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Abstract. We discuss the cone and contraction theorem in a suitable complex analytic
setting. More precisely, we establish the cone and contraction theorem of normal pairs
for projective morphisms between complex analytic spaces. This result is a starting point
of the minimal model program for complex analytic log canonical pairs. In this paper,
we are mainly interested in normal pairs whose singularities are worse than kawamata
log terminal singularities.
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1. Introduction

This paper is the second part of the trilogy on the minimal model theory for projective
morphisms between complex analytic spaces (see [Fu10] and [Fu11]).

In his epoch-making paper [Mo], Shigefumi Mori established the cone theorem for
smooth projective varieties defined over any algebraically closed field k of arbitrary char-
acteristic by his ingenious method of bend and break. Then he established the contraction
theorem for smooth projective threefolds when the characteristic of the base field k is
zero. After that, in characteristic zero, the cone and contraction theorem was general-
ized for so-called log-terminal pairs in any dimension by using Hironaka’s resolution of
singularities and the Kawamata–Viehweg vanishing theorem. For the details, see [KMM],
[KM] and references therein. Now we know that, in characteristic zero, the cone and
contraction theorem holds for more general settings (see [Fu2], [Fu3, Chapter 6], and
references therein). In this paper, we will discuss the cone and contraction theorem of
normal pairs for projective morphisms between complex analytic spaces. For kawamata
log terminal pairs, it was known and has played an important role in [Na1], [Na2], and
[Fu8]. In [Fu8], we have already discussed the minimal model program for kawamata log
terminal pairs in a complex analytic setting. Roughly speaking, we showed that [BCHM]
and [HM] can work for projective morphisms between complex analytic spaces. We note
that the Kawamata–Viehweg vanishing theorem can be formulated and proved for projec-
tive morphisms of complex analytic spaces and is sufficient for the study of kawamata log
terminal pairs. We also note that L2-methods can work for kawamata log terminal pairs.
For an alternative approach to the minimal model program of kawamata log terminal
pairs for projective morphisms between complex analytic spaces, see [DHP], which uses
the idea of [CL]. In [Fu10], we established some vanishing theorems and related results
necessary for the study of complex analytic log canonical pairs and quasi-log structures on
complex analytic spaces. Note that [Fu10] depends on Morihiko Saito’s theory of mixed
Hodge modules (see [Sa1], [Sa2], [Sa3], [FFS], and [Sa4]) and Takegoshi’s generalization
of Kollár’s torsion-free and vanishing theorem (see [Ta]). In this paper, we will discuss the
cone and contraction theorem of normal pairs for projective morphisms between complex
analytic spaces as an application of [Fu10]. This paper can be seen as a complex analytic
generalization of [Fu2] and as a generalization of Nakayama’s paper [Na1]. We note that
Nakayama only treated kawamata log terminal pairs and Q-divisors in [Na1]. Finally, this
paper is independent of [Fu8] and does not use any results obtained in [Fu8].

1.1 (Standard setting). One of the main difficulties to discuss the minimal model theory
for complex analytic spaces is how to formulate it.

Let π : X → Y be a projective morphism between complex analytic spaces such that
X is a normal complex variety and let W be a compact subset of Y . In this paper,
we formulate and prove almost everything over some open neighborhood of W . Let ∆
be an R-divisor on X such that KX + ∆ is R-Cartier. The number of the irreducible
components of Supp∆ is only locally finite. In general, the support of ∆ may have
infinitely many irreducible components. By shrinking Y around W suitably, that is, by
replacing Y with a suitable relatively compact open neighborhood of W , we can always
assume that Supp∆ has only finitely many irreducible components. Moreover, we can
assume that every R-Cartier divisor on X is a finite R-linear combination of Cartier
divisors. Therefore, by considering some relatively compact open neighborhood of W , we
can avoid subtle problems caused by the difference between the Zariski topology and the
Euclidean topology. In [Fu8], we almost always assume that W is a Stein compact subset
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of Y such that Γ(W,OY ) is noetherian. In this paper, however, we usually assume thatW
is only a compact subset of Y . When we consider the Kleiman–Mori cone NE(X/Y ;W )
of π : X → Y and W , we further assume that the dimension of N1(X/Y ;W ) is finite. For
the details of NE(X/Y ;W ) and N1(X/Y ;W ), see Section 11. Note that if W ∩ V has
only finitely many connected components for any analytic subset V which is defined over
an open neighborhood of W then the dimension of N1(X/Y ;W ) is finite by Nakayama’s
finiteness (see Theorem 11.10). Therefore, if W is a compact semianalytic subset of Y ,
then the dimension of N1(X/Y ;W ) is always finite. Thus, we can find many compact
subsets W with dimRN

1(X/Y ;W ) <∞.

1.1. Main theorem. In this paper, we call (X,∆) a normal pair if it consists of a normal
complex variety X and an effective R-divisor ∆ on X such that KX+∆ is R-Cartier. The
main purpose of this paper is to establish the following cone and contraction theorem of
normal pairs for projective morphisms between complex analytic spaces.

Theorem 1.2 (Cone and contraction theorem, see Theorems 12.1, 12.2, 13.2, and 14.4).
Let π : X → Y be a projective morphism of complex analytic spaces such that X is a
normal complex variety and let W be a compact subset of Y . Assume that the dimension
of N1(X/Y ;W ) is finite. Let ∆ be an effective R-divisor on X such that KX + ∆ is
R-Cartier. Then we have

NE(X/Y ;W ) = NE(X/Y ;W )(KX+∆)≥0 +NE(X/Y ;W )Nlc(X,∆) +
∑

Rj

with the following properties.

(1) Nlc(X,∆) is the non-lc locus of (X,∆) and NE(X/Y ;W )Nlc(X,∆) is the subcone

of NE(X/Y ;W ) which is the closure of the convex cone spanned by the projective
integral curves C on Nlc(X,∆) such that π(C) is a point of W .

(2) Rj is a (KX +∆)-negative extremal ray of NE(X/Y ;W ) which satisfies

Rj ∩ NE(X/Y ;W )Nlc(X,∆) = {0}

for every j.
(3) Let A be a π-ample R-line bundle on X. Then there are only finitely many Rj’s

included in NE(X/Y ;W )(KX+∆+A)<0. In particular, the Rj’s are discrete in the

half-space NE(X/Y ;W )(KX+∆)<0.

(4) Let F be any face of NE(X/Y ;W ) such that

F ∩
(
NE(X/Y ;W )(KX+∆)≥0 +NE(X/Y ;W )Nlc(X,∆)

)
= {0}.

Then, after shrinking Y around W suitably, there exists a contraction morphism
φF : X → Z over Y satisfying the following properties.
(i) Let C be a projective integral curve on X such that π(C) is a point of W .

Then φF (C) is a point if and only if the numerical equivalence class [C] of C
is in F .

(ii) The natural map OZ → (φF )∗OX is an isomorphism.
(iii) Let L be a line bundle on X such that L · C = 0 for every curve C with

[C] ∈ F . Then, after shrinking Y around W suitably again, there exists a
line bundle LZ on Z such that L ≃ φ∗

FLZ holds.
(5) Every (KX +∆)-negative extremal ray R with

R ∩ NE(X/Y ;W )Nlc(X,∆) = {0}
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is spanned by a (possibly singular) rational curve C with

0 < −(KX +∆) · C ≤ 2 dimX.

From now on, we further assume that (X,∆) is log canonical, equivalently, Nlc(X,∆) =
∅. Then we have the following properties.

(6) Let H be an effective R-Cartier R-divisor on X such that KX + ∆ + H is π-nef
over W and (X,∆+H) is log canonical. Then, either KX +∆ is also π-nef over
W or there exists a (KX +∆)-negative extremal ray R of NE(X/Y ;W ) such that

(KX +∆+ λH) ·R = 0,

where

λ := inf{t ≥ 0 |KX +∆+ tH is π-nef over W}.
Of course, KX +∆+ λH is π-nef over W .

Similarly, we have:

(7) Let H be an R-line bundle on X which is π-ample over W such that KX +∆+H
is π-nef over W . Then, either KX + ∆ is also π-nef over W or there exists a
(KX +∆)-negative extremal ray R of NE(X/Y ;W ) such that

(KX +∆+ λH) ·R = 0,

where

λ := inf{t ≥ 0 |KX +∆+ tH is π-nef over W}.
Note that KX +∆+ λH is π-nef over W .

Remark 1.3. In Theorem 1.2, the proof of (5) needs Mori’s bend and break method and
(6) is an application of (5). On the other hand, (7) is an easy consequence of (3). Note
that π-very ample line bundles do not always have global sections. Hence (7) is not a
special case of (6). We need (7) in order to discuss the minimal model program of log
canonical pairs with ample scaling for projective morphisms between complex analytic
spaces.

For the minimal model program, the following theorem, which is a supplement to
Theorem 1.2, may be useful (see [Fu8]).

Theorem 1.4. Let (X,∆) be a log canonical pair. Let π : X → Y be a projective mor-
phism of complex analytic spaces and let W be a compact subset of Y such that the
dimension of N1(X/Y ;W ) is finite. Suppose that π : X → Y is decomposed as

π : X
f // Y ♭ g // Y

such that Y ♭ is projective over Y . Let AY ♭ be a g-ample line bundle on Y ♭. Let R be
a (KX +∆+ (dimX + 1)f ∗AY ♭)-negative extremal ray of NE(X/Y ;W ). Then R is a
(KX +∆)-negative extremal ray of NE

(
X/Y ♭; g−1(W )

)
, that is, R · f ∗AY ♭ = 0.

We prove Theorem 1.4 as an application of the vanishing theorem for projective quasi-
log schemes. We do not need Theorem 1.2 (5) for the proof of Theorem 1.4. We have the
following result as an easy consequence of Theorem 1.4.

Corollary 1.5 (see [Fu5, Corollary 1.2]). Let (X,∆) be a log canonical pair. Let π : X →
Y be a projective morphism of complex analytic spaces and let A be any π-ample line
bundle on X. Then KX +∆+ (dimX + 1)A is always nef over Y .
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We make an important remark on Theorem 1.2. By Remark 1.6, we see that the cone
and contraction theorem of normal pairs holds for projective morphisms between compact
analytic spaces.

Remark 1.6. Let π : X → Y be a projective morphism of complex analytic spaces and
let W be a compact subset of Y as in Theorem 1.2. Then the dimension of N1(X/Y ;W )
is not always finite (see Example 11.9). In [Na2, Chapter II. 5.19. Lemma] (see Theorem
11.10), Noboru Nakayama proved that if

• W is a compact subset of Y such that W ∩ V has only finitely many connected
components for any analytic subset V which is defined over an open neighborhood
of W ,

then the dimension of N1(X/Y ;W ) is finite. We note that the above assumption is
satisfied in the following cases:

(i) W is a point of Y .
(ii) W is a compact semianalytic subset of Y .
(iii) W = Y when Y is compact.

Case (i) is obvious. In Case (ii), W ∩ V is a compact semianalytic subset of Y . Thus we
see that W ∩ V has only finitely many connected components (see, for example, [BM1,
Corollary 2.7 (2)]). In Case (iii), W ∩ V = V is a compact analytic subset of Y . Hence it
has only finitely many connected components.

By Remark 1.6, we see that there are many compact subsets W of Y such that the
dimension of N1(X/Y ;W ) is finite.

We note that we can formulate and prove the basepoint-free theorem for projective
morphisms of complex analytic spaces as follows. In Theorem 1.7, L is only assumed to
be π-nef over W , that is, L|π−1(w) is nef in the usual sense for every w ∈ W . Equivalently,
L · C ≥ 0 for every projective integral curve C on X such that π(C) is a point of W .
However, Theorem 1.7 claims that it is π-semiample over some open neighborhood of W .

Theorem 1.7 (Basepoint-free theorem: Theorem 9.1). Let π : X → Y be a projective
morphism of complex analytic spaces such that X is a normal complex variety and let W
be a compact subset of Y . Let ∆ be an effective R-divisor on X such that KX + ∆ is
R-Cartier. Let L be a Cartier divisor on X which is π-nef over W . We assume that

(i) aL− (KX +∆) is π-ample over W for some positive real number a, and
(ii) ONlc(X,∆)(mL) is π|Nlc(X,∆)-generated over some open neighborhood of W for every

m≫ 0.

Then there exists a relatively compact open neighborhood U of W such that OX(mL) is
π-generated over U for every m≫ 0.

In Theorem 1.7, W is only assumed to be a compact subset of Y . We do not need
the assumption that dimRN

1(X/Y ;W ) < ∞ holds. When (X,∆) is log canonical, we
will also prove the basepoint-free theorem for R-Cartier divisors (see Theorem 15.1). In
Theorem 15.1, we have to assume that the dimension of N1(X/Y ;W ) is finite since we
need the cone theorem for the proof of Theorem 15.1.
In the proof of Theorems 1.2, 1.7, and so on, the following basic properties of log

canonical centers play an important role.

Theorem 1.8 (Basic properties of log canonical centers: Theorem 7.1). Let (X,∆) be a
log canonical pair. Then the following properties hold.

(1) The number of log canonical centers of (X,∆) is locally finite.
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(2) The intersection of two log canonical centers is a union of some log canonical
centers.

(3) Let x ∈ X be any point such that (X,∆) is log canonical but is not kawamata log
terminal at x. Then there exists a unique minimal (with respect to the inclusion)
log canonical center Cx passing through x. Moreover, Cx is normal at x.

Theorem 1.8 is new for complex analytic log canonical pairs although it is well known
when (X,∆) is algebraic. It will be useful for the study of complex analytic log canonical
singularities (see also [Fu9]).

Theorem 1.2 is a starting point of the minimal model program of log canonical pairs for
projective morphisms between complex analytic spaces. We can formulate the minimal
model theory of log canonical pairs for projective morphisms between complex analytic
spaces by using Theorem 1.2 as in the algebraic case. On the other hand, one of the main
goals of the minimal model theory for projective morphisms between complex analytic
spaces is the following conjecture.

Conjecture 1.9 (Finite generation). Let π : X → Y be a projective morphism of complex
analytic spaces and let ∆ be an effective Q-divisor on X such that (X,∆) is log canonical.
Then

R(X/Y,KX +∆) :=
⊕
m∈N

π∗OX(⌊m(KX +∆)⌋)

is a locally finitely generated graded OY -algebra.

We note that in [Fu8] Conjecture 1.9 was already solved completely when (X,∆) is
kawamata log terminal. We also note that Conjecture 1.9 is still widely open even when
π : X → Y is algebraic (see [FG]).

The author first prepared a short manuscript which only explains how to modify argu-
ments in [Fu2]. Unfortunately, however, it seemed to be hard to read. Hence he made
great efforts to make this paper as self-contained as possible except for the results estab-
lished in [Fu10]. He sometimes repeats arguments in [Fu2] and [Fu3]. Thus, some parts
of this paper are very similar to those of [Fu2] and [Fu3].

Remark 1.10 (Quasi-log structures). By [Fu10, Theorems 1.1 and 1.2] (see Theorems 5.5
and 5.7), we can formulate and discuss quasi-log structures on complex analytic spaces
(see [Fu3, Chapter 6]). Hence we can establish the cone and contraction theorem for
highly singular complex analytic spaces. However, in this paper, we will only discuss the
cone and contraction theorem of normal pairs (see Theorem 1.2). This is because Theorem
1.2 is sufficient for many geometric applications and it is not so easy psychologically to
treat reducible complex analytic spaces. We will describe the theory of quasi-log complex
analytic spaces in [Fu11].

We look at the organization of this paper. In Section 2, we collect some necessary
definitions and results for the reader’s convenience. Since we have to work in the complex
analytic setting, some of them become much more subtle than the usual ones in the
algebraic setting. In Section 3, we collect some basic properties of relatively nef and
relatively ample R-line bundles for the sake of completeness. They are indispensable in
subsequent sections. In Section 4, we define non-lc ideal sheaves in the complex analytic
setting and prove some elementary lemmas. In Section 5, we quickly recall the main
result of [Fu10] without proof. Note that the proof of the main result in [Fu10] depends
on Saito’s theory of mixed Hodge modules and Takegoshi’s generalization of Kollár’s
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torsion-free and vanishing theorem. In Section 6, we prepare some necessary vanishing
theorems as applications of the vanishing result explained in Section 5. In Section 7, we
establish the basic properties of log canonical centers. They are new and very important
in the theory of minimal models in the complex analytic setting. In Section 8, we prove
the non-vanishing theorem in the complex analytic setting with the aid of the theory of
quasi-log schemes. Note that Lemma 8.2 is new and will be useful for the study of quasi-
log structures. In Section 9, we establish the basepoint-free theorem for normal pairs
in the complex analytic setting by using the non-vanishing theorem proved in Section
8. It is well known and is not difficult to prove for kawamata log terminal pairs. In
Sections 10, we prove the rationality theorem for normal pairs in the complex analytic
setting. The proof is essentially the same as the one for algebraic varieties explained in
[Fu2]. In Section 11, we define Kleiman–Mori cones for projective morphisms of complex
analytic spaces. In Subsection 11.1, we briefly explain Nakayama’s finiteness without
proof for the reader’s convenience. Note that in this paper we do not need it except in
the proof of Corollary 1.5. Then, in Section 12, we prove the cone theorem for normal
pairs in the complex analytic setting. The results in Section 12 are easy consequences
of the basepoint-free theorem in Section 9 and the rationality theorem in Section 10. In
Subsection 12.1, we prove Theorem 1.4 as an easy application of the vanishing theorem
for projective quasi-log schemes. In Section 13, we discuss lengths of extremal rational
curves. The result in Section 13 seems to be indispensable for the minimal model program
with scaling. Here, we use the framework of quasi-log schemes. In Section 14, we discuss
Shokurov’s polytopes and some applications. The results in this section are well known
and have already played an important role in the usual algebraic setting. In Section 15,
we prove the basepoint-free theorem of log canonical pairs for R-Cartier divisors. It can
be seen as an application of the cone theorem. In Section 16, which is the final section, we
prove the main result of this paper, that is, the cone and contraction theorem of normal
pairs for projective morphisms between complex analytic spaces: Theorem 1.2.

Acknowledgments. The author was partially supported by JSPS KAKENHI Grant
Numbers JP19H01787, JP20H00111, JP21H00974, JP21H04994. He thanks Professor
Noboru Nakayama very much for useful suggestions and answering his questions. He also
would like to thank Professors Taro Fujisawa, Shigefumi Mori, and Morihiko Saito very
much.

In this paper, every complex analytic space is assumed to be Hausdorff and second-
countable. An irreducible and reduced complex analytic space is called a complex variety.
We will freely use the standard notation in [Fu2], [Fu3], [Fu8], and so on. We will also freely
use the basic results on complex analytic geometry in [BS] and [Fi]. For the minimal model
program for projective morphisms between complex analytic spaces, see [Na1], [Na2], and
[Fu8]. For the traditional framework of the minimal model program, see [KMM] and
[KM]. We note that Z, Q, and R denote the set of integers, rational numbers, and real
numbers, respectively. We also note that N (resp. Z>0) is the set of non-negative integers
(resp. positive integers).

2. Preliminaries

In this section, we collect basic definitions and results necessary for this paper. For the
details, see [Fu2], [Fu3], [Fu8], and so on. Since we are working in the complex analytic
setting, some of them become subtle.
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Let us start with the definition of singularities of pairs, which is indispensable in the
theory of minimal models.

