when V is complete.

Anyway, Theorem 3.16 is a generalization of the theory of Albanese
maps and varieties for non-compact smooth complex algebraic varieties.
We close this section with an easy corollary of Theorem 3.16.

Corollary 3.17 (cf. Remark 2.10). Let f : A1 → G be an algebraic
morphism from A1 to a quasi-abelian variety G. Then f(A1) is a point.

Proof. Note that T1(A1) = 0. Thus the quasi-Albanese variety ÃA1

is a point. Since f factors through ÃA1 by Theorem 3.16, f(A1) is a
point. �

4. Basic properties of quasi-abelian varieties

In this section, we collect some basic properties of quasi-abelian va-
rieties for the reader’s convenience. We will use them in the proof of
Theorem 1.2.

4.1. Let G be a quasi-abelian variety and let

0 −→ G −→ G −→ A −→ 0(1)

be the Chevalley decomposition such that G = Gd
m. We put dimA = q

and n = dimG = q + d. Then there exists a (2q + d) × n matrix M
with

M =

(
P Q
0 Id

)
where P is a 2q× q matrix and Id is the d× d unit matrix. The lattice
spanned by the row vectors of M (resp. P ) is denoted by L (resp. L1).
Then we have the short exact sequence of complex Lie groups:

0 −→ Gd
m −→ Cn/L −→ Cq/L1 −→ 0.(2)
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Note that

Cd/Zd ' Gd
m

by

(zq+1, · · · , zn) 7→ (exp 2π
√
−1zq+1, · · · , exp 2π

√
−1zn),

where (z1, · · · , zn) is the standard coordinate system of Cn. By the de-
scriptions in Section 3, the short exact sequence of complex Lie groups
(2) is isomorphic to the short exact sequence (1). The description Cn/L
for G is useful for various computations in the following theorems.

We will repeatedly use the following theorem implicitly.

Theorem 4.2. Let G be a quasi-abelian variety. Assume that π : G′ →
G is a finite étale morphism. Then G′ is a quasi-abelian variety.

Proof. We use the notation in 4.1. By 4.1, G = Cn/L. Then we have
a sublattice L′ of L such that [L : L′] < ∞ and that G′ = Cn/L′. By
a translation of G, we may assume that π(0) = 0. Then we can easily
construct a commutative diagram of complex Lie groups:

0 // Gd
m

//

π2

��

Cn/L′ //

π

��

Cq/L′
1

//

π1

��

0

0 // Gd
m

// Cn/L // Cq/L1
// 0

such that π, π1, and π2 are finite. Since π1 is finite, Cq/L′
1 is an abelian

variety. Note that G′ = Cn/L′ is a principal Gd
m-bundle over Cq/L′

1

as a complex manifold. By the proof of Lemma 3.8, the group law of
G′ = Cn/L′ as a complex Lie group is algebraic. This means that G′ is
a quasi-abelian variety and that π : G′ → G is a group homomorphism
between quasi-abelian varieties. �
Theorem 4.3 ([I1, 10.]). Let G be a quasi-abelian variety. Then we
have κ(G) = 0 and q(G) = dimG.

Proof. Note that G is a principal Gd
m-bundle over an abelian variety

A as a complex manifold. As in the proof of Lemma 3.8, we have a
Pd-bundle G over A such that G is a Gd

m-equivariant embedding of G
over A. We put D = G − G. Then D is a simple normal crossing
divisor on G. We can easily check that

Ω1
G
(logD) ' ⊕OG.

More explicitly, Ω1
G
(logD) is isomorphic to ⊕n

i=1OGdzi in the notation
of 4.1. Therefore, we obtain that q(G) = dimG and KG +D ∼ 0. In
particular, we have κ(G) = κ(G,KG +D) = 0. �
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Theorem 4.4 (cf. [I1, Theorem 4.1]). Let G be a quasi-abelian variety.
Let W be a closed subvariety of G. Then κ(W ) ≥ 0. Moreover, κ(W ) =
0 if and only if W is a translation of a quasi-abelian subvariety of G.

Proof. We take a general point p ∈ W , around which we take a system
of local analytic coordinates (ζ1, · · · , ζn) such that

W = (ζr+1 = · · · = ζn = 0).

Let π : Cn → G be the universal cover. We take q ∈ π−1(p) and
assume that z1(a) = · · · = zn(q) = 0, where (z1, · · · , zn) is a system
of global coordinates of Cn. Note that (ζ1, · · · , ζn) can be regarded as
a system of local analytic coordinates around q. By taking a suitable
linear transformation of Cn, we have

ζj = zj − ϕj(z1, · · · , zn),

where ϕj(0) = 0 and
∂ϕj

∂zk

(0) = 0

for every j and k around q. The dzj defines a logarithmic 1-form on
G, that is, dzj ∈ T1(G) for every j (see the proof of Theorem 4.3).
Let f : V → W be a resolution and let V be a smooth projective
variety such that ∆ = V − V is a simple normal crossing divisor on
V . Without loss of generality, we may assume that f is an isomor-
phism over a neighborhood of p. Thus, we see that f∗(dzj|W ) is an
element of T1(W ). Since dζ1, · · · , dζr are linearly independent holo-
morphic 1-forms on W around p, f ∗(dz1|W ), · · · , f ∗(dzr|W ) are also
linearly independent. Thus we have

0 6= f ∗(dz1 ∧ · · · ∧ dzr)|W ∈ H0(V ,OV (KV + ∆)).

