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The wave equation
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The wave equation

u = up in R" x {0}

oy = Au in R" x R
Oty = in  R"x {0}.

Taking the Fourier transform of the equation we obtain

Onu(§) = _‘§|2Z’\(f)
u€) = ()
deu(§) = wm(9)
Solving the ODE this yields
i(¢) = cos(tlg))do(¢) + =& (¢).

Inverting the Fourier transform, we write

u(-,t) = cos(tv/—A)ug + M\/\_/{A)ul_
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The initial data

We take the initial data ug in the Bessel potential space
HS(R") := (1 — A)~5/21%(R")
={f F=1+]-P)*8 gel’R")}

with norm
1/2

I = ([ 0+ 27RO d ) = Lo

or in the Riesz potential space
HS(Rn) = (*A)_S/ZLZ(RH)
={f:f=|-7°g, Zecl*R"},

with norm

1/2
|fHHs:(/ IR 2d¢) — Nl
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Lemma (Pointwise convergence for smooth data)
Let u solve the heat or Schrédinger equation with uy € H*(R"™)
with n/2 < s < n/2+2. Then

lim u(x,t) = uo(x) forall x € R".
t—0

Proof: Gp = |- |~°g with g € ?
o ix- _tel?
(27)7/2] 1o (x) — ()| = ‘/g(g)e (e tel _ 1)

€l°

|e—t|£\ _1‘2 1/2
<lizla( [ k)
s n |€ v _1’2 1/2
= e gl ([ ay)
T min y|2,1 2 1/2
— /2 /4||fHHS(/{|‘y|25}dy)
< C~st.s/2fn/4||f”l__l5

The same calculation works for the Schrodinger equation. &
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Lebesgue a.e. convergence for data in L2

Recall that the Hardy-Littlewood maximal operator M is defined by

Mf = Sup 1 B(0,r) * |f‘,

\B(O ol

and that it is bounded from L?(R") to L?(R").

This allows one to conclude that

rli'r}) |B(0 A11B(0,n * f(x) = f(x), ae xeR"

for all f € L2(R™).

Later, | will remind you how to prove this using the L?-bound.
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Now eI < Z 27j(n+1)13(0,21)

j>0
so that , '
e 1P/t < Z 2_j(n+1)]'B(0,t1/22j)
Jj>0
so that
e P/t < o P | .
B 71/2 .
2% l6o a0
Thus

sup|e®®f| = sup |7e| Fltsf) < 327 Mf < 2Mf.

t>0 >0

So the L2-bound for M gives an L? maximal estimate for the heat
equation which allows us to conclude that

lim e'2f(x) = f(x), a.e. x€R",

t—0

using the same argument, which | will remind you of soon.
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Let A C R" be a borel set, 0 < o« < n and

HI(A) = inf{Zé,—O‘ AC|B(xid), bi< 5}.

Definition
The a-Hausdorff measure of A is

H(A) = lim H(A).




Hausdorff dimension

Remark

There exists a unique cg such that

o oo if a<a
H(A)_{O if o> ap.




Hausdorff dimension

Remark

There exists a unique cg such that

o oo if a<a
H(A)_{O if o> ap.

Definition
«g is the Hausdorff dimension of the set A:

dim(A) := «ap.
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Definition (Frostman measures)

We say that a positive Borel measure p with supp(p) C B(0,1) is
a-dimensional if

B(x,r
ca(p) == sup. M(Ea)) < 0.
Xr€>0

0= [[ R =[S e

< / > cal(m)277°2 duy)

j=0
S ca(p)lpll < oo ifa>a.

Lemma (Frostman)
Let A C R" be a Borel set. The following are equivalent:
» HY(A) > 0;
» there is an a-dimensional measure (v such that p(A) > 0.
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Control of singularities

Lemma
Let 0 < s < n/2 and « > n—2s. Then, for all a-dimensional p,

1l 1y < Cullfll s

Proof: f = I« g with g € L2 and Is = |-|7°.  Suffices to prove

s * gll1(any S v En—2s(1) |1l 2(mm-

By Fubini's theorem and the Cauchy—Schwarz inequality,

s+ &ll gy < / / li(x — y) dp(x) |g(v)| dy

< |lhs = pfl 2wy Nl & || L2 (-
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Thus it remains to prove that

s 1l oqry S En2s(h)-

By Plancherel’s theorem,

It ey = iy = | T )

Recalling that hg(x) = Cps|x|~("29),

M*mm@nz/u*mwwmm

- Cns// ’X—y|” 25 Cn,sEn—Qs(:u)y

and we are done.
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Optimality of the control of singularities lemma
If dim(A) = a with a < n — 2s, then we can take a 7y such that
a<vy<n-—2s.