2.1 (Singularities of pairs, log canonical centers, and non-lc loci). We consider a normal
complex variety X. Let Xsm denote the smooth locus of X. Then the canonical sheaf
ωX of X is the unique reflexive sheaf whose restriction to Xsm is isomorphic to the sheaf
Ωn

Xsm
, where n = dimX. Let ∆ be an R-divisor on X, that is, ∆ is a locally finite R-linear

combination of prime divisors on X. We say that KX +∆ is R-Cartier at x ∈ X if there
exist an open neighborhood Ux of x and a Weil divisor KUx on Ux with OUx(KUx) ≃ ωX |Ux

such that KUx +∆|Ux is R-Cartier, that is, KUx +∆|Ux is a finite R-linear combination of
Cartier divisors on Ux. For any subset L of X, we say that KX +∆ is R-Cartier at L if it
is R-Cartier at any point x of L. We simply say that KX +∆ is R-Cartier when KX +∆
is R-Cartier at any point x ∈ X. Unfortunately, however, we can not always define KX

globally with OX(KX) ≃ ωX . In general, it only exists locally on X. We usually use the
symbol KX as a formal divisor class with an isomorphism OX(KX) ≃ ωX and call it the
canonical divisor of X if there is no danger of confusion.
Let f : Y → X be a proper bimeromorphic morphism from a normal complex variety Y .

Suppose that KX +∆ is R-Cartier in the above sense. We take a small Stein open subset
U of X where KU +∆|U is a well-defined R-Cartier R-divisor on U . In this situation, we
can define Kf−1(U) and KU such that f∗Kf−1(U) = KU . Then we can write

Kf−1(U) = f ∗(KU +∆|U) + EU

as usual. Note that EU is a well-defined R-divisor on f−1(U) such that f∗EU = ∆|U .
Then we have the following formula

KY = f ∗(KX +∆) +
∑
E

a(E,X,∆)E

as in the algebraic case. We note that
∑

E a(E,X,∆)E is a globally well-defined R-divisor
on Y such that (

∑
E a(E,X,∆)E) |f−1(U) = EU although KX and KY are well defined

only locally.
If ∆ is a boundary R-divisor, that is, all the coefficients of ∆ are in [0, 1] ∩ R, and

a(E,X,∆) ≥ −1 holds for any f : Y → X and every f -exceptional divisor E, then (X,∆)
is called a log canonical pair. If (X,∆) is log canonical and a(E,X,∆) > −1 for any
f : Y → X and every f -exceptional divisor E, then (X,∆) is called a purely log terminal
pair. If (X,∆) is purely log terminal and ⌊∆⌋ = 0, that is, the coefficients of ∆ are
in [0, 1) ∩ R, then (X,∆) is called a kawamata log terminal pair. When ∆ = 0 and
a(E,X, 0) ≥ 0 (resp. > 0) for any f : Y → X and every f -exceptional divisor E, we
simply say that X has only canonical singularities (resp. terminal singularities). In this
paper, we will only use log canonical pairs and kawamata log terminal pairs.

More generally, let X be a normal complex variety and let ∆ be an effective R-divisor
on X. We say that (X,∆) is log canonical (resp. kawamata log terminal) at x ∈ X if
there exists an open neighborhood Ux of x such that (Ux,∆|Ux) is a log canonical pair
(resp. kawamata log terminal pair). Let L be any subset of X. We say that (X,∆) is log
canonical (resp. kawamata log terminal) at L if (X,∆) is log canonical (resp. kawamata
log terminal) at any point x of L. We note that (X,∆) is log canonical (resp. kawamata
log terminal) in the above sense if and only if (X,∆) is log canonical (resp. kawamata log
terminal) at any point x of X.

Let X be a normal complex variety and let ∆ be an effective R-divisor on X such that
KX + ∆ is R-Cartier. The image of E with a(E,X,∆) = −1 for some f : Y → X such
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that (X,∆) is log canonical around general points of f(E) is called a log canonical center
of (X,∆). The non-lc locus of (X,∆), denoted by Nlc(X,∆), is the smallest closed subset
Z of X such that the complement (X \Z,∆|X\Z) is log canonical. We can define a natural
complex analytic space structure on Nlc(X,∆) by the non-lc ideal sheaf JNLC(X,∆) of
(X,∆). For the definition of JNLC(X,∆), see Section 4 below.

The above definition is compatible with the usual definition for algebraic varieties.

Remark 2.2. Let (X,∆) be a pair consisting of a normal algebraic variety X and an
effective R-divisor on X such that KX + ∆ is R-Cartier. Then (X,∆) is kawamata log
terminal (resp. log canonical) in the usual sense (see [Fu2], [Fu3], and so on) if and only if
(Xan,∆an) is kawamata log terminal (resp. log canonical) in the above sense, where Xan

is the complex analytic space naturally associated to X and let ∆an be the R-divisor on
Xan associated to ∆.

The following lemma is well known for algebraic varieties.

Lemma 2.3. Let X be a normal complex variety and let ∆ be an effective R-divisor on X
such that KX +∆ is R-Cartier. Let P be a point of X and let Di be an effective Cartier

divisor on X with P ∈ SuppDi for every i. If
(
X,∆+

∑k
i=1Di

)
is log canonical at P ,

then k ≤ dimX holds.

We omit the proof of Lemma 2.3 here since the usual proof for algebraic varieties can
work without any changes (see, for example, [Fu2, Lemma 13.2]). We will use Lemma 2.3
in order to create a new log canonical center.

In this paper, we sometimes implicitly use Serre’s GAGA.

2.4 (Serre’s GAGA). Let π : X → Y be a projective morphism of complex analytic spaces
and let F be a fiber of π : X → Y . Then F is projective. Hence we can apply various
results of projective schemes to F with the aid of Serre’s GAGA (see [Se]).

In the theory of minimal models, we need the notion of R-line bundles and Q-line
bundles.

2.5 (Line bundles, R-line bundles, and Q-line bundles). Let X be a complex analytic
space and let Pic(X) denote the group of line bundles on X, that is, the Picard group of
X. An element of Pic(X)⊗ZR (resp. Pic(X)⊗ZQ) is called an R-line bundle (resp. a Q-
line bundle) on X. In this paper, we usually write the group law of Pic(X)⊗ZR additively
for simplicity of notation. Hence we sometimes use mL to denote L⊗m for L ∈ Pic(X)
and m ∈ Z.

We also need the notion of R-divisors and Q-divisors.

2.6 (Divisors, R-divisors, and Q-divisors). Let X be a reduced equidimensional com-
plex analytic space. A prime divisor on X is an irreducible and reduced closed analytic
subspace of codimension one. An R-divisor D on X is a formal sum

D =
∑
i

aiDi,

where Di is a prime divisor on X with Di ̸= Dj for i ̸= j, ai ∈ R for every i, and the
support

SuppD :=
∪
ai ̸=0

Di
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is a closed analytic subset of X. In other words, the formal sum
∑

i aiDi is locally finite.
If ai ∈ Z (resp. ai ∈ Q) for every i, then D is called a divisor (resp. Q-divisor) on X.
Note that a divisor is sometimes called an integral Weil divisor in order to emphasize the
condition that ai ∈ Z for every i. If 0 ≤ ai ≤ 1 (resp. ai ≤ 1) holds for every i, then an
R-divisor D is called a boundary (resp. subboundary) R-divisor.

Let D =
∑

i aiDi be an R-divisor on X such that Di is a prime divisor for every i with
Di ̸= Dj for i ̸= j. The round-down ⌊D⌋ of D is defined to be the divisor

⌊D⌋ =
∑
i

⌊ai⌋Di,

where ⌊x⌋ is the integer defined by x−1 < ⌊x⌋ ≤ x for every real number x. The round-up
and the fractional part of D are defined to be

⌈D⌉ := −⌊−D⌋, and {D} := D − ⌊D⌋,

respectively. We put

D=1 :=
∑
ai=1

Di, D<1 :=
∑
ai<1

aiDi, and D>1 :=
∑
ai>1

aiDi.

Let D be an R-divisor on X and let x be a point of X. If D is written as a finite R-linear
(resp. Q-linear) combination of Cartier divisors on some open neighborhood of x, then D
is said to be R-Cartier at x (resp. Q-Cartier at x). If D is R-Cartier (resp. Q-Cartier) at x
for every x ∈ X, then D is said to be R-Cartier (resp. Q-Cartier). More generally, for any
subset L of X, if D is R-Cartier (resp. Q-Cartier) at x for every x ∈ L, then D is said to
be R-Cartier (resp. Q-Cartier) at L. Note that a Q-Cartier R-divisor D is automatically
a Q-Cartier Q-divisor by definition. If D is a finite R-linear (resp. Q-linear) combination
of Cartier divisors on X, then we sometimes say that D is a globally R-Cartier R-divisor
(resp. globally Q-Cartier Q-divisor).

Two R-divisors D1 and D2 are said to be linearly equivalent if D1 − D2 is a principal
Cartier divisor. The linear equivalence is denoted by D1 ∼ D2. Two R-divisors D1 and
D2 are said to be R-linearly equivalent (resp. Q-linearly equivalent) if D1 −D2 is a finite
R-linear (resp. Q-linear) combination of principal Cartier divisors. When D1 is R-linearly
(resp. Q-linearly) equivalent to D2, we write D1 ∼R D2 (resp. D1 ∼Q D2).

Example 2.7. Let X be a non-compact Riemann surface and let {Pk}∞k=1 be a set of
mutually distinct discrete points of X. We put D :=

∑∞
k=1

1
k
Pk. Then D is obviously

a Q-Cartier Q-divisor on X. However, D is not a finite Q-linear combination of Cartier
divisors on X.

We note that in this paper we can almost always assume that SuppD has only finitely
many irreducible components.

2.8 (Hybrids of R-line bundles and R-Cartier divisors). In this paper, we usually treat
hybrids of R-line bundles and R-Cartier divisors.

Let π : X → Y be a projective morphism between complex analytic spaces and let W
be a compact subset of Y . Let A and B be R-Cartier divisors on X and let L and M be
R-line bundles on X.

We sometimes say that

L+ A ∼R M+B

holds over some open neighborhood U of W . This means:
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(i) We implicitly assume that A|π−1(U) and B|π−1(U) are finite R-linear combinations of
Cartier divisors on π−1(U). Thus we can obtain R-line bundles A and B naturally
associated to A|π−1(U) and B|π−1(U), respectively.

(ii) In Pic(π−1(U))⊗Z R, the following equality

L|π−1(U) +A = M|π−1(U) + B

holds.

If X is a normal complex variety and U is a relatively compact open subset of Y , then
A|π−1(U) and B|π−1(U) are automatically finite R-linear combinations of Cartier divisors
on π−1(U). Therefore, (i) is harmless for applications.

Similarly, we say that L + A is π-ample over some open neighborhood U of W if
A|π−1(U) is a finite R-linear combination of Cartier divisors on π−1(U), A is the R-line
bundle naturally associated to A|π−1(U), and L|π−1(U) + A is π-ample over U , that is,
L|π−1(U) +A is a finite positive R-linear combination of π-ample line bundles on π−1(U).

2.9. Let π : X → Y be a projective morphism of complex analytic spaces such that X is a
normal complex variety and let ∆ be an R-divisor onX such thatKX+∆ is R-Cartier. Let
y be an arbitrary point of Y and let Uy be any relatively compact Stein open neighborhood
of y ∈ Y . In this case, we can always find a Weil divisor Kπ−1(Uy) on π

−1(Uy) such that
Oπ−1(Uy)(Kπ−1(Uy)) ≃ ωπ−1(Uy) holds since π is projective and Uy is Stein. Since Uy is
relatively compact, Supp∆|π−1(Uy) has only finitely many irreducible components. Thus,
we can easily see that Kπ−1(Uy) +∆|π−1(Uy) is a globally R-Cartier R-divisor on π−1(Uy).
Moreover, for any R-line bundle L on X, we can take a globally R-Cartier R-divisor L on
π−1(Uy) such that L|π−1(Uy) is the R-line bundle naturally associated to L.

In the theory of minimal models, we often use the following formulation. We will
repeatedly use it in subsequent sections.

2.10. Let X be a normal complex variety. A real vector space spanned by the prime
divisors on X is denoted by WDivR(X), which has a canonical basis given by the prime
divisors. Let D be an element of WDivR(X). Then the sup norm of D with respect to
this basis is denoted by ||D||. Note that an R-divisor D on X is an element of WDivR(X)
if and only if SuppD has only finitely many irreducible components.

Let V be a finite-dimensional affine subspace of WDivR(X), which is defined over the
rationals. We put

R(V ;x) := {∆ ∈ V | KX +∆ is R-Cartier at x}.

It is obvious that R(V ;x) is an affine subspace of V . We take an arbitrary element ∆
of R(V ;x). Then KX +∆ is R-Cartier at x by definition. Therefore, there exist a small
open neighborhood Ux of x such that

KUx +∆|Ux =
k∑

i=1

aiDi,

where Di is a Cartier divisor on Ux and ai is a real number for every i. By this description,
we can easily see that there exists an affine subspace T of V defined over the rationals
such that ∆ ∈ T ⊂ R(V ;x). Hence R(V ;x) itself is an affine subspace of V defined over
the rationals. Let L be a compact subset of X. We put

R(V ;L) := {∆ ∈ V | KX +∆ is R-Cartier at L}.
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Then the following equality

R(V ;L) =
∩
x∈L

R(V ;x)

obviously holds. Therefore, R(V ;L) is an affine subspace of V defined over the rationals.
After shrinking X around L suitably, we may assume that KX +∆ is R-Cartier for every
∆ ∈ R(V ;L) since V is finite-dimensional and L is compact. Let Θ be the union of the
support of any element of R(V ;L). By [BM2, Theorem 13.2], after shrinking X around
L suitably, we can construct a projective bimeromorphic morphism f : Y → X from a
smooth complex analytic space Y such that Exc(f) and Exc(f) ∪ Supp f−1

∗ Θ are simple
normal crossing divisors on Y , where Exc(f) denotes the exceptional locus of f : Y → X.
Thus, for any ∆ ∈ R(V ;L), we can write

KY +∆Y := f ∗(KX +∆)

such that Supp∆Y is a simple normal crossing divisor on Y . In this situation, (X,∆) is
log canonical at L if and only if ∆ is effective at L and the coefficients of ∆Y are less than
or equal to one over L. Hence, we can easily check that

L(V ;L) := {∆ ∈ V |KX +∆ is log canonical at L}

is a rational polytope contained in R(V ;L). We can also check that there exists an open
neighborhood U of L such that (U,∆|U) is log canonical for every ∆ ∈ L(V ;L).

2.11. Let X be a complex analytic space. An analytic subset (resp. A locally closed
analytic subset) of X is the support of a closed analytic subspace (resp. a locally closed
analytic subspace) of X. A Zariski open subset of X means the complement of an analytic
subset. We note the following easy example.

Example 2.12. We consider ∆ := {z ∈ C | |z| < 1} and ∆∗ := ∆ \ {0}. Then ∆∗ is a
Zariski open subset of ∆. We put

U := ∆∗ \
{
1

n

∣∣∣∣n ∈ Z with n ≥ 2

}
.

Then U is a Zariski open subset of ∆∗ since{
1

n

∣∣∣∣n ∈ Z with n ≥ 2

}
is a closed analytic subset of ∆∗. However, U is not a Zariski open subset of ∆. This is
because

{0} ∪
{
1

n

∣∣∣∣n ∈ Z with n ≥ 2

}
is not a closed analytic subset of ∆.

2.13. A subset S of a complex analytic space X is said to be analytically meagre if

S ⊂
∪
n∈N

Yn,

where each Yn is a locally closed analytic subset of X of codimension ≥ 1.
Let X be a complex analytic space. We say that a property P holds for an analytically

sufficiently general point x ∈ X when P holds for every point x contained in X \ S for
some analytically meagre subset S of X.
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Let π : X → Y be a morphism of analytic spaces. Similarly, we say that a property P
holds for an analytically sufficiently general fiber of π : X → Y when P holds for π−1(y)
for every y ∈ Y \ S, where S is some analytically meagre subset of Y .

In this paper, we will freely use the following facts, which can be found in [BS, Chapter
III].

2.14. Let π : X → Y be a projective surjective morphism of complex analytic spaces and
let L be a line bundle on X. If Rpπ∗L = 0 holds, then Hp(F,L|F ) = 0 for an analytically
sufficiently general fiber F of π : X → Y . If H0(F,L|F ) ̸= 0 for an analytically sufficiently
general fiber F of π : X → Y , then π∗L ̸= 0 holds.

We will use the following convention throughout this paper.

2.15. The expression ‘... for every m≫ 0’ means that ‘there exists a positive real number
m0 such that ... for every m ≥ m0.’

3. Basic properties of relatively ample and relatively nef R-line bundles

In this section, we will collect some basic properties of relatively nef and relatively ample
R-line bundles for the reader’s convenience. We will frequently use them in subsequent
sections.

Let us recall the definition of projective morphisms of complex analytic spaces for the
sake of completeness.

Definition 3.1 (Projective morphisms of complex analytic spaces). Let π : X → Y be a
proper morphism of complex analytic spaces and let L be a line bundle on X. Then L is
said to be π-very ample or relatively very ample over Y if L is π-free, that is,

π∗π∗L → L
is surjective, and the induced morphism

X → PY (π∗L)
over Y is a closed embedding. A line bundle L on X is called π-ample or ample over Y
if for any point y ∈ Y there are an open neighborhood U of y and a positive integer m
such that L⊗m|π−1(U) is relatively very ample over U . Let D be a Cartier divisor on X.
Then we say that D is π-very ample, π-free, and π-ample if the line bundle OX(D) is so,
respectively. We note that π : X → Y is said to be projective when there exists a π-ample
line bundle on X.

For the basic properties of π-ample line bundles, see [BS, Chapter IV] and [Na2, Chapter
II. §1.c. Ample line bundles]. Since we are mainly interested in R-line bundles in this
paper, the following easy lemma is indispensable.

Lemma 3.2. Let π : X → Y be a projective morphism between complex analytic spaces
and let W be a compact subset of Y . Let L be an R-line bundle on X. Then the following
two conditions are equivalent.

(i) L is π-ample overW , that is, L|π−1(w) is ample in the usual sense for every w ∈ W .
(ii) L is π-ample over some open neighborhood U of W , that is, L|π−1(U) is a finite

positive R-linear combination of π|π−1(U)-ample line bundles.

Sketch of Proof of Lemma 3.2. It is obvious that (i) follows from (ii). Hence it is sufficient
to prove that (ii) follows from (i). It is an easy exercise to modify the proof of [FM2,
Lemmas 6.1 and 6.2] suitably with the aid of [Na1, Proposition 1.4]. □
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Throughout this paper, we will freely use Lemma 3.2 without mentioning it explicitly.
The following lemma is more or less well known to the experts. We describe it here for
the sake of completeness.

Lemma 3.3. Let π : X → Y be a projective surjective morphism of complex analytic
spaces such that X and Y are both irreducible. Let L be a line bundle on X. Assume that
L|π−1(y) is ample for some y ∈ Y . Then there exists a Zariski open neighborhood U of y
in Y and a positive integer m such that L⊗m|π−1(U) is π-very ample over U . In particular,
L|π−1(U) is π-ample over U .

Proof. It is well known that there exists a small open neighborhood U1 of y in Y such that
L|π−1(U1) is π-ample over U1 (see [Na1, Proposition 1.4]). Therefore, we can take some
positive integer m such that L⊗m is π-very ample over some small open neighborhood U2

of y in Y . We consider π∗π∗L⊗m → L⊗m. It is obviously surjective over U2. Therefore,

π
(
SuppCoker(π∗π∗L⊗m → L⊗m)

)
∩ U2 = ∅.

Then we put

U3 := Y \ π
(
SuppCoker(π∗π∗L⊗m → L⊗m)

)
.

Hence U3 is a non-empty Zariski open subset of Y such that y ∈ U3 and that π∗π∗L⊗m →
L⊗m is surjective over U3. We put

I := Im
(
π∗π∗L⊗m → L⊗m

)
⊗ L⊗(−m) ⊂ OX .