This means that κ(W ) ≥ 0. For r + 1 ≤ j ≤ n, we have

dzj|π−1(W ) −
n∑

k=1

∂ϕj

∂zk

∣∣∣∣
π−1(W )

· dzk|π−1(W ) = 0

around q. Therefore, we obtain

n∑
k=r+1

(
δjk −

∂ϕj

∂zk

∣∣∣∣
π−1(W )

)
dzk|π−1(W ) =

r∑
i=1

∂ϕj

∂zi

∣∣∣∣
π−1(W )

· dzi|π−1(W )

in a neighborhood of q. Thus, for r + 1 ≤ j ≤ n, we have

dzj|W =
r∑

i=1

Aji(ζ1, · · · , ζr) · dzi|W
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around p, where Aji is a holomorphic function for every i and j such
that Aji(0) = 0. Note that

f∗(dz1|W ), · · · , f ∗(dzr|W ) ∈ T1(W ),

which are linearly independent. Assume that κ(W ) = 0. Then we have
κ(V ,KV + ∆) = 0. We note that f ∗(dz1 ∧ · · · ∧ dzr)|W is a nonzero
element of H0(V ,OV (KV + ∆)). Therefore, H0(V ,OV (KV + ∆)) = C
is spanned by f ∗(dz1 ∧ · · · ∧ dzr)|W . Thus, we obtain

f∗(dz2 ∧ · · · ∧ dzr ∧ dzj)|W = α1jf
∗(dz1 ∧ · · · ∧ dzr)|W ,

where α1j ∈ C for every j. On the other hand,

f ∗(dz2 ∧ · · · ∧ dzr ∧ dzj)|W = ±f ∗ (Aj1(dz1 ∧ · · · ∧ dzr)|W )

over a neighborhood of p. Hence we obtain ±f ∗Aj1 = α1j for every j.
Note that f is an isomorphism over a neighborhood of p. From this,
Aj1 = 0 because Aj1(0) = 0 for every j. By the same arguments, we
get Aji = 0 for 1 ≤ i ≤ r and every j. Thus, we obtain that

dzr+1|W = · · · = dzn|W = 0

around p. This means that

π−1(W ) ⊂ {zr+1 = · · · = zn = 0}

near q. Note that {zr+1 = · · · = zn = 0} is of dimension r and is
irreducible. Thus

π−1(W ) = {zr+1 = · · · = zn = 0}.

Therefore, W is a quasi-abelian subvariety of G. On the other hand, if
W is a translation of a quasi-abelian subvariety of G, then κ(W ) = 0
by Theorem 4.3. �

The following theorem is almost obvious by the description in 4.1.

Theorem 4.5. Let G be a quasi-abelian variety. Then there are at
most countably many quasi-abelian subvarieties of G.

Proof. Let H be a quasi-abelian subvariety of G. Then we obtain

ι : H = Cdim H/H1(H,Z) ↪→ Cdim G/H1(G,Z),

where ι is the natural inclusion. Anyway, ι is determined by the sub-
group Imι∗ of H1(G,Z), where ι∗ : H1(H,Z) → H1(G,Z). Therefore,
there are at most countably many quasi-abelian subvarieties of G. �
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5. Characterizations of abelian varieties and complex
tori

In this section, we quickly recall an important property of the Al-
banese map of varieties of the Kodaira dimension zero for the reader’s
convenience. It is well known that Kawamata established the following
theorem in [K2], which is his doctoral thesis.

Theorem 5.1 (see [K2, Theorem 1]). Let X be a smooth projective
variety with κ(X) = 0. Then the Albanese map

α : X → A

is surjective and has connected fibers.

As an obvious corollary of Theorem 5.1, we obtain a birational char-
acterization of abelian varieties.

Corollary 5.2. Let X be a smooth projective variety. Then X is bi-
rationally equivalent to an abelian variety if and only if the Kodaira
dimension κ(X) = 0 and the irregularity q(X) = dimX.

In this paper, we will use Theorem 5.1 and Corollary 5.2 for the
proof of Theorem 1.2. For compact Kähler manifolds, we have:

Theorem 5.3 (see [K2, Theorem 24]). Let X be a compact Kähler
manifold with κ(X) = 0. Then the Albanese map

α : X → A

is surjective and has connected fibers.

Therefore, we have:

Corollary 5.4. Let X be a compact Kähler manifold. Then X is
bimeromorphic to a complex torus if and only if the Kodaira dimension
κ(X) = 0 and the irregularity q(X) = dimX.

Kawamata’s original arguments in [K2] heavily depends on the the-
ory of variations of Hodge structure (see Section 7 below). In [EL,
Section 2], Ein and Lazarsfeld give a new proof of the above results.
Their arguments are based on the generic vanishing theorem due to
Green–Lazarsfeld. Anyway, the results in this section can be proved
without using [K2] now. Note that Theorem 1.2 is a generalization of
Theorem 5.1. We will give a detailed proof of Theorem 1.2 in Section
10 (see Theorem 10.1) following [K2]. The author does not know any
proofs of Theorem 1.2 which are independent of Theorem 6.1 below and
only depend on the generic vanishing theorem due to Green–Lazarsfeld.
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6. On subadditivity of the logarithmic Kodaira
dimensions

In this section, we explain some known results on the subadditivity
of the logarithmic Kodaira dimensions.

