
NUMBER OF RIGHT-ANGLE TRIANGLES (PAPER BY

PACH–SHARIR)

Abstract.

1. Set up and notations

(1) P = {p} denotes a set of finite points in R2. We often write N := #P.
Also, L = {ℓ} denotes a set of finite lines in R2.

(2) Given p1, p2, p3 ∈ R2, we denote a triangle spanned by these points by
△(p1, p2, p3). Note that △(p1, p2, p3) may be degenerate.

(3) We are especially interested in a right-angled triangle and

T(P) := {(p1, p2, p3) ∈ (P)3 : △(p1, p2, p3) is the right-angle triangle}

The main result of Pach–Sharir is as follows.

Theorem 1.1 (Pach–Sharir ’92). For any P ⊂ R2,

e:PachSharire:PachSharir (1.1) #T(P) ≤ C(#P)2 log #P.

We next aim to exhibit the actual estimate, proved by Pach–Sharir, that yields (1.1).
The reason of doing this is because it may be interpreted as a certain (discrete) X-
ray estimate. For this purpose, we need to introduce the discrete X-ray transform.
Suppose we are given a finite points P.

(1) For a line ℓ ∈ R2, define

X[P](ℓ) := #(P ∩ ℓ).

(2) Let Θ = Θ(P) be a set of directions that spanned by two points of P: by

denoting θp,p′ := p−p′

|p−p′| ,

Θ(P) := {θp,p′ : p ̸= p′ ∈ P}.
Note that

e:NumberDirectionse:NumberDirections (1.2) #Θ(P) ≤
(
#P

2

)
=

1

2
#P(#P− 1) ≤ (#P)2.

(3) For θ ∈ S1 and p ∈ R2, we set

ℓθ(p) := {tθ + p : t ∈ R} = a line in direction θ and passing through p.

We will consider a set of parallel lines in a fixed direction θ ∈ Θ(P) whose
centre runs over P: for each θ ∈ Θ(P),

Lθ = Lθ(P) := {ℓθ(p) : p ∈ P}.
1
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Note that ℓθ(p) = ℓθ(p′) may happen even if p ̸= p′. Thus,

Iθ = Iθ(P) := #Lθ(P) ≤ #P.

We will often label Lθ(P) by

Lθ(P) = {ℓθ1, . . . , ℓθIθ} = {ℓθi : i = 1, . . . , Iθ}.
Similarly, we will also consider a set of vertical lines:

Lθ⊥
= Lθ⊥

(P) := {ℓθ
⊥
(p) : p ∈ P},

and label this set by

Lθ⊥
(P) = {ℓθ

⊥

1 , . . . , ℓθ
⊥

Jθ⊥} = {ℓθ
⊥

j : j = 1, . . . , Jθ⊥
}, Jθ⊥

:= #Lθ⊥
(P).

(4) Finally, for each ℓθi ∈ Lθ(P) and ℓθ
⊥

j ∈ Lθ⊥
(P), we denote

pθij := ℓθi ∩ ℓθ
⊥

j ,

which is a (unique) crossing point of two lines ℓθi and ℓθ
⊥

j .

With these notations, the main estimate of Pach–Sharir may be stated as follows.

Theorem 1.2 (Pach–Sharir ’92). For any P ⊂ R2,

e:PachSharir-Xraye:PachSharir-Xray (1.3)
∑

θ∈Θ(P)

Iθ∑
i=1

Jθ⊥∑
j=1

X[P](ℓθi )X[P](ℓθ
⊥

j )1P(p
θ
ij) ≤ C(#P)2 log (#P).

A continuous analogue to (1.3)� �
Let us try to catch a sense of (1.3). Use our familiar notation Xf(θ, v) :=∫
R f(tθ + v) dt. Then the continuous analogue to LHS of (1.3) is as follows:∫
S1

∫
v1∈⟨θ⟩⊥

∫
v2∈⟨θ⟩

Xf(θ, v1)Xf(θ⊥, v2)K(v1, v2; θ) dλ⟨θ⟩⊥(v1)dλ⟨θ⟩(v2)dσ(θ),

where K(v1, v2; θ) is some integral kernela.

amaybe something like

K(v1, v2; θ) = 1supp f (ℓ
θ(v1) ∩ ℓθ

⊥
(v2))???