Then I is a coherent ideal sheaf on X. We take the blow-up p : Z → X of X along the
ideal sheaf I, that is, p : Z := ProjanX

⊕∞
d=0 Id → X. By construction,

M := Im
(
p∗π∗π∗L⊗m → p∗L⊗m

)
becomes a line bundle on Z. This gives a closed embedding

Z ≃ PZ(M) ↪→ PY (π∗L⊗m)×Y Z.

Thus we obtain a morphism α : Z → PY (π∗L⊗m) over Y . By construction again, p is an
isomorphism over U3 and α is a closed embedding over U2. We can take a non-empty
Zariski open subset V of α(Z) such that α is flat over V . Without loss of generality, we
may assume that V contains q−1(U2), where q : α(Z) → Y , and that α is an isomorphism
over V .

Z
p

����
��
��
�� α

!!D
DD

DD
DD

D

X
α◦p−1

//_______

π
��?

??
??

??
? α(Z)

q}}zz
zz
zz
zz

Y

We put

U := U3 ∩ (Y \ q (α(Z) \ V )) .

Then U is a non-empty Zariski open subset of Y such that y ∈ U and α ◦ p−1 : X 99K
PY (π∗L⊗m) is a closed embedding over U . Therefore, L⊗m is π-very ample over U . □

As an application of Lemma 3.3, we have:
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Lemma 3.4. Let π : X → Y be a projective surjective morphism of complex analytic
spaces. Let L be an R-line bundle on X. Assume that L|π−1(y) is ample for some y ∈ Y .
Then there exists a Zariski open neighborhood U of y in Y such that L|π−1(U) is π-ample
over U .

In the theory of minimal models, we have to treat R-line bundles. Therefore, Lemma 3.4
is indispensable. Since we can not directly apply geometric arguments to R-line bundles,
Lemma 3.4 is not so obvious.

Proof of Lemma 3.4. We can write L =
∑

i∈I aiLi in Pic(X)⊗ZR such that ai is a positive
real number, Li ∈ Pic(X), and Li|π−1(y) is ample for every i ∈ I. Let X =

∪
j∈J Xj be

the irreducible decomposition. We put

J1 := {j ∈ J | y ∈ π(Xj)} and J2 := {j ∈ J | y ̸∈ π(Xj)}.
We take an irreducible component Xj of X with j ∈ J1. By applying Lemma 3.3 to Li|Xj

,
we can find a Zariski closed subset Σj of π(Xj) such that y ∈ π(Xj) \ Σj, Li|Xj

is ample
over π(Xj) \Σj for every i ∈ I. This implies that L|Xj

is ample over π(Xj) \Σj. We put

Σ :=

(∪
i∈J1

Σj

)
∪ π

(∪
j∈J2

Xj

)
.

Then Σ is a Zariski closed subset of Y such that y ∈ Y \ Σ and that L is π-ample over
Y \ Σ. Therefore, U := Y \ Σ is a desired Zariski open neighborhood of y in Y . □

By Lemma 3.4, we can easily obtain:

Lemma 3.5. Let π : X → Y be a projective surjective morphism of complex analytic
spaces. Let L be an R-line bundle on X. Assume that L|π−1(y0) is nef for some y0 ∈ Y .
Then there exists an analytically meagre subset S such that L|π−1(y) is nef for every y ∈
Y \ S.

Although Lemma 3.5 is easy, it will play a very important role in our framework of the
minimal model program of complex analytic spaces. We note that we can not make S a
Zariski closed subset of Y in Lemma 3.5.

Proof of Lemma 3.5. We take a π-ample line bundle H on X. Then (mL +H)|π−1(y0) is
ample for every positive integer m. Therefore, by Lemma 3.4, for each m ∈ N, we can
take a Zariski open neighborhood Um of y0 in Y such that mL +H is π-ample over Um.
We put S :=

∪
m∈N(Y \ Um). Then (mL +H)|π−1(y) is ample for every m ∈ N and every

y ∈ Y \ S. This means that L|π−1(y) is nef for every y ∈ Y \ S. □
The following obvious corollary of Lemma 3.5 is also useful for geometric applications.

We note that we sometimes have to treat a countably infinite set of line bundles.

Corollary 3.6. Let π : X → Y be a projective surjective morphism of complex analytic
spaces. Let Li be an R-line bundle on X for i ∈ N. Assume that Li|π−1(y0) is nef for
some y0 ∈ Y and for every i ∈ N. Then there exists an analytically meagre subset S such
that Li|π−1(y) is nef for every y ∈ Y \ S and every i ∈ N. Therefore, if H is any π-ample
R-line bundle on X, then (H + Li)|π−1(y) is ample for every y ∈ Y \ S and every i ∈ N.

Proof. By Lemma 3.5, for each i ∈ N, we can find an analytically meagre subset Si of Y
such that Li|π−1(y) is nef for every y ∈ Y \ Si. We put S :=

∪
i∈N Si. Then it is easy to

see that S is a desired analytically meagre subset of Y . □
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By the proof of Lemma 3.5 and Corollary 3.6, we have:

Remark 3.7. In Lemma 3.5 and Corollary 3.6, we can make Y \S a countable intersection
of non-empty Zariski open subsets of Y .

4. Non-lc ideal sheaves

Let us recall the notion of non-lc ideal sheaves. It is well defined even in the complex
analytic setting.

Definition 4.1 (Non-lc ideal sheaves, see [Fu2, Definition 7.1]). Let X be a normal
complex variety and let ∆ be an effective R-divisor on X such that KX +∆ is R-Cartier.
Let f : Z → X be a projective bimeromorphic morphism from a smooth complex variety
Z with KZ +∆Z := f ∗(KX +∆) such that Supp∆Z is a simple normal crossing divisor
on Z. Then we put

JNLC(X,∆) := f∗OZ(⌈−(∆<1
Z )⌉ − ⌊∆>1

Z ⌋) = f∗OZ(−⌊∆Z⌋+∆=1
Z )

and call it the non-lc ideal sheaf associated to (X,∆). We put

J (X,∆) := f∗OZ(−⌊∆Z⌋).

Then J (X,∆) is the well-known multiplier ideal sheaf associated to (X,∆). By definition,
the following inclusion

J (X,∆) ⊂ JNLC(X,∆)

always holds. By definition again, we can easily see that the support of OX/JNLC(X,∆)
is the non-lc locus Nlc(X,∆) of (X,∆).

By the standard argument (see, for example, [Fu2, Lemma 7.2]), there are no difficulties
to check the following lemma.

Lemma 4.2. In Definition 4.1, JNLC(X,∆) and J (X,∆) are independent of the choice
of the resolution f : Z → X. Hence JNLC(X,∆) and J (X,∆) are well-defined coherent
ideal sheaves on X.

Sketch of Proof of Lemma 4.2. Since we do not use J (X,∆) in this paper and the proof
for J (X,∆) is simpler than for JNLC(Z,∆), we only treat JNLC(X,∆) here. Let f1 : Z1 →
X and f2 : Z2 → X be two resolutions with KZ1 +∆Z1 = f ∗

1 (KX +∆) and KZ2 +∆Z2 =
f ∗
2 (KX + ∆) as in Definition 4.1. We take an arbitrary point x ∈ X. It is sufficient to
prove that

f1∗OZ1(−⌊∆Z1⌋+∆=1
Z1
) = f2∗OZ2(−⌊∆Z2⌋+∆=1

Z2
)

holds on some open neighborhood of x. Therefore, by shrinking X around x and taking
an elimination of indeterminacy of Z2 99K Z1, we may further assume that f2 decomposes
as

f2 : Z2
// Z1

f1 // X.

Then, by [Fu3, Proposition 6.3.1], we can directly check that f1∗OZ1(−⌊∆Z1⌋ + ∆=1
Z1
) =

f2∗OZ2(−⌊∆Z2⌋+∆=1
Z2
) holds. We finish the proof. □

In this paper, we need the following Bertini-type theorem for JNLC(X,∆).
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Lemma 4.3 ([Fu2, Proposition 7.5]). Let X be a normal complex variety and let ∆ be
an effective R-divisor on X such that KX + ∆ is R-Cartier. Let Λ (≃ PN) be a finite-
dimensional linear system on X. Let X† be any relatively compact open subset of X.
Then there exists an analytically meagre subset S of Λ such that

JNLC(X
†,∆+ tD) = JNLC(X

†,∆)

holds outside the base locus BsΛ of Λ for every element D of Λ \ S and every 0 ≤ t ≤ 1.

Proof. Without loss of generality, we can freely replace X with a relatively compact open
neighborhood of X†. Therefore, by the desingularization theorem (see [BM2, Theorem
13.2]), we can take a projective bimeromorphic morphism f : Z → X from a smooth
complex variety Z with KZ + ∆Z = f ∗(KX + ∆) such that Supp∆Z is a simple normal
crossing divisor on Z. By replacingX withX\BsΛ, we may further assume that BsΛ = ∅.
By Bertini’s theorem, there exists an analytically meagre subset S of Λ such that f ∗D is
smooth, f ∗D = f−1

∗ D, f ∗D and Supp∆Z have no common irreducible components, and
the support of f ∗D+Supp∆Z is a simple normal crossing divisor on Z for every element
D of Λ\S. Then KZ+∆Z+f

∗tD = f ∗(KX+∆+ tD) holds over X† with f ∗tD = tf−1
∗ D.

Thus,
⌈−(∆<1

Z )⌉ − ⌊∆>1
Z ⌋ = ⌈−(∆Z + f ∗tD)<1⌉ − ⌊(∆Z + f ∗tD)>1⌋

holds over X† for every 0 ≤ t ≤ 1 and every element D of Λ \ S. Thus, we obtain

JNLC(X
†,∆+ tD) = JNLC(X

†,∆)

by definition. This is what we wanted. □
We need the following lemma in order to reduce the problems for R-divisors to simpler

problems for Q-divisors.

Lemma 4.4. Let X be a normal complex variety and let L be a compact subset of X.
Let ∆ be an effective R-divisor on X such that KX + ∆ is R-Cartier at L. Then, after
shrinking X around L suitably, there exist effective Q-divisors ∆1, . . . ,∆k on X and
positive real numbers r1, . . . , rk with

∑k
i=1 ri = 1 such that KX+∆i is Q-Cartier for every

i, ∆ =
∑k

i=1 ri∆i, and JNLC(X,∆i) = JNLC(X,∆) holds for every i. In particular, if
(X,∆) is log canonical, then (X,∆i) is log canonical for every i.

Proof. By shrinking X around L suitably, we may assume that Supp∆ has only finitely
many irreducible components. Let Supp∆ :=

∑l
j=1Dj be the irreducible decomposition.

We consider the R-vector space V :=
⊕l

j=1 RDj. We put

R(V ;L) := {D ∈ V |KX +D is R-Cartier at L}.
ThenR(V ;L) is an affine subspace of V defined over the rationals (see 2.10). By shrinking
X around L suitably again, we may assume that KX + D is R-Cartier for every D ∈
R(V ;L). By [BM2, Theorem 13.2], we may further assume that there exists a projective
bimeromorphic morphism f : Z → X from a smooth complex analytic space Z such that
Exc(f) and Exc(f)∪

∑l
j=1 Supp f

−1
∗ Dj are simple normal crossing divisors on Z. We put

S∆(V ;L) :=

{
D ∈ R(V ;L)

∣∣∣∣ a(E,X,D) = a(E,X,∆) holds for every
divisor E on Z with a(E,X,∆) ∈ Q

}
.

Then S∆(V ;L) is an affine subspace of V defined over the rationals with ∆ ∈ S∆(V ;L).
Since S∆(V ;L) is defined over the rationals, we can take effective Q-divisors ∆1, . . . ,∆k

from S∆(V ;L) such that they are close to ∆ in S∆(V ;L) and positive real numbers
r1, . . . , rk with all the desired properties. □
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Although we do not use multiplier ideal sheaves in this paper, we note:

Remark 4.5. In Lemma 4.4, we see that J (X,∆i) = J (X,∆) holds for every i by
construction. In particular, (X,∆i) is kawamata log terminal for every i if (X,∆) is
kawamata log terminal.

5. Quick review of vanishing theorems

In this section, let us quickly recall the vanishing theorems established in [Fu10]. Let
us start with the definition of analytic simple normal crossing pairs.

Definition 5.1 (Analytic simple normal crossing pairs). Let X be a simple normal cross-
ing divisor on a smooth complex analytic space M and let B be an R-divisor on M such
that Supp(B +X) is a simple normal crossing divisor on M and that B and X have no
common irreducible components. Then we put D := B|X and consider the pair (X,D).
We call (X,D) an analytic globally embedded simple normal crossing pair and M the
ambient space of (X,D).

If the pair (X,D) is locally isomorphic to an analytic globally embedded simple normal
crossing pair at any point of X and the irreducible components of X and D are all smooth,
then (X,D) is called an analytic simple normal crossing pair.

When (X,D) is an analytic simple normal crossing pair, X has an invertible dualizing
sheaf ωX since it is Gorenstein. We use the symbol KX as a formal divisor class with
an isomorphism OX(KX) ≃ ωX if there is no danger of confusion. Note that we can not
always define KX globally with OX(KX) ≃ ωX . In general, it only exists locally on X.

Remark 5.2. Let X be a smooth complex analytic space and let D be an R-divisor
on X such that SuppD is a simple normal crossing divisor on X. Then, by considering
M := X ×C, we can see (X,D) as an analytic globally embedded simple normal crossing
pair.

The notion of strata, which is a generalization of that of log canonical centers, plays a
crucial role.

Definition 5.3 (Strata). Let (X,D) be an analytic simple normal crossing pair such that
D is effective. Let ν : Xν → X be the normalization. We put

KXν +Θ = ν∗(KX +D).

This means that Θ is the union of ν−1
∗ D and the inverse image of the singular locus of

X. If S is an irreducible component of X or the ν-image of some log canonical center of
(Xν ,Θ), then S is called a stratum of (X,D).

We recall Siu’s theorem on coherent analytic sheaves, which is a special case of [Si,
Theorem 4].

Theorem 5.4. Let F be a coherent sheaf on a complex analytic space X. Then there
exists a locally finite family {Yi}i∈I of complex analytic subvarieties of X such that

AssOX,x
(Fx) = {px,1, . . . , px,r(x)}

holds for every point x ∈ X, where px,1, . . . , px,r(x) are the prime ideals of OX,x associated
to the irreducible components of the germs Yi,x of Yi at x with x ∈ Yi. We note that each
Yi is called an associated subvariety of F .

Now we are ready to state the main result of [Fu10].
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Theorem 5.5 ([Fu10, Theorem 1.1]). Let (X,∆) be an analytic simple normal crossing
pair such that ∆ is a boundary R-divisor on X. Let f : X → Y be a projective morphism
to a complex analytic space Y and let L be a line bundle on X. Let q be an arbitrary
non-negative integer. Then we have the following properties.

(i) (Strict support condition). If L− (ωX +∆) is f -semiample, then every associated
subvariety of Rqf∗L is the f -image of some stratum of (X,∆).

(ii) (Vanishing theorem). If L − (ωX + ∆) ∼R f ∗H holds for some π-ample R-line
bundle H on Y , where π : Y → Z is a projective morphism to a complex analytic
space Z, then we have

Rpπ∗R
qf∗L = 0

for every p > 0.

We make a supplementary remark on Theorem 5.5.

Remark 5.6. In Theorem 5.5 (and Theorem 5.7 below), we always assume that ∆ is
globally R-Cartier, that is, ∆ is a finite R-linear combination of Cartier divisors. We note
that if the support of ∆ has only finitely many irreducible components then it is globally
R-Cartier. Since we are mainly interested in the standard setting explained in 1.1, this
assumption is harmless to geometric applications. Under this assumption, we can obtain
an R-line bundle N on X naturally associated to L − (ωX + ∆). The assumption in (i)
means that N is a finite positive R-linear combination of π-semiample line bundles on X.
The assumption in (ii) says that N = f ∗H holds in Pic(X)⊗Z R.

We do not prove Theorem 5.5 here. For the details of the proof of Theorem 5.5,
see [Fu10], which depends on Saito’s theory of mixed Hodge modules (see [Sa1], [Sa2],
[Sa3], [FFS], and [Sa4]) and Takegoshi’s analytic generalization of Kollár’s torsion-free and
vanishing theorem (see [Ta]). We note that Theorem 5.5 is one of the main ingredients of
this paper. Or, we can see this paper as an application of Theorem 5.5.

5.1. Vanishing theorems of Reid–Fukuda type. Although we do not need vanishing
theorems of Reid–Fukuda type in this paper, we will shortly discuss them here for future
usage.

Theorem 5.7 (Vanishing theorem of Reid–Fukuda type, see [Fu10, Theorem 1.2]). Let
(X,∆) be an analytic simple normal crossing pair such that ∆ is a boundary R-divisor
on X. Let f : X → Y and π : Y → Z be projective morphisms between complex analytic
spaces and let L be a line bundle on X. If L− (ωX +∆) ∼R f

∗H holds such that H is an
R-line bundle, which is nef and log big over Z with respect to f : (X,∆) → Y , on Y , then

Rpπ∗R
qf∗L = 0

holds for every p > 0 and every q.

Theorem 5.7 is obviously a generalization of Theorem 5.5 (ii). The reader can find
the detailed proof of Theorem 5.7 in [Fu10], which is harder than that of Theorem 5.5
(ii). As an easy application of Theorem 5.7, we can establish the vanishing theorem of
Reid–Fukuda type for log canonical pairs in the complex analytic setting.

Theorem 5.8 (Vanishing theorem of Reid–Fukuda type for log canonical pairs). Let
(X,∆) be a log canonical pair and let π : X → Y be a projective morphism of complex
analytic spaces. Let L be a Q-Cartier integral Weil divisor on X. Assume that L− (KX +
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∆) is nef and big over Y and that (L−(KX+∆))|C is big over π(C) for every log canonical
center C of (X,∆). Then

Rqπ∗OX(L) = 0

holds for every q > 0.

Proof. The proof of [Fu3, Theorem 5.7.6] works by Theorem 5.7. □

We leave the details of Theorems 5.7 and 5.8 for the interested readers.

6. Vanishing theorems for normal pairs

In this section, we will prepare some vanishing theorems, which are suitable for geo-
metric applications. They will play a crucial role in subsequent sections. We note that
the results in this section follow from Theorem 5.5. Hence they depend on Saito’s the-
ory of mixed Hodge modules and Takegoshi’s generalization of Kollár’s torsion-free and
vanishing theorem.

Theorem 6.1 (see [Fu2, Theorem 8.1]). Let π : X → Y be a projective morphism of
complex analytic spaces such that X is a normal complex variety and let W be a compact
subset of Y . Let ∆ be an effective R-divisor on X such that KX + ∆ is R-Cartier and
let L be a line bundle on X. We assume that L− (KX +∆) is π-ample over W , that is,
(L − (KX +∆)) |π−1(w) is ample for every w ∈ W . Let {Ci}i∈I be any set of log canonical
centers of the pair (X,∆). We put V :=

∪
i∈I Ci with the reduced structure. We further

assume that V is disjoint from the non-lc locus Nlc(X,∆) of (X,∆). Then there exists
some open neighborhood U of W such that

Riπ∗(J ⊗ L) = 0

holds on U for every i > 0, where J := IV · JNLC(X,∆) ⊂ OX and IV is the defining
ideal sheaf of V on X. Therefore, the restriction map

π∗L → π∗(L|V )⊕ π∗(L|Nlc(X,∆))

is surjective on U and

Riπ∗(L|V ) = 0

holds on U for every i > 0. In particular, the restriction maps

π∗L → π∗(L|V )

and

π∗L → π∗(L|Nlc(X,∆))

are surjective on U .