Theorem 6.1. Let f : X → Y be a dominant morphism between
smooth varieties with irreducible general fibers. Assume that the loga-
rithmic Kodaira dimension κ(Y ) = dimY . Then we have

κ(X) = κ(F ) + κ(Y )

= κ(F ) + dimY

where F is a sufficiently general fiber of f : X → Y .

Remark 6.2. Theorem 6.1 is a generalization of [K2, Theorem 30].
In [K2], Kawamata claimed Theorem 6.1 under the extra assumption
that κ(X) ≥ 0. Theorem 6.1 was first obtained by Maehara (see [Ma,
Corollary 2]). Note that the arguments in [K2] and [Ma] heavily depend
on [K2, Theorem 32]. Since the author has been unable to follow [K2,
Theorem 32], he gave a proof of Theorem 6.1 which is independent
of [K2, Theorem 32]. For the details, see [F5, Theorem 1.9] (see also
Section 7).

Theorem 6.3 is the main theorem of [K1] (see [K1, Theorem 1]). For
the proof, we recommend the reader to see [F7], which is a completely
revised and expanded version of [F1].

Theorem 6.3. Let f : X → Y be a dominant morphism between
smooth varieties whose general fibers are irreducible curves. Then we
have

κ(X) ≥ κ(F ) + κ(Y )

where F is a general fiber of f : X → Y .

Theorem 6.1 and Theorem 6.3 will play crucial roles in Section 9 and
Section 10. In general, we have:

Conjecture 6.4. Let f : X → Y be a dominant morphism between
smooth varieties whose general fibers are irreducible. Then we have

κ(X) ≥ κ(F ) + κ(Y )

where F is a sufficiently general fiber of f : X → Y .

By [F6], we see that Conjecture 6.4 follows from the minimal model
program and the abundance conjecture. For the details, see [F6].
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7. Remarks on semipositivity theorems

In this section, we make some comments on the semipositivity theo-
rems in [K2] for the reader’s convenience. We recommend the reader to
skip this section if he is only interested in Theorem 1.2. The arguments
in Section 8 are sufficient for the proof of Theorem 1.2 and are more
elementary. Let us recall Kawamata’s famous result in [K2]. It is one
of the main ingredients of Kawamata’s proof of Theorem 5.1.

Theorem 7.1 ([K2, Theorem 5=Main Lemma]). Let f : X → Y be a
surjective morphism between smooth projective varieties with connected
fibers which satisfies the following conditions:

(i) There is a Zariski open dense subset Y0 of Y such that Σ =
Y − Y0 is a simple normal crossing divisor on Y .

(ii) Put X0 = f−1(Y0) and f0 = f |X0. Then f0 is smooth.
(iii) The local monodromies of Rnf0∗CX0 around Σ are unipotent,

where n = dimX − dimY .

Then f∗OX(KX/Y ) is a locally free sheaf and semipositive, where KX/Y =
KX − f∗KY .

Remark 7.2. In [K2, §4. Semi-positivity (1)], Kawamata proved that
f∗OX(KX/Y ) coincides with the canonical extension of the bottom
Hodge filtration F . This part was generalized by Nakayama and Kollár
independently (see [N, Theorem 1] and [Ko, Theorem 2.6]). They
proved that Rif∗OX(KX/Y ) is locally free and can be characterized
as the (upper) canonical extension of the bottom Hodge filtration of a
suitable variation of Hodge structure.

Remark 7.3. In [K2, §4. Semi-positivity (2)], Kawamata proved that
the canonical extension of the bottom Hodge filtration F is semipos-
itive. This part is not so easy to follow. Kawamata’s proof seems
to be insufficient. Note that Kawamata could and did use only [D1],
[Gri], and [S] for the Hodge theory when [K2] was written around 1980.
Fortunately, [FF, Theorem 1.3] and [FFS, Theorem 3] completely gen-
eralize [K2, §4. Semi-positivity (2)] for admissible variations of mixed
Hodge structure and clarify Kawamata’s proof simultaneously. For
Morihiko Saito’s comments on Kawamata’s arguments in [K2, §4. Semi-
positivity (2)], see [FFS, 4.6. Remarks].

Remark 7.4. An approach to the semipositivity of Rif∗OX(KX/Y )
which dose not use [K2, §4. Semi-positivity (2)] can be found in [F3,
Section 4].
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Anyway, [K2, Theorem 5] is now clearly understood. Let us go to a
mixed generalization of Theorem 7.1, which was used in the proof of
Theorem 6.1 in [F5]. In [F2], we obtain:

Theorem 7.5 (see [F2, Theorems 3.1, 3.4, and 3.9]). Let f : X → Y
be a surjective morphism between smooth projective varieties and let D
be a simple normal crossing divisor on X such that every stratum of
D is dominant onto Y . Let Σ be a simple normal crossing divisor on
Y . If f is smooth and D is relatively normal crossing over Y0 = Y \Σ
and the local monodromies of Rn+if0∗CX0\D0 around Σ are unipotent,
where X0 = f−1(Y0), D0 = D|X0, f0 = f |X0, and n = dimX − dimY ,
then Rif∗OX(KX/Y +D) is locally free and semipositive.