� �
We will see how (1.3) implies their main result (1.1) later.
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2. Proof of Theorem of Pach–Sharir

Let us give a proof of (1.1). We take arbitrary P ⊂ R2 and fix it below. We thus
sometimes abbreviate the dependence of P.

2.1. Implication of (1.3) ⇒ (1.1). In this subsection, we give an interpretation
of the problem about the number of right-angle triangles in terms of the X-ray
transform. A goal here is to show the following representation:

Claim 2.1. By using above notations,

e:NumberRightangle-Xraye:NumberRightangle-Xray (2.1) ♯T(P) =
∑

θ∈Θ(P)

Iθ∑
i=1

Jθ⊥∑
j=1

(
X[P](ℓθi )− 1

)(
X[P](ℓθ

⊥

j )− 1
)
1P(ℓ

θ
i ∩ ℓθ

⊥

j ).

Once one could see this claim, then it in particular follows that

e:NumberRightangle-Xray(Ineq)e:NumberRightangle-Xray(Ineq) (2.2) ♯T(P) ≤
∑

θ∈Θ(P)

Iθ∑
i=1

Jθ⊥∑
j=1

X[P](ℓθi )X[P](ℓθ
⊥

j )1P(ℓ
θ
i ∩ ℓθ

⊥

j ).

Thus, their main result (1.1) would follow from their X-ray estimate (1.3).

Proof of (2.1). Fix a direction θ ∈ Θ(P) and create a grid

Lθ × Lθ⊥
= {ℓθ1, . . . , ℓθIθ} × {ℓθ

⊥

1 , . . . , ℓθ
⊥

Jθ⊥ }.

We then focus on right-angle triangles with an ‘orientation’ at θ or θ⊥, (equivalently

those created from the grid Lθ ×Lθ⊥
). In order to give more precise definition, let

us fist introduce a subset of T defined by

Tθ(pθij) := {△(pθij , p
θ
i′j , p

θ
ij′) : i

′ ∈ {1, . . . , Iθ}\{i}, j′ ∈ {1, . . . , Jθ⊥
}\{j} s.t. pθi′j , p

θ
ij′ ∈ P},

for each (i, j) ∈ {1, . . . , Iθ} × {1, . . . , Jθ⊥} such that pθij := ℓθi ∩ ℓθ
⊥

j ∈ P. What
does this subset mean? In one word, this is a set of all right-angle triangles in T

whose ‘orthogonal vertex’ is at pθij ; see my hand-written picture for more instinct!
We then define

Tθ :=
⋃

(i,j):pθ
ij∈P

Tθ(pθij).

This is a collection of all right-angle triangles whose shortest edge is oriented at
either θ or θ⊥. Thus, T, all right-angle triangles, may be decomposed into

T =
⋃
θ∈Θ

Tθ =
⋃
θ∈Θ

⋃
(i,j):pθ

ij∈P

Tθ(pθij).

As an important remark, we note that Tθ(pθij) and Tθ′
(pθ

′

i′j′) are ‘independent’ in
the sense that

Tθ(pθij) ∩ Tθ′
(pθ

′

i′j′) = ∅
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whenever (θ, i, j) ̸= (θ′, i′, j′) (that is, either one of the following holds true: θ ̸= θ′,
i ̸= i′, or j ̸= j′). Therefore, we have that

#T =
∑
θ∈Θ

Iθ∑
i=1

Jθ⊥∑
j=1

#Tθ(pθij)1P(p
θ
ij).

Finally, for fixed (i, j) such that pθij ∈ P, we notice from the definition of Tθ(pθij)
that

#Tθ(pθij) = #{i′ ∈ {1, . . . , Iθ} \ {i} : pθi′j ∈ P} ×#{j′ ∈ {1, . . . , Jθ⊥
} \ {j} : pθij′ ∈ P}

=
(
X[P](ℓθ

⊥

j )− 1
)(
X[P](ℓθi )− 1

)
.