The result and argument in Step 1 in the proof of Theorem 6.1 is the most important
part of this paper. We will use them repeatedly in subsequent sections.

Proof of Theorem 6.1. In Steps 1 and 2, we will use the strict support condition (see
Theorem 5.5 (i)) and the vanishing theorem (see Theorem 5.5 (ii)), respectively. The
assumption that L − (KX +∆) is π-ample over W will be used only in Step 2.
We take an arbitrary point w ∈ W . Then it is sufficient to prove the desired vanishing

theorem over some open neighborhood of w by the compactness of W . Therefore, we may
replace Y with a relatively compact Stein open neighborhood of w and may assume that
L − (KX +∆) is π-ample over Y .
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Step 1. We can take a resolution of singularities f : Z → X of X such that f is projective
and that Supp f−1

∗ ∆ ∪ Exc(f) is a simple normal crossing divisor on Z. We may further
assme that f−1(V ) is a simple normal crossing divisor on Z. Then we can write

KZ +∆Z = f ∗(KX +∆).

Let T be the union of the irreducible components of ∆=1
Z that are mapped into V by f .

We consider the following short exact sequence

0 → OZ(A−N − T ) → OZ(A−N) → OT (A−N) → 0,

where A := ⌈−(∆<1
Z )⌉ and N := ⌊∆>1

Z ⌋. By definition, A is an effective f -exceptional
divisor on Z. We obtain the following long exact sequence

0 → f∗OZ(A−N − T ) → f∗OZ(A−N) → f∗OT (A−N)

δ→ R1f∗OZ(A−N − T ) → · · · .
Since

A−N − T − (KZ + {∆Z}+∆=1
Z − T ) = −(KZ +∆Z) ∼R −f ∗(KX +∆),

every associated subvariety of R1f∗OZ(A − N − T ) is the f -image of some stratum of
(Z, {∆Z} + ∆=1

Z − T ) by the strict support condition in Theorem 5.5 (i). Since f−1(V )
is a simple normal crossing divisor, there are no strata of (Z, {∆Z} +∆=1

Z − T ) that are
mapped into V by f . On the other hand, V = f(T ) holds by construction. Thus, the
connecting homomorphism δ is a zero map. Hence we have a short exact sequence

(6.1) 0 → f∗OZ(A−N − T ) → f∗OZ(A−N) → f∗OT (A−N) → 0.

We put J := f∗OZ(A − N − T ) ⊂ OX . Since V is disjoint from Nlc(X,∆) by assump-
tion, the ideal sheaf J coincides with IV and JNLC(X,∆) in a neighborhood of V and
Nlc(X,∆), respectively. Therefore, we have J = IV · JNLC(X,∆). We note that if V
is empty then IV = OX and J = JNLC(X,∆). We put X∗ := X \ Nlc(X,∆) and
Z∗ := f−1(X∗). By restricting (6.1) to X∗, we obtain

0 → f∗OZ∗(A− T ) → f∗OZ∗(A) → f∗OT (A) → 0.

Since f∗OZ∗(A) ≃ OX∗ , we have f∗OT (A) ≃ OV . This implies that OV ≃ f∗OT holds.

Step 2. Since

f ∗L+ A−N − T − (KZ + {∆Z}+∆=1
Z − T ) ∼R f

∗(L − (KX +∆)),

we have
Riπ∗(J ⊗ L) ≃ Riπ∗(f∗OZ(A−N − T )⊗ L) = 0

for every i > 0 by the vanishing theorem in Theorem 5.5 (ii). If we put V = ∅, then we
have J = JNLC(X,∆). Therefore,

Riπ∗ (JNLC(X,∆)⊗ L) = 0

holds for every i > 0 as a special case. By considering the short exact sequence

0 → J → JNLC(X,∆) → OV → 0,

we obtain

· · · → Riπ∗(JNLC(X,∆)⊗ L) → Riπ∗(L|V ) → Ri+1π∗(J ⊗ L) → · · · .
Since we have already checked

Riπ∗(JNLC(X,∆)⊗ L) = Riπ∗(J ⊗ L) = 0
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for every i > 0, we have Riπ∗(L|V ) = 0 for all i > 0. Finally, we consider the following
short exact sequence

0 → J → OX → OV ⊕ONlc(X,∆) → 0.

By taking ⊗L and Riπ∗, we obtain that

0 → π∗(J ⊗ L) → π∗L → π∗(L|V )⊕ π∗(L|Nlc(X,∆)) → 0

is exact.

We finish the proof. □

The following remark is obvious by the proof of Theorem 6.1.

Remark 6.2. If (L − (KX +∆)) |π−1(y) is ample for every y ∈ Y , then the proof of
Theorem 6.1 shows that Theorem 6.1 holds over Y . This means that we can take U = Y
in Theorem 6.1.

We prepare one more vanishing theorem.

Theorem 6.3 (see [Fu2, Theorem 11.1]). Let π : X → Y be a projective morphism of
complex analytic spaces such that X is a normal complex variety and let W be a compact
subset of Y . Let ∆ be an effective R-divisor on X such that KX + ∆ is R-Cartier. Let
{Ci}i∈I be any set of log canonical centers of the pair (X,∆). We put V :=

∪
i∈I Ci with

the reduced structure. We assume that V is disjoint from the non-lc locus Nlc(X,∆) of
(X,∆). Let M be a line bundle on V such that M − (KX + ∆)|V is π-ample over W .
Then there exists some open neighborhood U of W such that Riπ∗M = 0 holds on U for
every i > 0.

Proof. As in Theorem 6.1, it is sufficient to prove the desired vanishing theorem for some
open neighborhood of any point w ∈ W . We will use the same notation as in the proof
of Theorem 6.1. We note that

A−N − (KZ + {∆Z}+∆=1
Z ) ∼R −f ∗(KX +∆)

holds. We put fT := f |T : T → V . Then

f ∗
TM+ A|T − (KT + ({∆Z}+∆=1

Z − T )|T ) ∼R f
∗
T (M− (KX +∆)|V )

holds. Note that (T, ({∆Z}+∆=1
Z −T )|T ) is an analytic globally embedded simple normal

crossing pair. Thus, by the vanishing theorem in Theorem 5.5 (ii),

Riπ∗M ≃ Riπ∗ (M⊗ (fT )∗OT (A|T )) = 0

for every i > 0. Here, we used the following isomorphism (f |T )∗OT (A|T ) ≃ OV obtained
in Step 1 in the proof of Theorem 6.1. □

We make two remarks on Theorem 6.3.

Remark 6.4. If (M− (KX +∆)|V ) |π−1
V (y) is ample for every y ∈ π(V ), where πV := π|V ,

then Theorem 6.3 holds true over Y , that is, we can take U = Y in Theorem 6.3. We can
check it by the proof of Theorems 6.1 and 6.3.

Remark 6.5. In [Fu2, Theorem 11.1], V is assumed to be a minimal log canonical center
of (X,∆) which is disjoint from Nlc(X,∆). Moreover, the proof of [Fu2, Theorem 11.1]
depends on [BCHM]. For the details, see [Fu2, Remark 11.2].



CONE AND CONTRACTION THEOREM 23

7. On log canonical centers

The main purpose of this section is to prove the following very fundamental theorem
on log canonical centers, which is an easy application of Theorem 6.1 and its proof. It
will play an important role in this paper.

Theorem 7.1 (Basic properties of log canonical centers). Let (X,∆) be a log canonical
pair. Then the following properties hold.

(1) The number of log canonical centers of (X,∆) is locally finite.
(2) The intersection of two log canonical centers is a union of some log canonical

centers.
(3) Let x ∈ X be any point such that (X,∆) is log canonical but is not kawamata log

terminal at x. Then there exists a unique minimal (with respect to the inclusion)
log canonical center Cx passing through x. Moreover, Cx is normal at x.

Proof. We note that (1) is almost obvious by definition. We take an arbitrary point x ∈ X
and shrink X around x suitably. Then we may assume that there exists a projective
bimeromorphic morphism f : Y → X from a smooth complex analytic space Y such
that KY + ∆Y := f ∗(KX + ∆), Supp∆Y is a simple normal crossing divisor on Y , and
Supp∆Y has only finitely many irreducible components (see [BM2, Theorem 13.2]). Let
∆=1

Y :=
∑

i∈I ∆i be the irreducible decomposition. Then C is a log canonical center of
(X,∆) if and only if C = f(S), where S is an irreducible component of ∆i1 ∩ · · · ∩ ∆ik

for some {i1, . . . , ik} ⊂ I. Therefore, there exists only finitely many log canonical centers
on some open neighborhood of x. Thus we obtain (1).
From now on, we will use the same notation as in the proof of Theorem 6.1 with Y = X.

Let C1 and C2 be two log canonical centers of (X,∆). We fix a closed point P ∈ C1 ∩C2.
We replace X with a relatively compact Stein open neighborhood of P ∈ X and apply
the argument in the proof of Theorem 6.1. For the proof of (2), it is enough to find a
log canonical center C such that P ∈ C ⊂ C1 ∩ C2. We put V := C1 ∪ C2. By Step
1 in the proof of Theorem 6.1, we obtain f∗OT ≃ OV . This means that f : T → V
has connected fibers. We note that T is a simple normal crossing divisor on Z. Thus,
there exist irreducible components T1 and T2 of T such that T1 ∩ T2 ∩ f−1(P ) ̸= ∅ and
that f(Ti) ⊂ Ci for i = 1, 2. Therefore, we can find a log canonical center C with
P ∈ C ⊂ C1 ∩ C2. We finish the proof of (2). Finally, we will prove (3). The existence
and the uniqueness of the minimal log canonical center follow from (2). We take the
unique minimal log canonical center C = Cx passing through x. We put V := C. We
may replace X with a relatively compact Stein open neighborhood of x ∈ X. Then, by
Step 1 in the proof of Theorem 6.1, we have f∗OT ≃ OV . By shrinking V around x, we
can assume that every stratum of T dominates V . Let ν : V ν → V be the normalization
of V . By applying Hironaka’s flattening theorem (see [Hi]) to the graph of T 99K V ν and
then using the desingularization theorem (see [BM2, Theorems 13.3 and 12.4]), we can
obtain the following commutative diagram:

T †

q

��

p // T

f

��
V ν

ν
// V,



24 OSAMU FUJINO

where p : T † → T is a projective bimeromorphic morphism such that T † is simple normal
crossing with p∗OT † ≃ OT (see [Fu10, Lemma 2.15]). Hence

OV ↪→ ν∗OV ν ↪→ ν∗q∗OT † ≃ f∗p∗OT † ≃ f∗OT ≃ OV .

This implies that OV ≃ ν∗OV ν holds, that is, V is normal. Thus we obtain (3). □
By the above proof of Theorem 7.1, we see that Theorem 7.1 (2) and (3) are conse-

quences of the strict support condition in Theorem 5.5 (i).

8. Non-vanishing theorem

In this section, we will explain the non-vanishing theorem for projective morphisms
between complex analytic spaces.

Theorem 8.1 (see [Fu2, Theorem 12.1]). Let π : X → Y be a projective morphism of
complex analytic spaces such that X is a normal complex variety and let W be a compact
subset of Y . Let ∆ be an effective R-divisor on X such that KX +∆ is R-Cartier. Let L
be a Cartier divisor on X which is π-nef over W , that is, L|π−1(w) is nef for every w ∈ W .
We assume that

(i) aL− (KX +∆) is π-ample over W for some positive real number a, and
(ii) ONlc(X,∆)(mL) is π|Nlc(X,∆)-generated over some open neighborhood of W for every

m≫ 0.

Then for every m≫ 0 there exists a relatively compact open neighborhood Um of W over
which the relative base locus Bsπ |mL| contains no log canonical centers of (X,∆) and is
disjoint from Nlc(X,∆). We note that the open subset Um depends on m.

We first prepare the following useful lemma, which is new, for the proof of Theorem
8.1. For the details of the theory of quasi-log schemes, see [Fu3, Chapter 6], [Fu6], and
[Fu7].

Lemma 8.2. Let π : X → Y be a projective morphism between complex analytic spaces
such that X is a normal complex variety and let f : (Z,∆Z) → X be a projective morphism
from an analytic globally embedded simple normal crossing pair (Z,∆Z) such that ∆Z is a
subboundary R-divisor on Z and is a finite R-linear combination of Cartier divisors, the
natural map OX → f∗OZ(⌈−(∆<1

Z )⌉) is an isomorphism, and KZ +∆Z ∼R f
∗ω holds for

some R-line bundle ω on X. Let y be an analytically sufficiently general point of π(X).
Then (

Xy, ω|Xy , fy : (Zy,∆Zy) → Xy

)
is a projective quasi-log canonical pair, where Xy := π−1(y), Zy := (π◦f)−1(y), fy := f |Xy ,
and ∆Zy := ∆Z |Zy .

This lemma is also a consequence of the strict support condition in Theorem 5.5 (i).

Proof of Lemma 8.2. By replacing Y with π(X), we may assume that π is surjective and
Y is a complex variety. By replacing Y with a Zariski open subset of Y , we may further
assume that Y is smooth. By replacing Y with a suitable Zariski open subset, we may
assume that π ◦ f is flat. Then, by replacing Y with a suitable Zariski open subset
again, we may assume that every stratum of (Z, Supp∆Z) is smooth over Y . We take an
arbitrary point y ∈ Y . Then (Zy,∆Zy) is an analytic simple normal crossing pair. From
now on, we will prove that (

Xy, ω|Xy , fy : (Zy,∆Zy) → Xy

)
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is a projective quasi-log canonical pair. Without loss of generality, we may assume that
Y is a polydisc ∆m with y = 0 ∈ ∆m. Let (z1, . . . , zm) be the local coordinate system of
∆m. Then ((π ◦ f)∗zi = 0) does not contain any strata of (Z, Supp∆Z). Therefore,

π∗zi× : Rpf∗OZ(⌈−(∆<1
Z )⌉) → Rpf∗OZ(⌈−(∆<1

Z )⌉)
is injective for every i and every p since ⌈−(∆<1

Z )⌉ − (KZ + {∆Z}+∆=1
Z ) ∼R −f ∗ω. We

put X1 := (π∗z1 = 0) and Z1 := ((π ◦ f)∗z1 = 0). Since

π∗z1× : R1f∗OZ(⌈−(∆<1
Z )⌉) → R1f∗OZ(⌈−(∆<1

Z )⌉)
is injective, we obtain the following short exact sequence:

0 // f∗OZ(⌈−(∆<1
Z )⌉) ×π∗z1 // f∗OZ(⌈−(∆<1

Z )⌉) // f∗OZ1(⌈−(∆<1
Z1
)⌉) // 0,

where ∆Z1 = ∆Z |Z1 . This implies that the natural mapOX1 → f∗OZ1(⌈−(∆<1
Z1
)⌉) is an iso-

morphism. By repeating this argument, we finally obtain thatOXy ≃ (fy)∗OZy(⌈−(∆<1
Zy
)⌉)

holds. By [Fu4, Theorem 4.9], this means that(
Xy, ω|Xy , fy : (Zy,∆Zy) → Xy

)
is a projective quasi-log canonical pair. □
Let us prove Theorem 8.1.

Proof of Theorem 8.1. We divide the proof into several small steps.

Step 1. By shrinking Y suitably, we may assume that there exists a positive integer m1

such that ONlc(X,∆)(mL) is π|Nlc(X,∆)-generated for every m ≥ m1 by (ii). We may further
assume that aL− (KX +∆) is π-ample over Y .

Step 2. In this step, we will prove the following claim.

Claim. There exists a positive integer m2 such that π∗OV (mL) ̸= 0 holds for every
m ≥ m2, where V is any minimal log canonical center of (X,∆) such that π(V )∩W ̸= ∅
and that V ∩ Nlc(X,∆) = ∅ over some open neighborhood of W .

Proof of Claim. We note that the number of the minimal log canonical centers V of (X,∆)
with π(V ) ∩ W ̸= ∅ is finite. We take a minimal log canonical center V such that
π(V )∩W ̸= ∅ and that V ∩Nlc(X,∆) = ∅ over some open neighborhood of W . Let y be
an arbitrary point of π(V ) ∩W . It is sufficient to prove π∗OV (mL) ̸= 0 on a small open
neighborhood of y. Therefore, we can replace Y with a small relatively compact Stein
open neighborhood of y. Thus, by Step 1 in the proof of Theorem 6.1, we can construct
a projective surjective morphism f : (T,∆T ) → V from an analytic globally embedded
simple normal crossing pair (T,∆T ) such that ∆T is a subboundary R-divisor on T , the
natural map OV → f∗OT (⌈−(∆<1

T )⌉) is an isomorphism, and KT +∆T ∼R f
∗(KX +∆)|V

holds. Thus, by Lemma 8.2, an analytically sufficiently general fiber F of π : V → π(V )
is a projective quasi-log canonical pair. By Lemma 3.5, we may assume that L|F is
nef. Therefore, by the basepoint-free theorem for quasi-log canonical pairs (see [Fu3,
Theorem 6.5.1]), there exists a positive integer m2 such that |mL|F | is basepoint-free for
every m ≥ m2. This implies that π∗OV (mL) ̸= 0 for every m ≥ m2. This is what we
wanted. □
Step 3. We put m0 := max{a,m1,m2}. Let m be any positive integer with m ≥ m0.
Since aL − (KX + ∆) is π-ample over W and L is π-nef over W , mL − (KX + ∆) is
π-ample over W . By Theorem 6.1, we can find an open neighborhood Um of W such that
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the vanishing theorem holds for mL over Um. Without loss of generality, we may assume
that every minimal log canonical center V of (X,∆) with π(V ) ∩ Um ̸= ∅ always satisfies
π(V ) ∩W ̸= ∅ by shrinking Um suitably.

Step 4. In this final step, we will prove that over Um the relative base locus Bsπ |mL|
contains no log canonical centers of (X,∆) and is disjoint from Nlc(X,∆) for every m ≥
m0.

By the vanishing theorem (see Theorem 6.1), we have R1π∗ (JNLC(X,∆)⊗OX(mL)) =
0 on Um. Thus the restriction map

π∗OX(mL) → π∗ONlc(X,∆)(mL)

is surjective on Um. This implies that the relative base locus Bsπ |mL| is disjoint from
Nlc(X,∆) over Um. Let V be a minimal log canonical center of (X,∆) with π(V )∩Um ̸= ∅.
If V ∩ Nlc(X,∆) ̸= ∅ over Um, then V ̸⊂ Bsπ |mL| since Nlc(X,∆) ∩ Bsπ |mL| = ∅ over
Um. Hence we may assume that V ∩Nlc(X,∆) = ∅ over Um. In this case, π∗OV (mL) ̸= 0
by Claim in Step 2. On the other hand, by the vanishing theorem (see Theorem 6.1), the
restriction map

π∗OX(mL) → π∗OV (mL)

is surjective on Um. This implies that V ̸⊂ Bsπ |mL|. Hence Bsπ |mL| contains no log
canonical centers of (X,∆) over Um.

We finish the proof. □

We make an important remark on Theorem 8.1.

Remark 8.3. In Step 3 in the proof of Theorem 8.1, the condition that mL− (KX +∆)
is π-ample over w ∈ W only implies that mL − (KX + ∆) is π-ample over some open
neighborhood Um

w of w in Y . We note that Um
w depends on m. Therefore, Um in Theorem

8.1 also depends on m.

For kawamata log terminal pairs, the non-vanishing theorem is formulated as follows.