Theorem 7.5 is obviously a generalization of Theorem 7.1.

Remark 7.6. In [F2], we characterize Rif∗OX(KX/Y + D) as the
canonical extension of the bottom Hodge filtration of a suitable vari-
ation of mixed Hodge structure. The proof of the semipositivity of
Rif∗OX(KX/Y +D) in [F2] used [K2, §4. Semi-positivity (2)]. Now we
can use [FF, Theorem 1.3] or [FFS, Theorem 3] for the semipositivity
of Rif∗OX(KX/Y +D) in place of [K2, §4. Semi-positivity (2)].

Remark 7.7. As we pointed out in [F5, Remark 6.5], Kawamata seems
to misuse Schmid’s nilpotent orbit theorem in [K3] and [K4]. Therefore,
we do not use the papers [K3] and [K4]. Moreover, the main theorem
of [K3] (see [K3, Theorem 1.1]) is weaker than [FF, Theorem 1.1].

Remark 7.8. The main theorem in [K3] (see [K3, Theorem 1.1]) does
not cover Theorem 7.5 nor [K2, Theorem 32]. We also note that [K5]
does not cover Theorem 7.5 nor [K2, Theorem 32]. In [K5], Kawamata
treats well prepared fiber spaces. For the details, see [K5]. The author
did not find any proofs of [K2, Theorem 32] in the literature except the
original one in [K2].

8. Weak positivity theorems revisited

In this section, we explain how to avoid using the theory of variations
of mixed Hodge structure for the proof of Theorem 6.1. Let us recall the
definition of weakly positive sheaves. Note that the theory of weakly
positive sheaves is due to Viehweg. Roughly speaking, Viehweg treated
only the pure case. For the details of the mixed case, we recommend
the reader to see [F5].

Definition 8.1 (Weak positivity). Let W be a smooth projective vari-
ety and let F be a torsion-free coherent sheaf on W . We call F weakly
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positive, if for every ample line bundle H on W and every positive in-

teger α there exists some positive integer β such that Ŝαβ(F)⊗H⊗β is
generically generated by global sections. This means that the natural
map

H0(W, Ŝαβ(F) ⊗H⊗β) ⊗OW → Ŝαβ(F) ⊗H⊗β

is generically surjective.

Remark 8.2. In Definition 8.1, let Ŵ be the largest Zariski open
subset of W such that F|

cW is locally free. Then we put

Ŝk(F) = i∗S
k(i∗F)

where i : Ŵ → W is the natural open immersion and Sk denotes the

k-th symmetric product. Note that codimW (W \ Ŵ ) ≥ 2 since F is
torsion-free.

The following theorem, which is due to Viehweg, Campana, and
others, is useful and is very important.

Theorem 8.3 (Twisted weak positivity, see [F5, Theorem 1.1]). Let
X be a normal projective variety and let ∆ be an effective Q-divisor on
X such that (X,∆) is log canonical. Let f : X → Y be a surjective
morphism onto a smooth projective variety Y with connected fibers.
Assume that k(KX +∆) is Cartier. Then, for every positive integer m,

f∗OX(mk(KX/Y + ∆))

is weakly positive.

Once we establish Theorem 8.3, we can prove Theorem 6.1 without
any difficulties. For the details, see [F5, Section 10]. Theorem 8.3
is sufficient for [F5, Section 9 and Section 10]. A key ingredient of
Theorem 8.3 is the following result.

Theorem 8.4 (see [F5, Corollary 7.11]). Let f : V → W be a surjec-
tive morphism between smooth projective varieties. Let D be a simple
normal crossing divisor on V . Then

f∗OV (KV/W +D)

is weakly positive.

By Theorem 8.4, the arguments in [F5, Section 8] work without any
modifications and produce Theorem 8.3. We recommend the reader to
see [F5, Section 8]. In [F5, Section 7], we give a proof of Theorem 8.4
based on the theory of variations of mixed Hodge structure (cf. Theo-
rem 7.5). Here, we give a more elementary proof based on the following
easy observation.
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Lemma 8.5. Let f : X → Y be a surjective morphism from a smooth
projective variety X to a projective variety Y and let D be a simple
normal crossing divisor on X. Let A be an ample line bundle on Y
such that |A| is free and let B be a line bundle on Y such that A⊗a ⊗B
is nef for some positive integer a. Then

Rif∗OX(KX +D) ⊗ B ⊗A⊗m

is generated by global sections for every i and every positive integer
m ≥ dimY + 1 + a.

Proof of Lemma 8.5. By [F2, Theorem 2.6] (see also [F4, Theorem 6.3
(ii)]), we obtain that

Hp(Y,Rif∗OX(KX +D) ⊗ B ⊗A⊗a ⊗Am−a−p) = 0

for p > 0. By Castelnuovo–Mumford regularity, we see thatRif∗OX(KX+
D) ⊗ B ⊗ A⊗m is generated by global sections for every i and m ≥
dimY + 1 + a. �

Let us start the proof of Theorem 8.4.

Proof of Theorem 8.4. In Step 1, we reduce the problem to a simpler
case. In Step 2, we use Viehweg’s clever trick and obtain the desired
weak positivity.