This concludes the proof of (2.1). □

2.2. Szemerédi–Trotter in X-ray language.

Theorem 2.2 (Szemerédi–Trotter for lines). Let L be a finite collection of lines in
R2, and k ∈ N. Then

#{k-rich points of L} := #{p ∈ R2 : ∃ℓ1, . . . , ℓk ∈ L s.t. x ∈ ℓ1 ∩ · · · ∩ ℓk}

≤ Cmax{ (#L)2

k3
,
#L

k
}.e:ST-Linee:ST-Line (2.3)

According to the well-known point-line duality, (2.3) is equivalent to the following:

Theorem 2.3 (Szemerédi–Trotter for points). Let L be a finite collection of lines
in R2, P be a finite collection of points in R2, and k ∈ N. Then

e:ST-Pointe:ST-Point (2.4) #{ℓ ∈ L : ∃p1, . . . , pk ∈ P ∩ ℓ} ≤ Cmax{ (#P)2

k3
,
#P

k
}.

The inequality (2.4) may be described in terms of the X-ray transform as follows:

Corollary 2.4 (Szemerédi–Trotter in terms of X-ray transform). Let L be a finite
collection of lines in R2, P be a finite collection of points in R2, and k ∈ N. Then

e:ST-X-raye:ST-X-ray (2.5) #{ℓ ∈ L : X[P](ℓ) ≥ k} ≤ Cmax{ (#P)2

k3
,
#P

k
}.

Proof. Clearly, ∃p1, . . . , pk ∈ P ∩ ℓ is equivalent to X[P](ℓ) ≥ k. □
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Szemerédi–Trotter = weak-type estimate of the X-ray transform� �
The threshold of k in (2.5) is given by k =

√
#P.

(1) In the case of k ≥
√
#P, (2.5) becomes

#{ℓ ∈ L : X[P](ℓ) ≥ k} ≤ C
#P

k
.

This may be manifestly read as

∥X[1P]∥L1,∞(L)“ ≤ ”C∥1P∥L1 .

(2) In the case of k ≤
√
#P, (2.5) becomes

#{ℓ ∈ L : X[P](ℓ) ≥ k} ≤ C
(#P)2

k3
.

This may be manifestly read as

e:ST-L3/2-weakL3e:ST-L3/2-weakL3 (2.6) ∥X[1P]∥3L3,∞(L)“ ≤ ”C∥1P∥3
L

3
2
.� �

In particular, (2.6) suggests a strong type estimate of X[P] by loosing some loga-
rithmic factor. This is indeed the case as follows:

Corollary 2.5 (Strong L
3
2 -L3 bound of the X-ray transform). Let L be a finite

collection of lines in R2, P be a finite collection of points in R2, and N := #P.
Then

e:ST-StrongX-raye:ST-StrongX-ray (2.7) ∥1{X[P]≤
√
N}X[P]∥3L3(L) ≤ C log N∥1P∥3

L
3
2
= C(#P)2 log #P.

Proof. This is perhaps standard argument to upgrade some weak-type estimate to
the strong one by allowing logarithmic loss.

∥1{X[P]≤
√
N}X[P]∥3L3(L) =

∑
ℓ∈L:X[P](ℓ)≤

√
N

X[P](ℓ)3

=

√
N∑

k=0

∑
ℓ∈L:X[P](ℓ)=k

X[P](ℓ)3

=

√
N∑

k=0

k3L=k,

where

L=k := #{ℓ ∈ L : X[P](ℓ) = k}.

By introducing

L≥k := #{ℓ ∈ L : X[P](ℓ) ≥ k},

we readily see that

L=k = L≥k − L≥k+1.
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Thus,

∥1{X[P]≤
√
N}X[P]∥3L3(L) =

√
N∑

k=0

k3(L≥k − L≥k+1)

= 0 +

√
N∑

k=1

k3L≥k −

√
N∑

k=1

(k − 1)3L≥k − (
√
N)3L≥

√
N+1

=

√
N∑

k=1

(3k2 − 3k + 1)L≥k − (
√
N)3L≥

√
N+1

≤ 4

√
N∑

k=1

k2L≥k.

We now then apply Szemerédi–Trotter in terms of the X-ray transform (2.5) to
conclude that

∥1{X[P]≤
√
N}X[P]∥3L3(L) ≤ C

√
N∑

k=1

k2
(#P)2

k3
= C(#P)2 log (#P).