Then
10, 1ydist(-, A)~7 € L*(R")

but on the other hand

up := Is * [15(0,1)d15t(‘a/4)_7 =oo onA.

So there is initial data up € H*(R") which is singular on a set of
dimension av < n — 2s.
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Proposition (Maximal estimates imply convergence)

Let o > ag > n— 2s. Suppose that, for all a-dimensional p,

| sup JuC 0| < Culluolle

0<t<1 Li(dp)

Then, for all ug € HS,

d/m{xeR lm}u(t,x)#uo(x)} < ag.

Proof: We are required to prove that for all & > «yp,
H {X eR" lim u(t,x) # uo(x)} =0
t—0
whenever ug € H°. By Frostman’s lemma, this follows by showing
u{x eR" lim u(t,x) # uo(x)} =0
t—0

whenever p is a-dimensional.



Take h € H"/2*1 such that |up — h||;4s < €, and note that
|u-, t) = wol| < |u(-, t) = un(:, O)] + [un(:, t) = [ + [h = wol,

where up denotes the solution with initial data h.
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Take h € H"?*1 such that |jup — h||;3s < €, and note that
[0(- ) — o] = Lty n( O] + un €) — bl + B — ug].

Then, pd x @ limsup |u(x, t) — ug(x)| > A}
t—0

< px : sup |ug_n(x, D) > A/3)
0<t<1
+ p{x : limsup|up(x,t) — h| > \/3}
t—0
+ p{x : |h(x) — uo(x)| > A\/3}.

We use the maximal estimate for the first term, the second term is
zero by the smooth data lemma, and the third term can be
bounded by the control of singularities lemma so that

u{x : tll_r;no lu(x,t) — ug(x)] > A} < ALC, |lug — hHHS(R") <A Ige.

Letting € tend to zero, then X\ tend to zero, we are done. O
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Theorem (Maximal estimate for the heat equation)

Let 0 <s < n/2 and o > n—2s. Then, for all a-dimensional p,

H sup |etAf|
o<t<1

< Cullfll gs-
g < Gl

Proof: By linearising the operator, it will suffice to prove

‘/ / e IR F(£) dig w(x) dpu(x)
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Theorem (Maximal estimate for the heat equation)

Let 0 <s < n/2 and o > n—2s. Then, for all a-dimensional p,

H sup |etAf|
o<t<1

< Cull ] s
g < Gl

Proof: By linearising the operator, it will suffice to prove

‘/ / e IR F(£) dig w(x) dpu(x)

whenever t : R” — (0,00) and w : R" — S! are measurable. Now,
by Fubini and Cauchy-Schwarz, the LHS is bounded by

2
/ AGRERE / ] / €0V () du(x)| 25

€12
Squaring out the integral, it will suffice to show that

[ [ ] et Etomty) dist)dnty) < Eveasl)
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< En-2s(10) I 113,
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Thus, it remains to prove that, for 0 < s < n/2,

‘ / i) € ot eier d€ | o 1
| = ey

uniformly for all choices of t(x), t(y) > 0. Recalling that

—_—
|- |725 = C,s] - |, this would follow from

1 2/ 1 1
)\n/2e o *‘_’n—ZSS ’,‘n—2s'
uniformly in A. By changing variables, this would follow from

R

* ’ ‘n—25 ~ ‘ |n—2s’

which can be checked by direct calculation.
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Corollary

Let 0 < s < n/2 and let u be a solution to the heat equation with
initial data ug € H°. Then

dim{x eR" lim u(t,x) # uo(x)} <n-—2s.

t—0

As we saw before, up € H® can be singular on a set of dimension
less than n — 2s and so this is optimal.
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Studied by many authors:

Carleson (1979), Dahlberg—Kenig (1982), Cowling (1983),
Carbery (1985), Sjolin (1987), Vega (1988), Bourgain (1992/95),
Moyua—Vargas—Vega (1996/99), Tao—Vargas (2000), Tao (2003),
Lee (2006), Bourgain (2013).