Step 1. By replacing D with its horizontal part, we may assume that
every irreducible component of D is dominant onto W (see [F5, Lemma
7.7]). If there is a log canonical center C of (V,D) such that f(C) ( W ,
then we take the blow-up h : V ′ → V along C. We put

KV ′ +D′ = h∗(KV +D).

Then D′ is a simple normal crossing divisor on V ′ and

f∗OV (KV/W +D) ' (f ◦ h)∗OV ′(KV ′/W +D′).

Therefore, we can replace (V,D) with (V ′, D′). Then we replace D
with its horizontal part (see [F5, Lemma 7.7]). By repeating this pro-
cess finitely many times, we may assume that every stratum of D is
dominant onto W . Now we take a closed subset Σ of W such that f is
smooth over W \Σ and that D is relatively normal crossing over W \Σ.
Let g : W ′ → W be a birational morphism from a smooth projective
variety W ′ such that Σ′ = g−1(Σ) is a simple normal crossing divisor.
By taking some suitable blow-ups of V in f−1(Σ) and replacing D with
its strict transform, we may further assume the following conditions:

(i) f ′ = g−1 ◦ f : V → W ′ is a morphism,
(ii) f ′ is smooth over W ′ \ Σ′ and D is relatively normal crossing

over W ′ \ Σ′, and
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(iii) every irreducible component of D is dominant onto W and
Supp(f ′∗Σ′ +D) is a simple normal crossing divisor on V .

V

f ′

��

f

!!C
CC

CC
CC

C

W ′
g

// W

Here we used Szabó’s resolution lemma. We assume that f ′
∗OV (KV/W ′+

D) is weakly positive. Note that

f ′
∗OV (KV/W +D) ' f ′

∗OV (KV/W ′ +D) ⊗OW ′(E)

where E is a g-exceptional effective divisor such that KW ′ = g∗KW +E.
Thus f ′

∗OV (KV/W +D) is weakly positive. We note that

g∗f
′
∗OV (KV/W +D) ' f∗OV (KV/W +D).

We can take an effective g-exceptional divisor F on W ′ such that −F
is g-ample. Let H be an ample Cartier divisor on W . Then there exists
a positive integer k such that kg∗H − F is ample. Let α be a positive
integer. Since f ′

∗OV (KV/W +D) is weakly positive,

Ŝkαβ(f ′
∗OV (KV/W +D)) ⊗OW ′(β(kg∗H − F ))

is generically generated by global sections for some positive integer β.
By taking g∗,

Ŝαkβ(f∗OV (KV/W +D)) ⊗OW (kβH)

is generically generated by global sections. This means that f∗OV (KV/W +
D) is weakly positive. Therefore, all we have to do is to prove that
f ′
∗OV (KV/W ′ +D) is weakly positive.

Step 2. By replacing W with W ′, we may assume that W ′ = W . Note
that f∗ωV/W and f∗(ωV/W ⊗ OV (D)) are locally free on W0 = W \ Σ.
Let s be an arbitrary positive integer. We take the s-fold fiber product

V s = V ×W V ×W · · · ×W V.

We put f s : V s → W . Let pi : V s → V be the i-th projection
for 1 ≤ i ≤ s. Let W † be a Zariski open set of W such that f is
flat over W † and that codimW (W \ W †) ≥ 2. We may assume that
W0 ⊂ W † ⊂ W . We put V † = f−1(W †). We may further assume
taht f∗ωV †/W † and f∗(ωV †/W † ⊗ OV †(D)) are locally free. By the flat
base change theorem (see, for example, [Mo, Section 4]), we obtain an
isomorphism

f s
∗ωV †s/W † '

s⊗
i=1

f∗ωV †/W † ,
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where V †s is the s-fold fiber product

V † ×W † · · · ×W † V †.

We put Ds =
∑s

i=1 p
∗
iD. Then, by the same argument, we have an

isomorphism

f s
∗ (ωV †s/W † ⊗OV †s(Ds)) '

s⊗
i=1

f∗(ωV †/W † ⊗OV †(D)).(A)

Let π : V (s) → V s be a resolution such that π is an isomorphism over
(f s)−1(W0) with the following properties:

(i) V (s) is a smooth projective variety,
(ii) f (s) = f s ◦ π : V (s) → W is smooth over W0,
(iii) D(s) is a simple normal crossing divisor on V (s),
(iv) Supp(D(s) + (f (s))∗Σ) is a simple normal crossing divisor on

V (s),
(v) every irreducible component of D(s) is dominant onto W , and
(vi) D(s) coincides with Ds over W0.

Note that V †s is Gorenstein. We have

π∗OV †(s)(KV †(s)) ⊂ ωV †s ,

where V †(s) = π−1(V †s). Therefore, we obtain

π∗OV †(s)(KV †(s) +D(s) − π∗Ds) ⊂ ωV †s(B)

since D(s) − π∗Ds ≤ 0. Thus we have a natural inclusion

f (s)
∗ OV (s)(KV (s)/W +D(s)) ↪→

(
s⊗

i=1

f∗OV (KV/W +D)

)∗∗

which is an isomorphism over W0 by (A) and (B). Let H be an ample
line bundle on W . Then

f (s)
∗ OV (s)(KV (s)/W +D(s)) ⊗H⊗m

is generated by global sections for every positive integer s and for ev-
ery m ≥ b(dimW + 1) + a, where a is a positive integer such that
OW (−KW ) ⊗H⊗a is nef and b is a positive integer such that |H⊗b| is
free by Lemma 8.5. Therefore, we obtain that(

s⊗
i=1

f∗OV (KV/W +D)

)∗∗

⊗H⊗m

is generated by global sections over W0, where s and m are as above.
This means that

Ŝαβ(f∗OV (KV/W +D)) ⊗H⊗β
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is generated by global sections over W0 for every α ≥ 1 and β ≥
b(dimW + 1) + a. Therefore, f∗OV (KV/W +D) is weakly positive.