Theorem 8.4 (Non-vanishing theorem for kawamata log terminal pairs). Let π : X → Y
be a projective morphism of complex analytic spaces such that X is a normal complex
variety and let W be a compact subset of Y . Let ∆ be an effective R-divisor on X such
that (X,∆) is kawamata log terminal. Let L be a Cartier divisor on X which is π-nef over
W . We assume that aL− (KX +∆) is π-ample over W for some positive real number a.
Then π∗OX(mL) ̸= 0 holds for every m≫ 0

Proof. By shrinking Y aroundW suitably, we may assume that aL−(KX+∆) is π-ample
over Y . Let F be an analytically sufficiently general fiber of π : X → π(X). Then (F,∆|F )
is kawamata log terminal. By Lemma 3.5, we may assume that L|F is nef. Hence |mL|F | is
basepoint-free for every m≫ 0 by the usual Kawamata–Shokurov basepoint-free theorem
for projective kawamata log terminal pairs. Thus, we obtain that π∗OX(mL) ̸= 0 for
every m≫ 0. This is what we wanted. □

We will use Theorems 8.1 and 8.4 in the proof of the basepoint-freeness in Section 9.

9. Basepoint-free theorem

In this section, we will explain the basepoint-free theorem in the complex analytic
setting.
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Theorem 9.1 (see [Fu2, Theorem 13.1]). Let π : X → Y be a projective morphism of
complex analytic spaces such that X is a normal complex variety and let W be a compact
subset of Y . Let ∆ be an effective R-divisor on X such that KX +∆ is R-Cartier. Let L
be a Cartier divisor on X which is π-nef over W . We assume that

(i) aL− (KX +∆) is π-ample over W for some positive real number a, and
(ii) ONlc(X,∆)(mL) is π|Nlc(X,∆)-generated over some open neighborhood of W for every

m≫ 0.

Then there exists a relatively compact open neighborhood U of W such that OX(mL) is
π-generated over U for every m≫ 0.

Theorem 9.1 is a consequence of the vanishing theorem (see Theorem 6.1) and the
non-vanishing theorem (see Theorems 8.1 and 8.4).

Proof of Theorem 9.1. We take an arbitrary point y ∈ W . It is sufficient to prove that
OX(mL) is π-generated for every m≫ 0 over some relatively compact Stein open neigh-
borhood of y. Hence, we will sometimes freely replace Y with a suitable relatively compact
Stein open neighborhood of y without mentioning it explicitly throughout this proof. So,
from now on, we assume that Y is Stein and that π is surjective.

Step 1. Let p be a prime number. In this step, we will prove that there exists a positive
integer k such that Bsπ |pkL| = ∅ holds over some open neighborhood of y.
By putting W := {y} and using the non-vanishing theorem (see Theorems 8.1 and

8.4), we obtain |pk1L| ̸= ∅ for some positive integer k1. If Bsπ |pk1L| = ∅, then there is
nothing to prove. Hence we may assume that Bsπ |pk1L| ≠ ∅. By Theorem 8.1, we may
assume that Bsπ |pk1L| contains no log canonical centers of (X,∆) and is disjoint from
Nlc(X,∆) after shrinking Y suitably. By shrinking Y around W = {y}, we may assume
that π(V ) ∩W ̸= ∅, where V is any irreducible component of Bsπ |pk1L|. Without loss
of generality, we may further assume that aL − (KX + ∆) is π-ample over Y . We take
general members D1, . . . , Dn+1 of |pk1L| with n = dimX. We put D :=

∑n+1
i=1 Di. We

may assume that (X,∆+D) is log canonical outside Bsπ |pk1L| ∪ Nlc(X,∆). Let x ∈ X
be any point of Bsπ |pk1L|. Then, by Lemma 2.3, (X,∆ + D) is not log canonical at x.
We put

c := sup
{
t ∈ R | (X,∆+ tD) is log canonical at π−1(y) ∩ (X \ Nlc(X,∆))

}
.

Then we can check that 0 < c < 1. By shrinking Y around W = {y} suitably again, we
may assume that (X,∆+ cD) is log canonical outside Nlc(X,∆). By Lemma 4.3 and its
proof, we see that JNLC(X,∆+ cD) = JNLC(X,∆) holds. By construction,(

c(n+ 1)pk1 + a
)
L− (KX +∆+ cD) ∼R aL− (KX +∆)

is π-ample over Y . By construction again, there exists a log canonical center V of (X,∆+
cD) which is contained in Bsπ |pk1L| such that π(V ) ∩ W ̸= ∅. By the non-vanishing
theorem (see Theorem 8.1), we can find k2 > k1 such that Bsπ |pk2L| ⊊ Bsπ |pk1L|. Here,
we replaced Y with a smaller open neighborhood of y. By repeating this process finitely
many times, we can find k such that Bsπ |pkL| = ∅ over some open neighborhood of y.

Step 2. We take another prime number p′. Then there exists k′ such that Bsπ |p′k
′
L| = ∅

over some open neighborhood of y by Step 1. This implies that there exist a positive
integer m0 and some open neighborhood Uy of y such that for every m ≥ m0 the relative
base locus Bsπ |mL| is empty over Uy.
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Since W is compact, we obtain a desired open neighborhood U of W . We finish the
proof. □

Remark 9.2. Although the non-vanishing theorem (see Theorems 8.1 and 8.4) and the
basepoint-free theorem (see Theorem 9.1) were formulated for Cartier divisors L, it is
obvious that they hold true even for line bundles L. We will sometimes use the basepoint-
free theorem for line bundles in subsequent sections.

10. Rationality theorem

In this section, we will explain the rationality theorem in the complex analytic setting.
Although the proof of [Fu2, Theorem 15.1], which is the rationality theorem in the alge-
braic setting, works with some suitable modifications, we will explain the details for the
reader’s convenience. This is because the proof of the rationality theorem is complicated.

Theorem 10.1 (Rationality theorem, see [Fu2, Theorem 15.1]). Let π : X → Y be a
projective morphism of complex analytic spaces such that X is a normal complex variety
and let W be a compact subset of Y . Let ∆ be an effective Q-divisor on X such that
KX +∆ is Q-Cartier. Let H be a π-ample Cartier divisor on X. Assume that KX +∆
is not π-nef over W and that r is a positive number such that

(i) H + r(KX +∆) is π-nef over W but is not π-ample over W , and
(ii) (H + r(KX +∆)) |Nlc(X,∆) is π|Nlc(X,∆)-ample over W .

Then r is a rational number, and in reduced form, it has denominator at most a(d + 1),
where d := maxw∈W dimπ−1(w) and a is a positive integer such that a(KX + ∆) is a
Cartier divisor in a neighborhood of π−1(W ).

In the proof of Theorem 10.1, we will use the following elementary lemmas. We do not
prove Lemma 10.2 here. For the proof, see, for example, [Fu2].

Lemma 10.2 ([KM, Lemma 3.19]). Let P (x, y) be a non-trivial polynomial of degree ≤ d
and assume that P vanishes for all sufficiently large integral solutions of 0 < ay− rx < ε
for some fixed positive integer a and positive ε for some r ∈ R. Then r is rational, and
in reduced form, r has denominator ≤ a(d+ 1)/ε.

Lemma 10.3. Let F be a projective variety and let D1 and D2 be Cartier divisors on X.
Let us consider the Hilbert polynomial

P (u1, u2) := χ(F,OF (u1D1 + u2D2)).

If D1 is ample, then P (u1, u2) is a non-trivial polynomial of total degree ≤ dimF . It is
because P (u1, 0) = dimCH

0(F,OF (u1D1)) ̸≡ 0 if u1 is sufficiently large.

Let us start the proof of Theorem 10.1.

Proof of Theorem 10.1. Throughout this proof, we can freely shrink Y around W suit-
ably. Hence we sometimes will replace Y with a small open neighborhood of W without
mentioning it explicitly.

Let m be a positive integer such that H ′ := mH is π-very ample after shrinking Y
around W suitably. If H ′ + r′(KX +∆) is π-nef over W but is not π-ample over W , and
(H ′ + r′(KX +∆)) |Nlc(X,∆) is π|Nlc(X,∆)-ample over W , then

H + r(KX +∆) =
1

m
(H ′ + r′(KX +∆))
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holds. This implies that r = (1/m)r′ holds. Therefore, it is obvious that r is rational
if and only if r′ is rational. We further assume that r′ has denominator v. Then r has
denominator dividing mv. Since m can be an arbitrary sufficiently large positive integer,
this means that r has denominator dividing v. Hence, by replacing H with mH, we may
assume that H is π-very ample.

For each (p, q) ∈ Z2, we put M(p, q) := pH + qa(KX +∆) and define

L(p, q) := Supp(Coker(π∗π∗OX(M(p, q)) → OX(M(p, q)))).

By definition, L(p, q) = X holds if and only if π∗OX(M(p, q)) = 0.

Claim 1. Let ε be a positive number. For (p, q) sufficiently large and 0 < aq − rp < ε,
L(p, q) is the same subset of X after shrinking Y around W suitably. We call this subset
L0. Let I ⊂ Z2 be the set of (p, q) for which 0 < aq − rp < 1 and L(p, q) = L0. Then we
note that I contains all sufficiently large (p, q) with 0 < aq − rp < 1.

Proof of Claim 1. We fix (p0, q0) ∈ Z2 such that p0 > 0 and 0 < aq0 − rp0 < 1. Since
H is π-very ample, there exists a positive integer m0 such that OX(mH + ja(KX +∆))
is π-generated for every m > m0 and every 0 ≤ j ≤ q0 − 1 after shrinking Y around W
suitably. Let M be the round-up of(

m0 +
1

r

)/(
a

r
− p0
q0

)
.

If (p′, q′) ∈ Z2 such that 0 < aq′ − rp′ < 1 and q′ ≥M + q0 − 1, then we can write

p′H + q′a(KX +∆) = k(p0H + q0a(KX +∆)) + (lH + ja(KX +∆))

for some k ≥ 0, 0 ≤ j ≤ q0 − 1 with l > m0. It is because we can uniquely write
q′ = kq0 + j with 0 ≤ j ≤ q0 − 1. Thus, we have kq0 ≥M . So, we obtain

l = p′ − kp0 >
a

r
q′ − 1

r
− (kq0)

p0
q0

≥
(
a

r
− p0
q0

)
M − 1

r
≥ m0.

Therefore, L(p′, q′) ⊂ L(p0, q0). We note that we can use the noetherian induction over a
relatively compact open neighborhood of W (see [Fi, 0.40. Corollary]). Therefore, after
shrinking Y around W suitably again, we obtain the desired closed subset L0 ⊂ X. We
can check that the subset I ⊂ Z2 contains all sufficiently large (p, q) with 0 < aq− rp < 1
without any difficulties. □

Claim 2. We have L0 ∩ Nlc(X,∆) = ∅.

Proof of Claim 2. We take (α, β) ∈ Q2 such that α > 0, β > 0, and βa/α > r is
sufficiently close to r. Then (αH + βa(KX + ∆))|Nlc(X,∆) is π|Nlc(X,∆)-ample over W
because (H + r(KX +∆))|Nlc(X,∆) is π|Nlc(X,∆)-ample over W . We take any point w ∈ W .
Then it is sufficient to prove that L0∩Nlc(X,∆) = ∅ holds over some open neighborhood
of w. From now on, we will freely shrink Y around w without mentioning it explicitly.
We take a sufficiently large and divisible positive integer m′ such that

m′(αH + βa(KX +∆))|Nlc(X,∆)

is π|Nlc(X,∆)-very ample. We put (p0, q0) := (m′α,m′β) and apply the argument in the
proof of Claim 1. Thus, if 0 < aq − rp < 1 and (p, q) ∈ Z2 is sufficiently large, then we
can write

M(p, q) = mM(α, β) + (M(p, q)−mM(α, β))
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such that M(p, q)−mM(α, β) is π-very ample and that

m(αH + βa(KX +∆))|Nlc(X,∆)

is also π|Nlc(X,∆)-very ample. Hence, ONlc(X,∆)(M(p, q)) is π-very ample. We note that

M(p, q)− (KX +∆) = pH + (qa− 1)(KX +∆)

is π-ample over some open neighborhood of w because (p, q) is sufficiently large and
aq − rp < 1. Thus, by the vanishing theorem: Theorem 6.1, the restriction map

π∗OX(M(p, q)) → π∗ONlc(X,∆)(M(p, q))

is surjective. Therefore, L(p, q) ∩ Nlc(X,∆) = ∅ holds over some open neighborhood of
w. By Claim 1, we have L0 ∩ Nlc(X,∆) = ∅ over some open neighborhood of w. Since
w is an arbitrary point of W , L0 ∩ Nlc(X,∆) = ∅ holds over some open neighborhood of
W . This is what we wanted. □
Claim 3. We assume that r is not rational or that r is rational and has denominator
> a(d + 1) in reduced form. Then, for (p, q) sufficiently large and 0 < aq − rp < 1,
OX(M(p, q)) is π-generated at general points of every log canonical center of (X,∆).

We will explain the proof of Claim 3 in detail because we have to change the proof of
Claim 3 in the proof of [Fu2, Theorem 15.1] slightly.

Proof of Claim 3. After shrinking Y aroundW suitably, it is sufficient to consider minimal
log canonical centers C of (X,∆) such that π(C) ∩W ̸= ∅. By Claim 2, we may assume
that C ∩ Nlc(X,∆) = ∅ holds. We take a point w ∈ π(C) ∩ W . It is sufficient to
consider everything over some small open enighborhood of w in Y . We take an analytically
sufficiently general fiber F of C → π(C). Then we may assume that (H + r(KX +∆))|F
and (H + r(KX + ∆))|π−1(π(F )) are both nef by Lemma 3.5 (see also Remark 3.7). We
note that

M(p, q)− (KX +∆) = pH + (qa− 1)(KX +∆)

=

(
p− qa− 1

r

)
H +

(qa− 1)

r
(H + r(KX +∆))

holds. Therefore, if aq − rp < 1 and (p, q) is sufficiently large, then we see that

(M(p, q)− (KX +∆)) |π−1(π(F ))

is ample. We note that
PF (p, q) := χ(F,OF (M(p, q)))

is a non-zero polynomial of degree at most dimF ≤ d by Lemma 10.3. We also note
that F is an analytically sufficiently general fiber of C → π(C). By Lemma 10.2, there
exists (p, q) such that PF (p, q) ̸= 0, (p, q) sufficiently large, and 0 < aq − rp < 1. By the
π-ampleness of M(p, q)− (KX +∆) over some open neighborhood of π(F ),

PF (p, q) = χ(F,OF (M(p, q))) = dimCH
0(F,OF (M(p, q)))

and
π∗OX(M(p, q)) → π∗OC(M(p, q))

is surjective over some open neighborhood of π(F ) by Theorem 6.1 (see also 2.14). We
note that π∗OC(M(p, q)) ̸= 0 by PF (p, q) ̸= 0 and that C ∩Nlc(X,∆) = ∅ by assumption.
Therefore, OX(M(p, q)) is π-generated at general points of C. By combining this fact
with Claim 1, OX(M(p, q)) is π-generated at general points of every log canonical center
of (X,∆) if (p, q) is sufficiently large with 0 < aq− rp < 1. Hence we obtain Claim 3. □
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Note that OX(M(p, q)) is not π-generated for (p, q) ∈ I because M(p, q) is not π-nef
over W . Therefore, L0 ̸= ∅ with π(L0) ∩W ̸= ∅. We take a point w ∈ π(L0) ∩W and
replace Y with a relatively compact Stein open neighborhood of w. From now on, we will
freely shrink Y around w suitably. Let D1, . . . , Dn+1 be general members of

π∗OX(M(p0, q0)) = H0(X,OX(M(p0, q0)))

with (p0, q0) ∈ I. We put D :=
∑n+1

i=1 Di. Let x ∈ X be any point of L0. Then, by
Lemma 2.3, KX +∆ +D is not log canonical at x. On the other hand, we may assume
that KX +∆+D is log canonical outside L0 ∪Nlc(X,∆) since Di is a general member of
|M(p0, q0)| for every i. We put

c := sup
{
t ∈ R | (X,∆+ tD) is log canonical at π−1(w) ∩ (X \ Nlc(X,∆))

}
.

Then we can check that 0 < c < 1 by Claim 3. We note that w ∈ π(L0) ∩W . Thus,
the pair (X,∆ + cD) has some log canonical centers contained in L0 and intersecting
π−1(w). By shrinking Y around w, we may assume that (X,∆ + cD) is log canonical
outside Nlc(X,∆). Let C be a log canonical center contained in L0 and intersecting
π−1(w). We note that JNLC(X,∆+ cD) = JNLC(X,∆) by Lemma 4.3 and its proof and
that C ∩ Nlc(X,∆+ cD) = C ∩ Nlc(X,∆) = ∅. We consider

KX +∆+ cD = c(n+ 1)p0H + (1 + c(n+ 1)q0a)(KX +∆).

Thus we have

pH + qa(KX +∆)− (KX +∆+ cD)

= (p− c(n+ 1)p0)H + (qa− (1 + c(n+ 1)q0a))(KX +∆).

If p and q are large enough and 0 < aq − rp ≤ aq0 − rp0, then

pH + qa(KX +∆)− (KX +∆+ cD)

is π-ample over w. It is because

(p− c(n+ 1)p0)H + (qa− (1 + c(n+ 1)q0a))(KX +∆)

= (p− (1 + c(n+ 1))p0)H + (qa− (1 + c(n+ 1))q0a)(KX +∆)

+ p0H + (q0a− 1)(KX +∆).

By shrinking Y around w suitably, we may further assume that it is π-ample over Y . We
consider an analytically sufficiently general fiber F of C → π(C) as in the proof of Claim
3. We note that (H + r(KX +∆)) |π−1(π(F )) is nef by the choice of F .

Suppose that r is not rational. There exists an arbitrarily large (p, q) ∈ Z2 such that
0 < aq − rp < ε = aq0 − rp0 and χ(F,OF (M(p, q))) ̸= 0 by Lemma 10.2 because
PF (p, q) = χ(F,OF (M(p, q))) is a non-trivial polynomial of degree at most dimF ≤ d by
Lemma 10.3. Since

(M(p, q)− (KX +∆+ cD)) |π−1(π(F ))

is ample by 0 < aq − rp < aq0 − rp0, we have

dimCH
0(F,OF (M(p, q))) = χ(F,OF (M(p, q))) ̸= 0

by the vanishing theorem: Theorem 6.1 (see also 2.14). By the vanishing theorem: Theo-
rem 6.1,

π∗OX(M(p, q)) → π∗OC(M(p, q))
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is surjective over a neighborhood of π(F ) because (M(p, q)− (KX +∆+ cD)) |π−1(π(F )) is
ample. We note that C ∩Nlc(X,∆+ cD) = ∅. Thus C is not contained in L(p, q). There-
fore, L(p, q) is a proper subset of L(p0, q0) = L0, which gives the desired contradiction.
Hence we know that r is rational.
We next suppose that the assertion of the theorem concerning the denominator of r is

false. We choose (p0, q0) ∈ I such that aq0 − rp0 is the maximum, say it is equal to e/v.
If 0 < aq − rp ≤ e/v and (p, q) is sufficiently large, then

χ(F,OF (M(p, q))) = dimCH
0(F,OF (M(p, q)))

since (M(p, q)− (KX +∆+ cD)) |π−1(π(F )) is ample. There exists sufficiently large (p, q) ∈
Z2 in the strip 0 < aq − rp < 1 with ε = 1 for which

dimCH
0(F,OF (M(p, q))) = χ(F,OF (M(p, q))) ̸= 0

by Lemma 10.2 since PF (p, q) = χ(F,OF (M(p, q))) is a non-trivial polynomial of degree at
most dimF ≤ d by Lemma 10.3. Note that aq−rp ≤ e/v = aq0−rp0 holds automatically
for (p, q) ∈ I. Since

π∗OX(M(p, q)) → π∗OC(M(p, q))

is surjective over some open neighborhood of π(F ) by the ampleness of

(M(p, q)− (KX +∆+ cD)) |π−1(π(F )),

we obtain the desired contradiction by the same reason as above.
Thus, we finish the proof of the rationality theorem. □

We close this section with an easy remark.