□

2.3. Conclude the proof of (1.3). Given above preparation, we are now at the
stage of doing something trivial, that is Cauchy–Schwarz. First, we separate three
cases

∑
θ∈Θ

Iθ∑
i=1

Jθ⊥∑
j=1

X[P](ℓθi )X[P](ℓθ
⊥

j )1P(p
θ
ij)

=
∑
θ∈Θ

∑
i:X[P](ℓθi )≤

√
N

X[P](ℓθi )
∑

j:X[P](ℓθ
⊥

j )≤
√
N

X[P](ℓθ
⊥

j )1P(p
θ
ij)e:BilineearXraye:BilineearXray (2.8)

+ term involving
∑

i:X[P](ℓθi )>
√
N

+term involving
∑

j:X[P](ℓθ
⊥

j )>
√
N

.

As we will see in the end, the main contribution comes from the first term. So, we
will focus on how to deal with the first term. We fix θ ∈ Θ and estimate∑
i:X[P](ℓθi )≤

√
N

∑
j:X[P](ℓθ

⊥
j )≤

√
N

X[P](ℓθi )X[P](ℓθ
⊥

j )1P(p
θ
ij)

≤
(∑

i,j

1{i:X[P](ℓθi )≤
√
N}X[P](ℓθi )

21P(p
θ
ij)

) 1
2
(∑

i,j

1{j:X[P](ℓθ
⊥

j )≤
√
N}X[P](ℓθ

⊥

j )21P(p
θ
ij)

) 1
2

e:CS1e:CS1 (2.9)

=
( ∑
i:X[P](ℓθi )≤

√
N

X[P](ℓθi )
2
∑
j

1P(p
θ
ij)

) 1
2
( ∑
j:X[P](ℓθ

⊥
j )≤

√
N

X[P](ℓθ
⊥

j )2
∑
i

1P(p
θ
ij)

) 1
2 .

Notice that∑
j

1P(p
θ
ij) = #{j ∈ {1, . . . , Jθ⊥

} : ℓθi ∩ ℓθ
⊥

j ∈ P} = X[P](ℓθi ),
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and similarly ∑
i

1P(p
θ
ij) = X[P](ℓθ

⊥

j ).

Therefore, ∑
i:X[P](ℓθi )≤

√
N

∑
j:X[P](ℓθ

⊥
j )≤

√
N

X[P](ℓθi )X[P](ℓθ
⊥

j )1P(p
θ
ij)

≤
( ∑
i:X[P](ℓθi )≤

√
N

X[P](ℓθi )
3
) 1

2
( ∑
j:X[P](ℓθ

⊥
j )

X[P](ℓθ
⊥

j )3
) 1

2 .

By taking a summation in θ and applying CS again,

First term

=
∑
θ∈Θ

∑
i:X[P](ℓθi )≤

√
N

∑
j:X[P](ℓθ

⊥
j )≤

√
N

X[P](ℓθi )X[P](ℓθ
⊥

j )1P(p
θ
ij)

≤
∑
θ∈Θ

( ∑
i:X[P](ℓθi )≤

√
N

X[P](ℓθi )
3
) 1

2
( ∑
j:X[P](ℓθ

⊥
j )≤

√
N

X[P](ℓθ
⊥

j )3
) 1

2

≤
(∑

θ

∑
i:X[P](ℓθi )≤

√
N

X[P](ℓθi )
3
) 1

2
(∑

θ

∑
j:X[P](ℓθ

⊥
j )≤

√
N

X[P](ℓθ
⊥

j )3
) 1

2e:CS2e:CS2 (2.10)

=
∑
θ

∑
i:X[P](ℓθi )≤

√
N

X[P](ℓθi )
3 = ∥1{X[P](ℓ)≤

√
N}X[P]∥3L3(L),

where L denotes all lines spanned by two points of P. We conclude the desired
estimate for the first term of (2.8) from L

3
2 –L3(L) boundedness of X[P] (2.7).

We are left to handle other terms in (2.8). However, these terms will be bounded
by #P log #P, and thus it is an error term; see original paper by Pach–Sharir for
details.