We complete the proof of Theorem 8.4. �
Remark 8.6. Note that f∗OV (KV/W +D) is locally free in Step 2 in
the proof of Theorem 8.4. This is because f∗OV (KV/W + D) is the
upper canonical extension of the bottom Hodge filtration of a suitable
variation of mixed Hodge structure (cf. Theorem 7.5).

Anyway, by this section, Theorem 6.1 is now released from the deep
results of the theory of variations of mixed Hodge structure. This
means that Theorem 1.2 is also independent of the theory of variations
of mixed Hodge structure.

9. Finite covers of quasi-abelian varieties

In this section, we discuss finite covers of abelian and quasi-abelian
varieties. Let us start with the following well-known theorem due to
Kawamata–Viehweg.

Theorem 9.1 (see [KV, Main Theorem] and [K2, Theorem 4]). Let
f : X → A be a finite surjective morphism from a normal complete
variety X to an abelian variety A. Assume that the Kodaira dimension
κ(X) of X is zero. Then f is an étale morphism.

Proof. Let π : X̃ → X be a resolution of singularities from a smooth

projective variety X̃. Then q(X̃) ≥ dim X̃ since f ◦ π : X̃ → A is

surjective. Therefore, X̃ is birationally equivalent to an abelian variety

by Theorem 5.1 and Corollary 5.2 since κ(X̃) = 0. We consider the
following commutative diagram

X̃

α
eX

��

α // A

A
eX

g

>>~~~~~~~~

where α
eX : X̃ → A

eX is the Albanese map of X̃. Of course, α
eX is bira-

tional and g is a finite étale morphism between abelian varieties. Note

that both X and A
eX are the normalization of A in C(X̃). Therefore,

X is isomorphic to A
eX over A. This means that f : X → A is an étale

morphism. �
Remark 9.2. Kawamata’s original proof of Theorem 5.1, which is
[K2, Theorem 1], in [K2] uses Theorem 9.1 (see [K2, Theorem 4] and
[KV, Main Theorem]). However, Ein–Lazarsfeld’s approach in [EL,
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Section 2] does not need Theorem 9.1 (see [K2, Theorem 4] and [KV,
Main Theorem]) for the proof of Theorem 5.1 (see [K2, Theorem 1]).
Therefore, there are no problems if we use Theorem 5.1 for the proof
of Theorem 9.1.

We can generalize Theorem 9.1 as follows. Theorem 9.3 is nothing
but [K2, Theorem 26].

Theorem 9.3 (Finite covers of quasi-abelian varieties). Let f : X → A
be a finite surjective morphism from a normal variety X to a quasi-
abelian variety A. Assume that the logarithmic Kodaira dimension
κ(X) of X is zero. Then f is an étale morphism.

Proof. Let

0 −→ GA −→ A −→ AA −→ 0

be the Chevalley decomposition. We will prove that f is étale by
induction on d = dimGA. If d = 0, then it is Theorem 9.1. So, we
assume that d > 0. We take a subgroup

G1 = Gm × {1} × · · · × {1} ⊂ Gd
m = GA.

We consider

0 −→ G1 −→ A
π1−→ A1 −→ 0.

Note that A is a principal G1-bundle over A1 as a complex manifold.
We have a comactification π1 : A → A1 of π1 : A → A1, where A
is a (P1)d-bundle over AA and A1 is a (P1)d−1-bundle over AA as in
the proof of Lemma 3.10. Let X be the normalization of A in C(X)
and f : X → A is the natural map. Let X → X1 → A1 be the
Stein factorization of π1 ◦ f : X → A1. Then we have the following
commutative diagram:

X
p1 //

f

��

X1

f1

��
A π1

// A1,

where f1 : X1 → A1 is a finite morphism from a normal variety X1.
Since f1 is finite and A1 is a quasi-abelian variety, we have κ(X1) ≥ 0.
On the other hand, by Theorem 6.3, we have

0 = κ(X) ≥ κ(F ) + κ(X1),

where F is a general fiber of p1. Note that κ(F ) ≥ 0 since κ(X) = 0.
Therefore, we obtain κ(X1) = κ(F ) = 0. By induction on d, f1 is étale.
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By replacing A1 (resp. A) with X1 (resp. A ×A1 X1), we may assume
that f1 is the identity.