Remark 10.4. The proof of Theorem 10.1 shows that Theorem 10.1 holds true under
the assumption that H is a π-ample line bundle.

11. Kleiman–Mori cones

In this section, we will define Kleiman–Mori cones for projective morphisms between
complex analytic spaces under some suitable assumption.

11.1. Throughout this section, let π : X → Y be a projective morphism of complex
analytic spaces and let W be a compact subset of Y . Let Z1(X/Y ;W ) be the free abelian
group generated by the projective integral curves C on X such that π(C) is a point of W .
Let U be any open neighborhood of W . Then we can consider the following intersection
pairing

· : Pic
(
π−1(U)

)
× Z1(X/Y ;W ) → Z

given by L · C ∈ Z for L ∈ Pic(π−1(U)) and C ∈ Z1(X/Y ;W ). We say that L is
π-numerically trivial over W when L · C = 0 for every C ∈ Z1(X/Y ;W ). We take
L1,L2 ∈ Pic(π−1(U)). If L1⊗L−1

2 is π-numerically trivial overW , then we write L1 ≡W L2

and say that L1 is numerically equivalent to L2 over W . We put

Ã(U,W ) := Pic
(
π−1(U)

)
/≡W

and define

A1(X/Y ;W ) := lim−→
W⊂U

Ã(U,W ),

where U runs through all the open neighborhoods of W .
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11.2. We assume that A1(X/Y ;W ) is a finitely generated abelian group. Then we can
define the relative Picard number ρ(X/Y ;W ) to be the rank of A1(X/Y ;W ). We put

N1(X/Y ;W ) := A1(X/Y ;W )⊗Z R.
Let A1(X/Y ;W ) be the image of

Z1(X/Y ;W ) → HomZ
(
A1(X/Y ;W ),Z

)
given by the above intersection pairing. Then we set

N1(X/Y ;W ) := A1(X/Y ;W )⊗Z R.
As usual, we can define the Kleiman–Mori cone

NE(X/Y ;W )

of π : X → Y over W , that is, NE(X/Y ;W ) is the closure of the convex cone in
N1(X/Y ;W ) spanned by the projective integral curves C on X such that π(C) is a
point of W . An element ζ ∈ N1(X/Y ;W ) is called π-nef over W or nef over W if ζ ≥ 0
on NE(X/Y ;W ), equivalently, ζ|π−1(w) is nef in the usual sense for every w ∈ W .

Remark 11.3. We assume that π : X → Y decomposes as

π : X
φ // Z

πZ // Y,

where πZ : Z → Y is a projective morphism of complex analytic spaces. Then φ is
always projective and π−1

Z (W ) is a compact subset of Z. Therefore, we can define
A1
(
X/Z; π−1

Z (W )
)
and N1

(
X/Z; π−1

Z (W )
)
as above. By definition, N1

(
X/Z; π−1

Z (W )
)

is a quotient vector space of N1 (X/Y ;W ). Hence, if dimRN
1(X/Y ;W ) < ∞, then we

see that dimRN
1
(
X/Z; π−1

Z (W )
)
<∞ holds.

Lemma 11.4 ([Na1, Proposition 4.7 (2)]). NE(X/Y ;W ) contains no lines of N1(X/Y ;W ).

Proof. Suppose that NE(X/Y ;W ) contains a line of N1(X/Y ;W ). Then we can take
Γ ∈ NE(X/Y ;W ) such that Γ,−Γ ∈ NE(X/Y ;W ). We take a π-ample R-line bundle A
on X. By definition, A is π-nef over W . Therefore, we obtain A · Γ ≥ 0 and −A · Γ ≥ 0.
This means that A · Γ = 0. On the other hand, after shrinking Y around W suitably, we
can take a line bundle M on X such that Γ · M > 0 since Γ ̸= 0 in N1(X/Y ;W ). Since
A is π-ample, mA−M is also π-ample over some open neighborhood of W , where m is
a large positive integer. This implies that (mA − M) · Γ ≥ 0 since Γ ∈ NE(X/Y ;W ).
Thus, mA · Γ ≥ M · Γ > 0 holds. Hence we obtain A · Γ > 0. This is a contradiction.
Therefore, there are no lines in NE(X/Y ;W ). □
The following theorem is Kleiman’s ampleness criterion for projective morphisms be-

tween complex analytic spaces (see [Na1, Proposition 4.7]).

Theorem 11.5 (Kleiman’s ampleness criterion). Let π : X → Y be a projective mor-
phism between complex analytic spaces and let W be a compact subset of Y such that the
dimension of N1(X/Y ;W ) is finite. Let L be an R-line bundle on X. Then the following
conditions are equivalent.

(i) L is π-ample over W .
(ii) L is π-ample over some open neighborhood U of W .
(iii) L is positive on NE(X/Y ;W ) \ {0}.

Proof. We have already proved the equivalence of (i) and (ii) in Lemma 3.2 without
assuming dimRN

1(X/Y ;W ) <∞.
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Step 1. In this step, we will prove that (i) follows from (iii).
We assume that L is positive on NE(X/Y ;W ) \ {0}. Then we can take a π-ample R-

line bundle A on X such that N := L−A is non-negative on NE(X/Y ;W ). This means
that N|π−1(w) is nef for every w ∈ W . Since L|π−1(w) = N|π−1(w) + A|π−1(w), N|π−1(w) is
nef, and A|π−1(w) is ample, L|π−1(w) is ample by the usual Kleiman’s ampleness criterion.
Hence (i) follows from (iii).

Step 2. In this step, we will prove that (iii) follows from (ii).
We assume that L is π-ample over some open neighborhood U of W . By replacing

Y with U , we may assume that Y = U . In the proof of Lemma 11.4, we have already
checked that L · Γ > 0 for every Γ ∈ NE(X/Y ;W ) \ {0}. This means that (iii) follows
from (ii).

We finish the proof. □
From now on, we always assume that the dimension of N1(X/Y ;W ) is finite. In order

to formulate the cone and contraction theorem, we need the following definitions.

Definition 11.6. Let π : X → Y be a projective morphism of complex analytic spaces
and let W be a compact subset of Y . Let X be a normal complex variety and let ∆ be an
effective R-divisor on X such that KX +∆ is R-Cartier. We assume that the dimension
of N1(X/Y ;W ) is finite. Then we define a subcone

NE(X/Y ;W )Nlc(X,∆)

of NE(X/Y ;W ) as the closure of the convex cone spanned by the projective integral curves
C on Nlc(X,∆) such that π(C) is a point of W . Let D be an element of N1(X/Y ;W ).
We define

D≥0 := {z ∈ N1(X/Y ;W ) |D · z ≥ 0}.
Similarly, we can define D>0, D≤0, and D<0. We also define

D⊥ := {z ∈ N1(X/Y ;W ) |D · z = 0}.
We use the following notation

NE(X/Y ;W )D≥0 := NE(X/Y ;W ) ∩D≥0,

and similarly for > 0, ≤ 0, and < 0.

Definition 11.7. An extremal face of the Kleiman–Mori cone NE(X/Y ;W ) is a non-zero
subcone F ⊂ NE(X/Y ;W ) such that z, z′ ∈ NE(X/Y ;W ) and z + z′ ∈ F imply that
z, z′ ∈ F . Equivalently, F = NE(X/Y ;W ) ∩ H⊥ for some R-line bundle H which is
defined on some open neighborhood of π−1(W ) and is π-nef over W . We call H a support
function of F . An extremal ray is a one-dimensional extremal face.

(1) An extremal face F is called (KX +∆)-negative if

F ∩ NE(X/Y ;W )(KX+∆)≥0 = {0}.
(2) An extremal face F is called rational if we can choose a Q-line bundle H, which is

defined on some open neighborhood of π−1(W ) and is π-nef over W , as a support
function of F .

(3) An extremal face F is called relatively ample at Nlc(X,∆) if

F ∩ NE(X/Y ;W )Nlc(X,∆) = {0}.
Equivalently, H|Nlc(X,∆) is π|Nlc(X,∆)-ample over W for every support function H
of F .
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(4) An extremal face F is called contractible at Nlc(X,∆) if it has a rational support
function H such that H|Nlc(X,∆) is π|Nlc(X,∆)-semiample over some open neighbor-
hood of W .

We make a remark on (3) in Definition 11.7.

Remark 11.8. In (3) in Definition 11.7, the condition that F is relatively ample at
Nlc(X,∆) implies that the support function H of F is positive on NE(X/Y ;W )Nlc(X,∆) \
{0}. Let A be a π-ample R-line bundle on X. Then N := H − εA is positive on
NE(X/Y ;W )Nlc(X,∆) \ {0} for some 0 < ε ≪ 1. Thus, it is easy to see that N|Nlc(X,∆) is
π|Nlc(X,∆)-nef overW . Note that A|Nlc(X,∆) is obviously π|Nlc(X,∆)-ample. Hence H|Nlc(X,∆)

is π|Nlc(X,∆)-ample over W .

11.1. Nakayama’s finiteness. In this subsection, we quickly recall Nakayama’s finite-
ness. As we saw above, for the cone and contraction theorem in this paper, we need the
assumption that the dimension of N1(X/Y ;W ) is finite. In general, the dimension of
N1(X/Y ;W ) may be infinite. The author learned the following example from Noboru
Nakayama.

Example 11.9 (Nakayama). Let π : X → Y be a projective surjective morphism of
complex analytic spaces such that X is a normal complex variety with dimX ≥ 2 and
that Y = {z ∈ C | |z| < 2}. We put

W :=

{
1

n

∣∣∣∣ n ∈ Z>0

}
∪ {0}.

Then W is a compact subset of Y . It is obvious that W has infinitely many connected
components. In this case, we can see that the abelian group A1(X/Y ;W ) is not finitely
generated. Hence we have dimRN

1(X/Y ;W ) = ∞.

The following theorem gives an important and useful sufficient condition for the finite-
dimensionality of N1(X/Y ;W ). We state it here for the reader’s convenience.

Theorem 11.10 (Nakayama’s finiteness, see [Na2, Chapter II. 5.19. Lemma]). Let π : X →
Y be a projective surjective morphism of complex analytic spaces such that W is a compact
subset of Y . We assume that W ∩ V has only finitely many connected components for
every analytic subset V defined over an open neighborhood of W . Then A1(X/Y ;W ) is a
finitely generated abelian group.

Proof. For the details, see [Fu8, 4.1. Nakayama’s finiteness]. □

In this paper, we do not need Theorem 11.10 except in the proof of Corollary 1.5. We
only need the assumption that the dimension of N1(X/Y ;W ) is finite.

Remark 11.11. Let π : X → Y be a smooth projective surjective morphism between
smooth irreducible complex analytic spaces. Let W be a compact subset of Y . Assume
that W is connected. Then we can easily check that the dimension of N1(X/Y ;W ) is
finite. However,W ∩V may have infinitely many connected components for some analytic
subset V defined over an open neighborhood of W .

We close this subsection with some remarks on Nakayama’s fundamental paper [Na1].

Remark 11.12. Example 11.9 shows that [Na1, Proposition 4.3] is not correct. In [Fu1,
Section 4], we gave an alternative simple proof of [Na1, Theorem 5.5] (see also [Fu1, 5.3]).
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12. Cone theorem

In this section, we will explain the cone and contraction theorem of normal pairs for
projective morphisms between complex analytic spaces. The proof given in this section is
essentially the same as that in [Fu2] for algebraic varieties. The main ingredients of this
section is the basepoint-free theorem (see Theorem 9.1) and the rationality theorem (see
Theorem 10.1).

We first treat the contraction theorem, which is a direct consequence of the basepoint-
free theorem: Theorem 9.1. We will use it in the proof of the cone theorem: Theorem
12.2.

Theorem 12.1 (Contraction theorem). Let π : X → Y be a projective morphism of
complex analytic spaces such that X is a normal complex variety and let W be a compact
subset of Y such that the dimension of N1(X/Y ;W ) is finite. Let ∆ be an effective R-
divisor on X such that KX +∆ is R-Cartier. Let H be a line bundle which is defined on
some open neighborhood of π−1(W ) and is π-nef over W such that the extremal face

F = H⊥ ∩ NE(X/Y ;W )

is (KX + ∆)-negative and contractible at Nlc(X,∆). Then, after shrinking Y around
W suitably, there exists a projective morphism φF : X → Z over Y with the following
properties.

(1) Let C be a projective integral curve on X such that π(C) is a point of W . Then
φF (C) is a point if and only if the numerical equivalence class [C] of C is in F .

(2) The natural map OZ → (φF )∗OX is an isomorphism.
(3) Let L be a line bundle on X such that L · C = 0 for every curve C with [C] ∈ F .

Assume that L⊗m|Nlc(X,∆) is φF |Nlc(X,∆)-generated for every m ≫ 0. Then, after
shrinking Y around W suitably again, there exists a line bundle LZ on Z such that
L ≃ φ∗

FLZ holds.

As we mentioned above, Theorem 12.1 easily follows from the basepoint-free theo-
rem: Theorem 9.1.

Proof of Theorem 12.1. Since F is contractible at Nlc(X,∆) by assumption, we may as-
sume that H|Nlc(X,∆) is π|Nlc(X,∆)-semiample over some open neighborhood of W . Since
F is (KX + ∆)-negative by assumption, we can take some positive integer a such that
aH − (KX + ∆) is π-ample over W . By the basepoint-free theorem (see Theorem 9.1),
after shrinking Y around W suitably, H⊗m is π-generated for some positive integer m.
We take the Stein factorization of the associated morphism. Then we can obtain a con-
traction morphism φF : X → Z over Y satisfying the properties (1) and (2). We consider
φF : X → Z and NE(X/Z; π−1

Z (W )), where πZ : Z → Y is the structure morphism. Then
NE(X/Z; π−1

Z (W )) = F holds by construction, L is numerically trivial over π−1
Z (W ), and

−(KX + ∆) is φF -ample over π−1
Z (W ). We use the basepoint-free theorem over Z (see

Theorem 9.1). Then, after shrinking Z around π−1
Z (W ) suitably, both L⊗m and L⊗(m+1)

are pull-backs of line bundles on Z. Their difference gives a line bundle LZ on Z such
that L ≃ φ∗

FLZ holds. We finish the proof of Theorem 12.1. □
The following theorem is the main result of this section, which is the cone theorem of

normal pairs for projective morphisms between complex analytic spaces.

Theorem 12.2 (Cone theorem, see [Fu2, Theorem 16.6]). Let π : X → Y be a projective
morphism of complex analytic spaces such that X is a normal complex variety and let W
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be a compact subset of Y such that the dimension of N1(X/Y ;W ) is finite. Let ∆ be
an effective R-divisor on X such that KX +∆ is R-Cartier. Then we have the following
properties.

(1) We can write

NE(X/Y ;W ) = NE(X/Y ;W )(KX+∆)≥0 +NE(X/Y ;W )Nlc(X,∆) +
∑

Rj,

where Rj’s are the (KX + ∆)-negative extremal rays of NE(X/Y ;W ) that are
rational and relatively ample at Nlc(X,∆). In particular, each Rj is spanned by
an integral curve Cj on X such that π(Cj) is a point of W .

(2) Let A be a π-ample R-line bundle defined on some open neighborhood of π−1(W ).
Then there are only finitely many Rj’s included in NE(X/Y ;W )(KX+∆+A)<0. In

particular, the Rj’s are discrete in the half-space NE(X/Y ;W )(KX+∆)<0.

(3) Let F be a (KX + ∆)-negative extremal face of NE(X/Y ;W ) that is relatively
ample at Nlc(X,∆). Then F is a rational face. In particular, F is contractible at
Nlc(X,∆).

By combining Theorem 12.2 with Theorem 12.1, we obtain the cone and contraction
theorem of normal pairs for projective morphisms between complex analytic spaces.

Proof of Theorem 12.2. Without loss of generality, we can freely shrink Y around W
suitably throughout this proof. From Step 1 to Step 5, we will prove Theorem 12.2 under
the extra assumption that KX+∆ is Q-Cartier. Then, in Step 6, we will treat the general
case. We note that we may assume that dimRN1(X/Y ;W ) ≥ 2 and KX +∆ is not π-nef
over W . Otherwise, the theorem is obvious.

Step 1. In this step, we will prove:

Claim 1. When KX +∆ is Q-Cartier, the following equality

NE(X/Y ;W ) = NE(X/Y ;W )(KX+∆)≥0 +NE(X/Y ;W )Nlc(X,∆) +
∑
F

F

holds, where F ’s vary among all rational proper (KX + ∆)-negative extremal faces that
are relatively ample at Nlc(X,∆).

We note that in Claim 1 —– denotes the closure with respect to the real topology.

Proof of Claim 1. We put

B = NE(X/Y ;W )(KX+∆)≥0 +NE(X/Y ;W )Nlc(X,∆) +
∑
F

F.

The inclusion NE(X/Y ;W ) ⊃ B obviously holds by definition. We note that each F is
spanned by curves on X mapped to points in W by Theorem 12.1 (1). From now on,
we suppose NE(X/Y ;W ) ̸= B. Then we will derive a contradiction. We can take a
separating function M which is a line bundle on some open neighborhood of π−1(W ) and
is not a multiple of KX +∆ in N1(X/Y ;W ) such that M > 0 on B \ {0} and M · z0 < 0
for some z0 ∈ NE(X/Y ;W ). Let C be the dual cone of NE(X/Y ;W )(KX+∆)≥0, that is,

C = {D ∈ N1(X/Y ;W ) |D · z ≥ 0 for z ∈ NE(X/Y ;W )(KX+∆)≥0}.
Then C is generated by KX +∆ and R-line bundles on X which are π-nef over W . Since
M > 0 on NE(X/Y ;W )(KX+∆)≥0 \ {0}, M is in the interior of C. Hence there exists a
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π-ample R-line bundle A such that

M − A = L′ + p(KX +∆)

in N1(X/Y ;W ), where L′ is an R-line bundle on some open neighborhood of π−1(W )
which is π-nef overW , and p is a non-negative rational number. Therefore,M is expressed
in the form

M = H + p(KX +∆)

in N1(X/Y ;W ), where H = A + L′ is a Q-line bundle on X which is π-ample over W .
The rationality theorem (see Theorem 10.1) implies that there exists a positive rational
number r < p such that

L = H + r(KX +∆)

is π-nef over W but not π-ample over W , and L|Nlc(X,∆) is π|Nlc(X,∆)-ample over W . We
note that L ̸= 0 in N1(X/Y ;W ) since M is not a multiple of KX +∆. Thus the extremal
face FL associated to the support function L is contained in B, which implies M > 0 on
FL. Therefore, p < r. It is a contradiction. This completes the proof of Claim 1. □
Step 2. In this step, we will prove:

Claim 2. In the equality in Claim 1, we can assume that every extremal face F is one-
dimensional.