X
p1 //

f

��

A1

A π1

// A1,

Let x be a general point of A1. Then

f |Xx : Xx ' Gm → Ax ' Gm

is étale. We put e = deg f . By construction, there are prime divisors
H1 and H2 on A such that H1, H2 ⊂ A \ A, H1 ∼π1 H2, H1 6= H2, and
Hi is a section of π1 for i = 1, 2. We can take a nonempty Zariski open
set U of A1 such that

(i) p1 : X → A1 is smooth over U .
(ii) every fiber of p1 is P1 over U .
(iii) there are prime divisors D1 and D2 on X such that D1, D2 ⊂

X \ X, D1 ∼ D2 over U , D1 6= D2, and Di is a section of
p1 : X → A1 over U for i = 1, 2.

(iv) f
∗
Hi = eDi over U for i = 1, 2.

Therefore, we see that f : X → A is

Gm × U → Gm × U

given by

(a, b) 7→ (ae, b)

over U . On the other hand, we can construct a quasi-abelian variety
A′ such that

A′ //

h

��

A1

A π1

// A1,

where h is étale with deg h = e (see the description of quasi-abelian
varieties in 4.1) and that h : A′ → A1 is

Gm × U → Gm × U

given by

(a, b) 7→ (ae, b)

over U , that is, h coincides with f over U . Note that X is normal and
both f and h are finite. Thus X is isomorphic to A′ over A. Hence,
we obtain that f : X → A is étale. �
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We will use Theorem 9.3 in the proof of Theorem 1.2 (see the proof
of Theorem 10.1 in Section 10).

10. Quasi-Albanese maps for varieties with κ = 0

In this final section, we give a detailed proof of Kawamata’s theorem
on quasi-Albanese maps for varieties with κ = 0.

Theorem 10.1 (see [K2, Theorem 28]). Let X be a smooth variety
such that the logarithmic Kodaira dimension κ(X) of X is zero. Then
the quasi-Albanese map α : X → A is dominant and has irreducible
general fibers.

As an easy consequence of Theorem 10.1, we have:

Corollary 10.2 (see [K2, Corollary 29] and [I3, Theorem I]). Let X be
a smooth variety such that the logarithmic Kodaira dimension κ(X) of
X is zero. Then we have q(X) ≤ dimX, where q(X) is the logarithmic
irregularity of X. Moreover, the equality holds if and only if the quasi-
Albanese map α : X → A is birational.

Before we prove Theorem 10.1, we have to prove an important lemma.

Lemma 10.3 ([K2, Theorem 27]). Let X be a normal algebraic va-
riety, let A be a quasi-abelian variety, and let f : X → A be a finite
morphism. Then κ(X) ≥ 0 and there are a quasi-abelian subvariety

B of A, finite étale covers X̃ and B̃ of X and B respectively, and a

normal algebraic variety Ỹ such that:

(i) Ỹ is finite over A/B.

(ii) X̃ is a principal B̃-bundle over Ỹ as a complex manifold.

(iii) κ(Ỹ ) = dim Ỹ = κ(X).

In [K2], Kawamata claims this statement without proof. So we give
a detailed proof for the reader’s convenience.

Proof of Lemma 10.3. We divide the proof into several steps.

Step 1. Let

Z

g

��

Φ // Y

X

f
��

>>~
~

~
~

A
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be the logarithmic Iitaka fibration of X, that is, we take a smooth
complete variety X such that D = X −X is a simple normal crossing
divisor, X 99K Y is a rational map to a normal projective variety Y
associated to |m(KX +D)| for a sufficiently large and divisible positive
integer m, and g : Z → X is an elimination of indeterminacy of X 99K
Y . Let y be a sufficiently general point of Y . Then we have κ(Zy) = 0.
Since f ◦ g : Zy → f ◦ g(Zy) is generically finite and f ◦ g(Zy) ⊂ A,
f ◦ g(Zy) is a translation of a quasi-abelian subvariety By of A by
Theorem 4.4. By Theorem 9.3, Z ′

y is a quasi-abelian variety where
Zy → Z ′

y → By is the Stein factorization. Let y be a general point of
Y . Note that

H1(Zy,Z) → H1(A,Z)

does not depend on y by discreteness. Therefore, the image of Zy by
f ◦ g in A does not depend on y up to translation by the following
commutative diagram

Zy

��

f◦g

  A
AA

AA
AA

A

AZy
// A

where Zy → AZy is the quasi-Albanese map. Therefore, we obtain
a quasi-abelian subvariety B of A such that By = B for sufficiently

general y ∈ Y . Moreover, we have an étale cover B̃ of B such that

Z ′
y = B̃ for sufficiently general y ∈ Y .

Step 2. In this step, we prove the following lemma.

Lemma 10.4. Let A be a quasi-abelian variety and let B be a quasi-
abelian subvariety of A. Let B† → B be a finite étale cover. Then we
can construct a finite étale cover A† → A such that B† is a quasi-abelian
subvariety of A† satisfying

B†

��

� � // A†

��
B

� � // A.

Proof of Lemma 10.4. We consider the Chevalley decompositions:

0 // GB
//

��

B //

��

AB
//

��

0

0 // GA
// A // AA

// 0
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and

0 // GB† // B† // AB† // 0.

By Poincaré reducibility (see, for example, [Mu]), we have an étale
morphism

a : AB† ×A′ → AA

for some abelian variety A′. By taking the base change of A→ AA by
a, we obtain an étale cover A1 → A and

B†

��

// A1

��
B

� � // A.

We note the Chevalley decompositions:

0 // GB† //

��

B† //

��

AB† //

��

0

0 // GA1
// A1

// AB† ×A′ // 0.