Proof of Claim 2. Let F be a rational proper (KX + ∆)-negative extremal face that is
relatively ample at Nlc(X,∆). We assume that dimF ≥ 2. After shrinking Y around W
suitably, we can take the contraction morphism φF : X → Z over Y associated to F (see
Theorem 12.1). We note that F = NE(X/Z; π−1

Z (W )), where πZ : Z → Y is the structure
morphism, and that −(KX +∆) is φF -ample over π−1

Z (W ) by construction. By Claim 1
in Step 1, we obtain

(12.1) F = NE(X/Z; π−1
Z (W )) =

∑
G

G,

where the G’s in (12.1) are the rational proper (KX + ∆)-negative extremal faces of
NE(X/Z; π−1

Z (W )). We note that NE(X/Z; π−1
Z (W ))Nlc(X,∆) = 0 holds because φF embeds

Nlc(X,∆) into Z. The G’s are also (KX + ∆)-negative extremal faces of NE(X/Y ;W )
that are ample at Nlc(X,∆) with dimG < dimF . By induction, we finally obtain

(12.2) NE(X/Y ;W ) = NE(X/Y ;W )(KX+∆)≥0 +NE(X/Y ;W )Nlc(X,∆) +
∑

Rj,

where the Rj’s are (KX +∆)-negative rational extremal rays. Note that each Rj does not
intersect NE(X/Y ;W )Nlc(X,∆). We finish the proof of Claim 2. □
Step 3. In this step, we still assume that KX +∆ is Q-Cartier. We will finish the proof
of (1) when KX +∆ is Q-Cartier.

The contraction theorem (see Theorem 12.1) guarantees that for each extremal ray Rj,
which is (KX + ∆)-negative, rational, and relatively ample at Nlc(X,∆), there exists a
projective integral curve Cj on X such that [Cj] ∈ Rj. Let ψj : X → Zj be the contraction
morphism of Rj over Y after shrinking Y around W suitably, and let A be a π-ample line
bundle on X. Let πZj

: Zj → Y be the structure morphism. We set

rj = − A · Cj

(KX +∆) · Cj

.
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Then A+ rj(KX +∆) is ψj-nef over π
−1
Zj
(W ) but not ψj-ample over π−1

Zj
(W ), and

(A+ rj(KX +∆))|Nlc(X,∆)

is ψj|Nlc(X,∆)-ample over π−1
Zj
(W ). By the rationality theorem (see Theorem 10.1), ex-

pressing rj = uj/vj with uj, vj ∈ Z>0 and (uj, vj) = 1, we have the inequality vj ≤
a(dimX + 1). After shrinking Y around W suitably, we take π-ample line bundles
H1, H2, . . . , Hρ−1 on X such that KX + ∆ and the Hi’s form a basis of N1(X/Y ;W ),
where ρ = dimRN

1(X/Y ;W ) < ∞. As we saw above, the intersection of the extremal
rays Rj with the hyperplane

{z ∈ N1(X/Y ;W ) | a(KX +∆) · z = −1}

in N1(X/Y ;W ) lie on the lattice

Λ = {z ∈ N1(X/Y ;W ) | a(KX +∆) · z = −1, Hi · z ∈ (a(a(dimX + 1))!)−1Z}.

This implies that the extremal rays are discrete in the half space

{z ∈ N1(X/Y ;W ) | (KX +∆) · z < 0}.

Thus we can omit the closure sign —– from the formula (12.2) and this completes the
proof of (1) when KX +∆ is Q-Cartier.

Step 4. In this step, we will prove (2) under the assumption that KX +∆ is Q-Cartier.
Let A be a π-ample R-line bundle on X. We choose 0 < εi ≪ 1 for 1 ≤ i ≤ ρ − 1

such that A −
∑ρ−1

i=1 εiHi is still π-ample. Then the Rj’s included in (KX + ∆ + A)<0

correspond to some elements of the above lattice Λ in Step 3 for which
∑ρ−1

i=1 εiHi ·z < 1/a.
Therefore, we obtain (2) when KX +∆ is Q-Cartier.

Step 5. In this step, we will prove (3) under the extra assumption that KX + ∆ is
Q-Cartier.

Let F be a (KX + ∆)-negative extremal face as in (3). The vector space V = F⊥ ⊂
N1(X/Y ;W ) is defined over Q because F is generated by some of the Rj’s. There exists
a π-ample R-line bundle A such that F is contained in (KX +∆+A)<0. Let ⟨F ⟩ be the
vector space spanned by F . We put

CF := NE(X/Y ;W )(KX+∆+A)≥0 +NE(X/Y ;W )Nlc(X,∆) +
∑
Rj ̸⊂F

Rj.

Then CF is a closed cone,

NE(X/Y ;W ) = CF + F,

and

CF ∩ ⟨F ⟩ = {0}.
The support functions of F are the elements of V that are positive on CF \ {0}. This is
a non-empty open subset of V and thus it contains a rational element that, after scaling,
gives a line bundle L defined over some open neighborhood of W such that L is π-nef
over W and that F = L⊥ ∩NE(X/Y ;W ). Therefore, F is rational. Hence, we obtain (3)
when KX +∆ is Q-Cartier.

We finish the proof of Theorem 12.2 under the extra assumption that KX + ∆ is
Q-Cartier. Therefore, from now on, we can freely use Theorem 12.2 when KX + ∆ is
Q-Cartier.
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Step 6. In this final step, we will treat the general case. This means that we will treat
the case where KX +∆ is R-Cartier.

Let A be a π-ample R-line bundle on X. First we will prove (2). By Lemma 4.4, after
shrinking Y around W suitably, we can take effective Q-divisors ∆1, . . . ,∆k on X and
positive real numbers r1, . . . , rk with

∑k
i=1 ri = 1 such that

KX +∆ =
k∑

i=1

ri(KX +∆i)

and that JNLC(X,∆i) = JNLC(X,∆) holds for every i. Since KX +∆i is Q-Cartier, there
are only finitely many (KX +∆i +A)-negarive extremal rays of NE(X/Y ;W ) which are
rational and relatively ample at Nlc(X,∆i) = Nlc(X,∆) for every i. Therefore, since

KX +∆+A =
k∑

i=1

ri(KX +∆i +A)

holds, there exist only finitely many (KX+∆+A)-negative extremal rays of NE(X/Y ;W )
which are rational and relatively ample at Nlc(X,∆). Thus we obtain (2) in full generality.
The statement (1) is a direct and formal consequence of (2). For the details, see, for
example, the proof of [Ko, Chapter III. 1.2 Theorem]. Finally, we will prove (3). Let F
be a (KX + ∆)-negative extremal face of NE(X/Y ;W ) as in (3). By using Lemma 4.4,
after shrinking Y aroundW suitably, we can take an effective Q-divisor ∆† on X, which is
sufficiently close to ∆, such that KX+∆† is Q-Cartier, JNLC(X,∆

†) = JNLC(X,∆) holds,
and F is (KX +∆†)-negative. Therefore, we see that F is a rational face of NE(X/Y ;W ).
This is what we wanted.

We finish the proof of the cone theorem. □

12.1. Proof of Theorem 1.4 and Corollary 1.5. In this subsection, we will prove
Theorem 1.4 as an application of the vanishing theorem for projective quasi-log schemes
(see [Fu3, Theorem 6.3.5 (ii)]). Note that Corollary 1.5 is an easy consequence of Theorem
1.4. For the details of the framework of quasi-log schemes, see [Fu3, Chapter 6], [Fu4],
[Fu6], and [Fu7]. Let us start with an easy lemma.

Lemma 12.3 (see [FM1, Lemma 4.2]). Let [V, ω] be an irreducible positive-dimensional
projective quasi-log scheme with dimNqlc(V, ω) = 0 or Nqlc(V, ω) = ∅ and let M be an
ample line bundle on V . Assume that ω+ rM is numerically trivial for some real number
r. Then r ≤ dimV + 1 holds.

Proof. If r ≤ 0, then r ≤ dimV + 1 is obvious. Hence we may assume that r is positive.
We consider the following short exact sequence:

(12.3) 0 → INqlc(V,ω) → OV → ONqlc(V,ω) → 0,

where INqlc(V,ω) is the defining ideal sheaf of Nqlc(V, ω) on V . Since lM− ω is ample for
l > −r, we have

H i(V, INqlc(V,ω) ⊗M⊗l) = 0

for every i ̸= 0 and l > −r by the vanishing theorem for quasi-log schemes (see [Fu3,
Theorem 6.3.5 (ii)]). Since dimNqlc(V, ω) = 0 or Nqlc(V, ω) = ∅,

H i(V,ONqlc(V,ω) ⊗M⊗l) = 0
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for every i ̸= 0 and every l. Therefore, we obtain H i(V,M⊗l) = 0 for every i ̸= 0 and
l > −r by (12.3). Let V ′ be the unique maximal (with respect to the inclusion) qlc
stratum of [V, ω]. Then we have the following short exact sequence:

0 // Kerα // OV
α // OV ′ // 0

such that dimSuppKerα ≤ 0 since dimNqlc(V, ω) = 0 or Nqlc(V, ω) = ∅. Hence we have
H i(V ′,M⊗l|V ′) = 0 for every i ̸= 0 and l > −r. Since dimV ′ = dimV > 0, it is obvious
that H0(V ′,M⊗l|V ′) = 0 holds for every l < 0. We consider

χ(t) :=
dimV ′∑
i=0

(−1)i dimCH
i(V ′,M⊗t|V ′).

Then it is well known that χ(t) is a non-trivial polynomial of degχ(t) = dimV ′ = dimV .
By the above observation, χ(l) = 0 for l ∈ Z with −r < l < 0. This implies that
r ≤ dimV + 1. We finish the proof. □
Let us start the proof of Theorem 1.4.

Proof of Theorem 1.4. We put L := f ∗AY ♭ . Without loss of generality, we may assume
that dimX ≥ 1. Since L is π-nef over W , R is a (KX + ∆)-negative extremal ray of
NE(X/Y ;W ). Therefore, by Theorem 12.2 (3) and Theorem 12.1, after shrinking Y
around W suitably, we obtain a contraction morphism φR : X → Z over Y associated to
R. It is sufficient to prove that R · L = 0 holds.

Step 1. In this step, we will treat the case where dimZ = 0.
From now on, we assume that dimZ = 0 holds. Then X is projective with ρ(X) = 1

and L is a nef line bundle on X in the usual sense. Suppose that L is ample. Then we
obtain that KX + ∆ + rL is numerically trivial for some r > dimX + 1 since (KX +
∆+ (dimX + 1)L) · R < 0 and ρ(X) = 1. We note that [X,KX +∆] naturally becomes
an irreducible projective quasi-log scheme with Nqlc(X,KX + ∆) = ∅ (see, for example,
[Fu3, 6.4.1]). Therefore, we get a contradiction by Lemma 12.3. This implies that L is
numerically trivial, that is, R · f ∗AY ♭ = R · L = 0. This is what we wanted.

Step 2. In this step, we will treat the case where dimZ ≥ 1.
From now on, we assume that dimZ ≥ 1 holds. Then we can always take a point P ∈ Z

such that dimφ−1
R (P ) ≥ 1. We shrink Z around P and assume that Z is Stein. Then we

can take an effective R-Cartier divisor B on Z such that (X,∆ + φ∗
RB) is log canonical

outside φ−1
R (P ), there exists a positive-dimensional log canonical center C of (X,∆+φ∗

RB)
with φR(C) = P , and dimNlc(X,∆+φ∗

RB) = 0 or Nlc(X,∆+φ∗
RB) = ∅. After shrinking

Z around P suitably again, we can take a projective bimeromorphic morphism f : Y → X
from a smooth complex variety Y such that f−1(C) and the exceptional locus Exc(f) of
f are both simple normal crossing divisors on Y and that the union of f−1(C), Exc(f),
and Supp (f−1

∗ (∆ + φ∗
RB)) is a simple normal crossing divisor on Y (see [BM2, Theorem

13.2]). We define BY by the formula KY + BY = f ∗(KX +∆+ φ∗B). Then we see that
SuppBY is a simple normal crossing divisor on Y . By shrinking X around C, we assume
that (X \C)∩Nlc(X,∆+φ∗

RB) = ∅. Let T be the union of the irreducible components of
B=1

Y that are mapped to C by f . We define BT by adjunction: KT +BT = (KY +BY )|T .
We consider the following short exact sequence:

0 → OY (⌈−(B<1
Y )⌉ − ⌊B>1

Y ⌋ − T ) → OY (⌈−(B<1
Y )⌉ − ⌊B>1

Y ⌋)
→ OT (⌈−(B<1

T )⌉ − ⌊B>1
T ⌋) → 0.
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We note that

(12.4) ⌈−(B<1
Y )⌉ − ⌊B>1

Y ⌋ − T − (KY + {BY }+B=1
Y − T ) = −f ∗(KX +∆+ φ∗B).

By taking Rif∗, we have a long exact sequence:

0 −→ f∗OY (⌈−(B<1
Y )⌉ − ⌊B>1

Y ⌋ − T ) −→ JNLC(X,∆+ φ∗B)

−→ f∗OT (⌈−(B<1
T )⌉ − ⌊B>1

T ⌋) δ−→ R1f∗OY (⌈−(B<1
Y )⌉ − ⌊B>1

Y ⌋ − T ) −→ · · · .
(12.5)

The support of f∗OT (⌈−(B<1
T )⌉−⌊B>1

T ⌋) is contained in C since f(T ) = C. On the other
hand, any associated subvarieties of R1f∗OY (⌈−(B<1

Y )⌉ − ⌊B>1
Y ⌋ − T ) are not contained

in C by (12.4) and Theorem 5.5 (i). Hence, the connecting homomorphism δ in (12.5) is
zero. We put

J := f∗OY (⌈−(B<1
Y )⌉ − ⌊B>1

Y ⌋ − T ).

Then it is an ideal sheaf contained in JNLC(X,∆+φ∗B). LetX ′ denote the closed analytic
subspace of X defined by J . By applying the snake lemma to the following commutative
diagram:

0 // J //
� _

��

JNLC(X,∆+ φ∗B)
� _

��

// f∗OT (⌈−(B<1
T )⌉ − ⌊B>1

T ⌋) //

��

0

0 // OX OX
// 0 // 0,

we obtain the short exact sequence:

0 → f∗OT (⌈−(B<1
T )⌉ − ⌊B>1

T ⌋) → OX′ → ONlc(X,∆+φ∗B) → 0.

Since C is projective and T is projective over C by construction,

(X ′, (KX +∆)|X′ , f : (T,BT ) → X ′)

is a projective quasi-log scheme with Nqlc(X ′, (KX +∆)|X′) = Nlc(X,∆+φ∗
RB) by [Fu4,

Theorem 4.9]. In particular, dimNqlc(X ′, (KX+∆)|X′) = 0 or Nqlc(X ′, (KX+∆)|X′) = ∅
holds. We note that X ′ = C holds set theoretically by construction. We put ω :=
(KX +∆)|X′ . Then −ω is ample since φR(X

′) = P .
Suppose that R · L > 0 holds. Then L′ := L|X′ is ample and ω + rL′ is numerically

trivial on X ′ for some positive real number r with r > dimX +1 > dimX ′ +1. This is a
contradiction by Lemma 12.3. Hence we obtain R · L = 0. Therefore, R is a (KX +∆)-
negative extremal ray of NE(X/Y ♭; g−1(W )).

We finish the proof. □

Proof of Corollary 1.5. Let P ∈ Y be any point. We put W := {P}. Then the dimension
of N1(X/Y ;W ) is finite by Theorem 11.10. Suppose that KX +∆+ (dimX +1)A is not
π-nef over W . Then there exists a (KX + ∆ + (dimX + 1)A)-negative extremal ray R
of NE(X/Y ;W ). We put Y ♭ := Y , AY ♭ := A, and f := idY . Then we use Theorem 1.4.
Thus we obtain R · A = 0. This is a contradiction since A is π-ample over W . Therefore,
KX + ∆ + (dimX + 1)A is π-nef over W . Since P is any point of Y , this means that
KX +∆+ (dimX + 1)A is nef over Y . □

We close this section with a remark on Theorem 1.4 and Corollary 1.5.

Remark 12.4. In Theorem 1.4 and Corollary 1.5, we can replace (dimX+1) with dimX
when π(X) is not a point. We can check it easily by the proof of Theorem 1.4.
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13. Lengths of extremal rational curves

In this section, we will quickly explain that every extremal ray is spanned by a rational
curve. Our result in this section generalizes Kawamata’s famous result in [Ka]. We first
prove the following theorem as an application of [Fu6, Theorem 1.12].

Theorem 13.1. Let φ : X → Z be a projective morphism of complex analytic spaces
such that X is a normal complex variety and let ∆ be an effective R-divisor on X such
that KX + ∆ is R-Cartier. Assume that −(KX + ∆) is φ-ample. Let P be an arbitrary
point of Z. Let E be any positive-dimensional irreducible component of φ−1(P ) such that
E ̸⊂ Nlc(X,∆). Then E is covered by possibly singular rational curves ℓ with

0 < −(KX +∆) · ℓ ≤ 2 dimE.

In particular, E is uniruled.

In the proof of Theorem 13.1, we will use the theory of quasi-log schemes (see [Fu3,
Chapter 6], [Fu4], [Fu6], and [Fu7]).

Proof of Theorem 13.1. If φ(X) = P , then E = X obviously holds. In this case, the
statement follows from [Fu6, Theorem 1.12] since we can see [X,KX +∆] as a projective
quasi-log scheme (see, for example, [Fu3, 6.4.1]). Therefore, from now on, we may assume
that φ(X) ̸= P . We shrink Z around P and may assume that Z is Stein. Then we
can take an effective R-Cartier divisor B on Z such that E is a log canonical center
of (X,∆ + φ∗B). After shrinking Z around P suitably again, we can take a projective
bimeromorphic morphism f : Y → X from a smooth complex variety Y such that f−1(E)
is a simple normal crossing divisor on Y ,

KY +BY := f ∗(KX +∆+ φ∗B),

and SuppBY is a simple normal crossing divisor on Y (see [BM2, Theorem 13.2]). We
may further assume that the support of the union of f−1(E) and SuppBY is also a simple
normal crossing divisor on Y . Let T be the union of the irreducible components of B=1

Y

that are mapped to E by f . We put A := ⌈−(B<1
Y )⌉ and N := ⌊B>1

Y ⌋ and consider the
following short exact sequence:

0 → OY (A−N − T ) → OY (A−N) → OT (A−N) → 0.

We note that

(13.1) A−N − T − (KY + {BY }+B=1
Y − T ) = −f ∗(KX +∆+ φ∗B).

By taking Rif∗, we have a long exact sequence:

0 −→ f∗OY (A−N − T ) −→ JNLC(X,∆+ φ∗B) −→ f∗OT (A−N)

δ−→ R1f∗OY (A−N − T ) −→ · · · .
(13.2)

The support of f∗OT (A − N) is contained in E since f(T ) = E. On the other hand,
any associated subvarieties of R1f∗OY (A − N − T ) are not contained in E by (13.1)
and Theorem 5.5 (i). Hence, the connecting homomorphism δ in (13.2) is zero. We put
J := f∗OY (A − N − T ). Then it is an ideal sheaf contained in JNLC(X,∆+ φ∗B). Let
X ′ denote the closed analytic subspace of X defined by J . Thus we obtain the following
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big commutative diagram.

0

��

0

��
0 // J //

��

JNLC(X,∆+ φ∗B)

��

// f∗OT (A−N) // 0

OX

��

OX

��
0 // f∗OT (A−N) // OX′ //

��

ONlc(X,∆+φ∗B)

��

// 0

0 0

We note that X ′ = E ∪ Nlc(X,∆ + φ∗B) holds set theoretically. On X ′, by the above
big commutative diagram, we see that Nlc(X,∆ + φ∗B) is defined by the ideal sheaf
f∗OT (A−N). We write T = T ′+T ′′, where T ′′ is the union of the irreducible components
of T mapped to Nlc(X,∆+ φ∗B) by f . We put I := f∗OT ′′(A−N − T ′). Then

I = f∗OT ′′(A−N − T ′) ⊂ f∗OT (A−N) ⊂ OX′ .

Since I ⊂ f∗OT (A − N), I is zero when it is restricted to Nlc(X,∆ + φ∗B). Since
f(T ′′) ⊂ Nlc(X,∆+φ∗B), I is zero on X ′ \Nlc(X,∆+φ∗B). Thus, we have I = {0}. By
construction, we see that E is a closed analytic subvariety of X ′. Let IE be the defining
ideal sheaf of E on X ′. Then we obtain

IE ∩ f∗OT (A−N) ⊂ f∗OT ′′(A−N − T ′) = I = {0}.
Hence, we can see f∗OT (A − N) as an ideal sheaf on E. Since E is projective and T is
projective over E by construction,

(E, (KX +∆)|E, f : (T,BT ) → E)

is a projective quasi-log scheme, where KT +BT := (KY +BY )|T , by [Fu4, Theorem 4.9].
Since φ(E) = P , −(KX +∆)|E is ample. Thus, by [Fu6, Theorem 1.12], E is covered by
possibly singular rational curves ℓ with 0 < −(KX +∆) · ℓ ≤ 2 dimE. In particular, this
implies that E is uniruled. □
Theorem 13.2 is an easy consequence of Theorem 13.1. It seems to be indispensable for

the minimal model program with scaling.

Theorem 13.2 (Lengths of extremal rational curves). Let π : X → Y be a projective
morphism of complex analytic spaces such that X is a normal complex variety and let W
be a compact subset of Y such that the dimension of N1(X/Y ;W ) is finite. Let ∆ be an
effective R-divisor on X such that KX + ∆ is R-Cartier. If R is a (KX + ∆)-negative
extremal ray of NE(X/Y ;W ) which is relatively ample at Nlc(X,∆), then there exists a
rational curve ℓ spanning R with

0 < −(KX +∆) · ℓ ≤ 2 dimX.

Proof. By the cone and contraction theorem (see Theorems 12.1 and 12.2), after shrinking
Y around W suitably, we obtain a contraction morphism φ : X → Z over Y associated
to R. We note that −(KX + ∆) is φ-ample and φ : Nlc(X,∆) → φ(Nlc(X,∆)) is finite
by construction. Therefore, we can find a rational curve ℓ in a fiber of φ with 0 <
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−(KX + ∆) · ℓ ≤ 2 dimX by Theorem 13.1. This ℓ is a desired rational curve spanning
R. □

14. On Shokurov’s polytopes

In this section, we will discuss Shokurov’s polytopes for projective morphisms of com-
plex analytic spaces. Here, we will follow the presentation in [Fu3, Section 4.7]. Let us
recall the definition of extremal curves.

Definition 14.1 (Extremal curves). Let π : X → Y be a projective morphism of complex
analytic spaces such that X is a normal complex variety and let W be a compact subset
of Y such that the dimension of N1(X/Y ;W ) is finite. A curve Γ on X is called extremal
over W if the following properties hold.

(i) Γ generates an extremal ray R of NE(X/Y ;W ).
(ii) There exists a π-ample line bundle H over some open neighborhood of W such

that

H · Γ = min
ℓ
{H · ℓ},

where ℓ ranges over curves generating R.

By Lemma 13.2, we have:

Lemma 14.2. Let π : X → Y be a projective morphism of complex analytic spaces and let
(X,∆) be a log canonical pair. Let W be a compact subset of Y such that the dimension
of N1(X/Y ;W ) is finite. Let R be a (KX + ∆)-negative extremal ray of NE(X/Y ;W ).
If Γ is an extremal curve over W generating R, then

0 < −(KX +∆) · Γ ≤ 2 dimX

holds.

Proof. By Theorem 13.2, we can take a rational curve ℓ spanning R such that

0 < −(KX +∆) · ℓ ≤ 2 dimX.

Let H be a line bundle as in Definition 14.1. Then

−(KX +∆) · Γ
H · Γ

=
−(KX +∆) · ℓ

H · ℓ
.

holds. Hence we obtain

0 < −(KX +∆) · Γ = (−(KX +∆) · ℓ) · H · Γ
H · ℓ

≤ 2 dimX.

This is what we wanted. □
One of the main purposes of this section is to explain the following theorem, which is

very well known and has already played an important role when π : X → Y is algebraic.

Theorem 14.3. Let π : X → Y be a projective morphism of complex analytic spaces
such that X is a normal complex variety and let W be a compact subset of Y such that
the dimension of N1(X/Y ;W ) is finite. Let V be a finite-dimensional affine subspace of
WDivR(X), which is defined over the rationals. We fix an R-divisor ∆ ∈ L(V ; π−1(W )),
that is, ∆ ∈ V and (X,∆) is log canonical at π−1(W ). Then we can find positive real
numbers α and δ, which depend on (X,∆) and V , with the following properties.

(1) If Γ is any extremal curve over W and (KX +∆) · Γ > 0, then (KX +∆) · Γ > α.



46 OSAMU FUJINO

(2) If D ∈ L(V ; π−1(W )), ||D −∆|| < δ, and (KX +D) · Γ ≤ 0 for an extremal curve
Γ over W , then (KX +∆) · Γ ≤ 0.

(3) Let {Rt}t∈T be any set of extremal rays of NE(X/Y ;W ). Then

NT := {D ∈ L(V ; π−1(W )) | (KX +D) ·Rt ≥ 0 for every t ∈ T}
is a rational polytope in V . In particular,

N ♯
π(V ;W ) := {∆ ∈ L(V ; π−1(W )) |KX +∆ is nef over W}

is a rational polytope.

Proof of Theorem 14.3. Throughout this proof, we can freely shrink Y aroundW suitably.
We first note that L(V ; π−1(W )) is a rational polytope in V (see 2.10).
(1) If ∆ is a Q-divisor, then we may assume thatm(KX+∆) is Cartier for some positive

integer m by shrinking Y around W suitably. Therefore, the statement is obvious even if
Γ is not extremal. Hence, from now on, we assume that ∆ is not a Q-divisor. Then we
can write KX +∆ =

∑
j aj(KX +Dj) as in Lemma 4.4. This means that aj is a positive

real number for every j with
∑

j aj = 1 and that Dj ∈ L(V ; π−1(W )) is a Q-divisor for

every j. Thus we have (KX +∆) · Γ =
∑

j aj(KX +Dj) · Γ. If (KX +∆) · Γ < 1, then

−2 dimX ≤ (KX +Dj0) · Γ <
1

aj0

{
−
∑
j ̸=j0

aj(KX +Dj) · Γ + 1

}

≤ 2 dimX + 1

aj0

for aj0 ̸= 0. This is because (KX +Dj) · Γ ≥ −2 dimX holds for every j by Lemma 14.2.
Thus there are only finitely many possibilities of the intersection numbers (KX +Dj) · Γ
for aj ̸= 0 when (KX +∆) · Γ < 1. Therefore, the existence of α is obvious.

(2) If we take δ sufficiently small, then, for every D ∈ L(V ; π−1(W )) with ||D−∆|| < δ,
we can always find D′ ∈ L(V ; π−1(W )) such that

KX +D = (1− s)(KX +∆) + s(KX +D′)

with

0 ≤ s ≤ α

α + 2dimX
.

Since Γ is extremal, we have (KX + D′) · Γ ≥ −2 dimX for every D′ ∈ L(V ; π−1(W ))
by Lemma 14.2. We assume that (KX + ∆) · Γ > 0. Then (KX + ∆) · Γ > α by (1).
Therefore,

(KX +D) · Γ = (1− s)(KX +∆) · Γ + s(KX +D′) · Γ
> (1− s)α + s(−2 dimX) ≥ 0.

This is a contradiction. Hence, we obtain (KX + ∆) · Γ ≤ 0. We complete the proof of
(2).

(3) For every t ∈ T , we may assume that there is some D(t) ∈ L(V ; π−1(W )) such
that (KX +D(t)) ·Rt < 0. Let B1, . . . , Br be the vertices of L(V ; π−1(E)). We note that
(KX + D) · Rt < 0 for some D ∈ L(V ; π−1(W )) implies (KX + Bj) · Rt < 0 for some
j. Therefore, we may assume that T is contained in N. This is because there are only
countably many (KX + Bj)-negative extremal rays for every j by the cone theorem (see
Theorem 12.2). We note that NT is a closed convex subset of L(V ; π−1(W )) by definition.
If T is a finite set, then the claim is obvious. Thus, we may assume that T = N. By (2)
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and by the compactness of NT , we can take ∆1, . . . ,∆n ∈ NT and δ1, . . . , δn > 0 such
that NT is covered by

Bi = {D ∈ L(V ; π−1(W )) | ||D −∆i|| < δi}
and that if D ∈ Bi with (KX +D) ·Rt < 0 for some t, then (KX +∆i) ·Rt = 0. If we put

Ti = {t ∈ T | (KX +D) ·Rt < 0 for some D ∈ Bi},
then (KX + ∆i) · Rt = 0 for every t ∈ Ti by the above construction. Since {Bi}ni=1 gives
an open covering of NT , we have NT =

∩
1≤i≤nNTi

by the following claim.

Claim 1. NT =
∩

1≤i≤n NTi
.

Proof of Claim 1. We note that NT ⊂
∩

1≤i≤nNTi
is obvious. Suppose that NT ⊊∩

1≤i≤n NTi
holds. We take D ∈

∩
1≤i≤nNTi

\ NT which is very close to NT . Since
NT is covered by {Bi}ni=1, there is some i0 such that D ∈ Bi0 . Since D ̸∈ NT , there is
some t0 ∈ T such that (KX +D) ·Rt0 < 0. Thus, t0 ∈ Ti0 . This is a contradiction because
D ∈ NTi0

. Therefore, we obtain the desired equality NT =
∩

1≤i≤nNTi
. □

Therefore, it is sufficient to see that each NTi
is a rational polytope in V . By replacing

T with Ti, we may assume that there is some D ∈ NT such that (KX +D) · Rt = 0 for
every t ∈ T .

Claim 2. If dimR L(V ; π−1(W )) = 1, then NT is a rational polytope in V .

Proof of Claim 2. As we explained above, we can take some D ∈ NT such that (KX +
D) ·Rt = 0 for every t ∈ T . Since dimR L(V ; π−1(W )) = 1, we can write

KX +D = b1(KX +D1) + b2(KX +D2)

such that KX +Di ∈ L(V ; π−1(W )), Di is a Q-divisor, and 0 ≤ bi ≤ 1 for i = 1, 2, and
b1 + b2 = 1. By (KX + D) · Rt = 0, we see that b1 and b2 are rational numbers. This
implies that D is a Q-divisor. Therefore, NT is a rational polytope in V . □

Hence we assume dimR L(V ; π−1(W )) > 1. Let L1, . . . ,Lp be the proper faces of
L(V ; π−1(W )). Then N i

T = NT ∩ Li is a rational polytope by induction on dimen-
sion. Moreover, for each D′′ ∈ NT which is not D, there is D′ on some proper face of
L(V ; π−1(W )) such that D′′ is on the line segment determined by D and D′. Note that
(KX +D) ·Rt = 0 for every t ∈ T . Therefore, if D′ ∈ Li, then D′ ∈ N i

T . Thus, NT is the
convex hull of D and all the N i

T . There is a finite subset T ′ ⊂ T such that∪
i

N i
T = NT ′ ∩ (

∪
i

Li).

Therefore, the convex hull of D and
∪

i N i
T is just NT ′ . We complete the proof of (3). □

As an application of Theorem 14.3, we have:

Theorem 14.4. Let π : X → Y be a projective morphism of complex analytic spaces
such that X is a normal complex variety and let W be a compact subset of Y such that
the dimension of N1(X/Y ;W ) is finite. Let (X,∆) be a log canonical pair and let H
be an effective R-Cartier R-divisor on X such that (X,∆+H) is log canonical and that
KX +∆+H is nef over W . Then, either KX +∆ is nef over W or there is a (KX +∆)-
negative extremal ray R of NE(X/Y ;W ) such that (KX +∆+ λH) ·R = 0, where

λ := inf{t ≥ 0 |KX +∆+ tH is nef over W}.
Of course, KX +∆+ λH is nef over W .
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Proof. We assume that KX+∆ is not π-nef overW . Let {Rj} be the set of the (KX+∆)-
negative extremal rays of NE(X/Y ;W ). Let Cj be an extremal curve over W spanning
Rj for every j. We put µ = sup

j
{µj}, where

µj =
−(KX +∆) · Cj

H · Cj

.

By definition, it is obvious that λ = µ and 0 < µ ≤ 1 hold. Hence it is sufficient to prove
that µ = µj0 for some j0. By Lemma 4.4, after shrinking Y around W suitably, we can

find effective Q-divisors ∆1, . . . ,∆k and positive real numbers r1, . . . , rk with
∑k

i=1 ri = 1

such that m(KX + ∆i) is Cartier for every i, ∆ =
∑k

i=1 ri∆i holds, and (X,∆i) is log
canonical for every i. Therefore, by Lemma 14.2, we can write

−(KX +∆) · Cj =
l∑

i=1

rinij

m
> 0,

where nij is an integer with nij ≤ 2m dimX for every i and j since Cj is extremal over
W . If (KX + ∆ +H) · Rj0 = 0 for some j0, then there are nothing to prove since λ = 1
and (KX +∆+H) ·R = 0 with R = Rj0 . Thus, we assume that (KX +∆+H) ·Rj > 0
for every j. We put F = Supp(∆+H). Let F =

∑
k Fk be the irreducible decomposition.

We put V =
⊕

k RFk,

L(V ; π−1(W )) := {D ∈ V | (X,D) is log canonical at π−1(W )},

and

N := {D ∈ L(V ; π−1(W )) | (KX +D) ·Rj ≥ 0 for every j}.
Then N is a rational polytope in V by Theorem 14.3 (3) and ∆ + H is in the relative
interior of N by the above assumption. Therefore, after shrinking Y around W suitably
again, we can write

KX +∆+H =

q∑
p=1

r′p(KX +Dp),

where r′1, . . . , r
′
q are positive real numbers such that

∑
p r

′
p = 1, (X,Dp) is log canonical

for every p, m′(KX +Dp) is Cartier for some positive integer m′ and every p, and (KX +
Dp) · Cj > 0 for every p and j. So, we obtain

(KX +∆+H) · Cj =

q∑
p=1

r′pn
′
pj

m′

with 0 < n′
pj = m′(KX +Dp) ·Cj ∈ Z. Note that m′ and r′p are independent of j for every

p. We also note that

1

µj

=
H · Cj

−(KX +∆) · Cj

=
(KX +∆+H) · Cj

−(KX +∆) · Cj

+ 1

=
m
∑q

p=1 r
′
pn

′
pj

m′
∑l

i=1 rinij

+ 1.

Since
l∑

i=1

rinij

m
> 0
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for every j and nij ≤ 2m dimX with nij ∈ Z for every i and j, the number of the set
{nij}i,j is finite. Thus,

inf
j

{
1

µj

}
=

1

µj0

for some j0. Therefore, we obtain µ = µj0 . We finish the proof. □

15. Basepoint-free theorem for R-divisors

In this section, we will discuss the basepoint-free theorem for R-divisors, although we
do not need it in this paper. The proof of Theorem 15.1 needs the cone theorem (see
Theorem 12.2). Hence Theorem 15.1 looks much deeper than the basepoint-free theorem
for Cartier divisors (see Theorem 9.1).

Theorem 15.1 (Basepoint-free theorem for R-divisors). Let π : X → Y be a projective
morphism of complex analytic spaces such that X is a normal complex variety and let
W be a compact subset of Y such that the dimension of N1(X/Y ;W ) is finite. Let ∆
be an effective R-divisor on X such that (X,∆) is log canonical. Let D be an R-Cartier
R-divisor defined on some open neighborhood of π−1(W ) such that D is π-nef over W .
Assume that aD − (KX +∆) is π-ample over W for some positive real number a. Then
there exists an open neighborhood U of W such that D is semiample over U .

Theorem 15.1 is an application of the cone theorem (see Theorem 12.2) and the basepoint-
free theorem for Cartier divisors (see Theorem 9.1).

Proof of Theorem 15.1. Without loss of generality, by replacing D with aD, we may as-
sume that a = 1 holds. By replacing Y with a relatively compact open neighborhood of
W , we may further assume that SuppD has only finitely many irreducible components
and that D is a globally R-Cartier R-divisor on X. We consider

F = {z ∈ NE(X/Y ;W ) |D · z = 0}.
Then F is a face of NE(X/Y ;W ) and (KX + ∆) · z < 0 holds for z ∈ F . We take an
ample R-line bundle A on X such that D − (KX +∆+A) is still π-ample over W . Let
R be a (KX + ∆)-negative extremal ray of NE(X/Y ;W ) such that R ⊂ F . Then R is
automatically a (KX + ∆ + A)-negative extremal ray of NE(X/Y ;W ) since D · R = 0
and D − (KX + ∆ + A) is π-ample over W . Therefore, F contains only finitely many
(KX + ∆)-negative extremal rays R1, . . . , Rk of NE(X/Y ;W ). Thus, F is spanned by
the extremal rays R1, . . . , Rk. Let SuppD =

∑
j Dj be the irreducible decomposition of

SuppD. Then we consider the finite-dimensional real vector space V =
⊕
j

RDj. In this

situation, we can easily check that

R := {B ∈ V |B is a globally R-Cartier R-divisor and B · z = 0 for every z ∈ F}
is a rational affine subspace of V with D ∈ R. As in Step 5 in the proof of Theorem 12.2,
we put

CF := NE(X/Y ;W )(KX+∆+A)≥0 +
∑
Rj ̸⊂F

Rj.

and
R+ := {B ∈ R |B is positive on CF \ {0}}.

We note that NE(X/Y ;W )Nlc(X,∆) = ∅ since (X,∆) is log canonical. Then R+ is a
non-empty open subset of R with D ∈ R+. Hence we can find positive real num-
bers r1, r2, . . . , rm and globally Q-Cartier Q-divisors B1, B2, . . . , Bm ∈ R+ such that
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D =
∑m

i=1 riBi and Bi − (KX + ∆) is π-ample over W for every i. We note that Bi

is automatically π-nef over W for every i since Bi ∈ R+. By the basepoint-free theorem
for Cartier divisors (see Theorem 9.1), there exists a relatively compact open neighbor-
hood U of W such that Bi is π-semiample over U for every i. Therefore, D =

∑m
i=1 riBi

is π-semiample over U . This is what we wanted. □
Theorem 15.1 will play an important role in the study of minimal models of complex

analytic spaces.

16. Proof of Main theorem

In this final section, we will prove Theorem 1.2, which is the main theorem of this
paper.

Proof of Theorem 1.2. By Theorem 12.2 (1) and (2), we obtain the following equality

NE(X/Y ;W ) = NE(X/Y ;W )(KX+∆)≥0 +NE(X/Y ;W )Nlc(X,∆) +
∑

Rj

satisfying (1), (2), and (3) in Theorem 1.2. By Theorem 12.2 (3), F in Theorem 1.2 (4)
is rational and hence contractible at Nlc(X,∆). Thus, by the contraction theorem (see
Theorem 12.1), we obtain the desired contraction morphism φF : X → Z over Y after
shrinking Y aroundW suitably. By Theorem 13.2, we see that (5) holds. We note that (6)
is nothing but Theorem 14.4. Finally, we will prove (7). We may assume that KX +∆ is
not π-nef overW . Then we can take a small positive real number ε such that KX+∆+εH
is not π-nef overW . By the cone theorem (see Theorem 12.2 (2)), there exist only finitely
many (KX +∆+ εH)-negative extremal rays R1, . . . , Rk of NE(X/Y ;W ). We put

µi :=
−(KX +∆) ·Ri

H ·Ri

for every i. Then it is obvious that λ = max1≤i≤k µi. If λ = µi0 holds for 1 ≤ i0 ≤ k, then
(KX +∆+ λH) ·Ri0 = 0. By construction, KX +∆+ λH is π-nef over W . We finish the
proof of Theorem 1.2. □
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