By replacing the lattice corresponding to GA1 with a suitable sublattice,
we can construct a finite étale morphism

A† → A1

over AB† ×A′ such that

B†

��

� � // A†

��
B

� � // A

(see the description of quasi-abelian varieties in 4.1). We obtain a
desired finite étale cover A† → A. �

Step 3. By Lemma 10.4, we take a finite étale cover Ã→ A such that

B̃

��

� � // Ã

��
B

� � // A.
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By taking base changes, we obtain X̃, Z̃, and the following commuta-
tive diagram:

B̃

��

� � // Ã

��

X̃
efoo

��

Z̃
egoo

��
B

� � // A X
f

oo Z.g
oo

By construction, we can construct a logarithmic Iitaka fibration Φ̃ :

Z̃ → Y ′ such that g̃ ◦ f̃(Z̃y) is a translation of B̃ for every sufficiently

general y ∈ Y ′. More explicitly, we can construct Φ̃ : Z̃ → Y ′ as
follows. Without loss of generality, we may assume that there are a
smooth projective variety Z such that Z−Z is a simple normal crossing
divisor on Z and a morphism a : Z → Y such that Φ = a|Z : Z → Y in

Step 1. Let Z† be the normalization of Z in C(Z̃) and let b : Z† → Z
be the natural map. Let H be a very ample Cartier divisor on Y .
We consider Φ|mb∗a∗H| : Z† → Y ′ for a sufficiently large and divisible

positive integer m. We put Φ̃ := Φ|mb∗a∗H|| eZ : Z̃ → Y ′. Then this

Φ̃ : Z̃ → Y ′ is the desired logarithmic Iitaka fibration. Therefore, there

is a rational map Y ′ 99K Ã/B̃ such that

Z̃
eΦ //

ef◦eg
��

Y ′

���
�
�

Ã // Ã/B̃

(see, for example, [K2, Lemma 14]). Let Ỹ be the normalization of

Ã/B̃ in C(Y ′). We put X ′ = Ã ×
eA/ eB Ỹ . Then X ′ is normal and is

birationally equivalent to X̃. We note that X̃ and X ′ are both finite

over Ã. Thus X ′ is isomorphic to X̃ over Ã. We also note that Ỹ is

finite over A/B since Ã/B̃ is finite over A/B. By construction, X̃ is a

principal B̃-bundle over Ỹ .

Step 4. All we have to show is κ(Ỹ ) = dim Ỹ = κ(X). Since Ỹ is

finite over Ã/B̃, we have κ(Ỹ ) ≥ 0. We assume that κ(Y ) < dim Ỹ .

By applying the results obtained in Steps 1 and 3 to Ỹ → A/B, we
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obtain an étale cover Ỹ ′ with the following commutative diagram:

X̃ ′ = X̃ ×
eY Ỹ

′

��

// Ỹ ′

��

// W

��

X̃

��

// Ỹ

��

A // A/B // A/C,

where C is a quasi-abelian subvariety of A such that B ⊂ C. Note that
W is finite over A/C and that dimW = κ(Y ). We can easily see that

X̃ ′ is a principal G-bundle for some quasi-abelian variety G and

κ(X̃ ′) = κ(X̃) = κ(X).

By the easy addition formula, we obtain

κ(X̃ ′) ≤ dimW < dimY = κ(X).

This is a contradiction. Therefore, we have dim Ỹ = κ(Y ).

We have desired X̃, B̃, and Ỹ . �
Let us start the proof of Theorem 10.1.

Proof of Theorem 10.1. By using the Stein factorization, we obtain

α : X
q−→ Z

p−→ A

where q is dominant, q has irreducible general fibers, p is finite, and
Z is normal. It is sufficient to prove that p is an isomorphism. We
assume that κ(Z) > 0. Then, by Lemma 10.3, we obtain an étale

cover Z̃ → Z such that Z̃ → W is a principal G-bundle for some
quasi-abelian variety G with κ(W ) = dimW = κ(Z) > 0. We consider

r : X̃ = X ×Z Z̃ → Z̃ → W . Since κ(X̃) = κ(X) = 0, κ(F ) ≥ 0 for a
sufficiently general fiber F of r. By Theorem 6.1, we obtain

0 = κ(X) = κ(X̃) ≥ κ(W ) + κ(F ) ≥ κ(Z) > 0.

This is a contradiction. Therefore, we obtain κ(Z) = 0. By Theorem
4.4, κ(p(Z)) = 0 and p(Z) is a quasi-abelian variety. By Theorem 9.3,
we obtain that p : Z → p(Z) is étale. In particular, Z is a quasi-abelian
variety (see Theorem 4.2). This means that p is an isomorphism since
α : X → A is a quasi-Albanese map of X. Thus, we obtain that
α : X → A is dominant and has irreducible general fibers. �

We close this paper with the proof of Corollary 10.2.
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Proof of Corollary 10.2. Let α : X → A be a quasi-Albanese map. By
Theorem 10.1, α is surjective. Note that dimA = q(X). Therefore,
we have q(X) ≤ dimX. By Theorem 10.1, the general fibers of α
are irreducible. Thus, α is birational if and only if dimX = dimA =
q(X). �
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Mathématiques Supérieures, 76, Presses de l’Université de Montréal,
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