Best known sufficient condition for Lebesgue a.e. convergence:

» s> 1/4 in dimension n =1 (Carleson);

1

» s> 2 — L in dimension n > 2 (Lee, Bourgain).

Best known necessary condition for Lebesgue a.e. convergence:

» s> 1/4 in dimension n = 1 (Dahlberg—Kenig);

1
n+2

»s>1-— in dimension n > 2 (Luca-R.).
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Maximal estimate for the Schrodinger equation

Theorem (Barcel6—Bennett—Carbery-R.)
Let n/4 <s < n/2 and a > n— 2s. Then, for all a-dimensional p,

sup eitAf” < C, ] s
H0<t<1| | LY (dp) Il

Proof: By the same proof as for the heat equation, one finally
arrives to the inequality

1

—il-P 1
i * |,‘n—2s’

< be2s

e

‘.’n—Zs

This can also be shown to be true by more difficult direct
calculation as long as n/4 <s < n/2. O
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Corollary

Let n/4 < s < n/2 and let u be a solution to the Schrédinger
equation with initial data ug € H®. Then

. no B
dlm{x eR tli% u(t, x) # uo(x)} <n-—2s.

Again this is sharp in the range s > n/4.

We cannot go below this regularity in one dimension due to the
necessary condition of Dahlberg—Kenig.

In the next section we will see that we cannot go below this
regularity in higher dimensions either via a fractal version of the
Luca—R.-necessary condition.
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an(s) := sup dim{ x € R" ¢ lim u(x,t) # up(x) }
uoEHS(R") t—=0

ap(s) =n—2s, n/4 <s<n/2.

What about lower regularity (s < n/4) in higher dimensions?
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Schrodinger equation:

lower bounds for apy
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an(s):= sup dim{ x €R" : lim e ug(x # up(x)
( ) uoEHS(R") { t—0 ( ) }

Theorem (Luca-R.)
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2(n+2
an(s) > n+1-— #, when 2(n12) < s < 3
n i}
n—2s , when ﬁ < < g
0 , when 5 <




anp(s) > nwhen s < )



ap(s) > n when s < )

This bound follows from:

Theorem (Luca-R.)
Suppose that
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for all up € H(R"). Then




ap(s) > n when s < )

This bound follows from:

Theorem (Luca-R.)
Suppose that

L!in}) e™up(x) = wp(x), a.e. x € R"
%

for all up € H(R"). Then

~2(n+2)

which improves Dahlberg—Kenig for n > 3 (coinciding when n = 2).
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Proof

Lemma (Nikigin—Stein maximal principle)

Modulo endpoints:

li_n% e™uy(x) = wp(x), a.e x € R",

for all up € H*(R") if and only if there is a constant C such that

it < C|luol| s (rny-
L2(B(0,1))

sup |e"“up|

o<t<1

So it suffices to show that s > 2(n7,1|*2) is necessary for

S R,
L2(B(0,1))

itAf’

sup |e
o<t<1

whenever supp f C {¢ : |¢| < R}.
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and initial data defined by
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Barcel6—Bennett—Carbery—Ruiz—Vilela (2007).



The initial data

We consider the frequencies

Q:={¢e2aRV"Z" : |¢| < R} + B(0, &),

for0<ﬁ<$,

and initial data defined by

1

X
VIQ

f=

so that |||l =1.

This data was introduced in the context of Mattila's question by
Barcel6—Bennett—Carbery—Ruiz—Vilela (2007).

Note that
|2 ~ number of frequencies >~ R"™".
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Periodic constructive interference

The constructive interference reappears periodically in time:

™2 (x)] = /]Q| forall (x,t)e X x T,

where
X :={xeR1Z": |x] <2} +B(0,R™),

and

1
T .= {t c ZR%“”Z 0<t< R—l}.
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X is the dual-set of Q:

x-&e (R1Z") - (2nRY™FZ") = 2xZ.

T is the dual-set of 2 - (2
tE-E € ( R~ 1)2) (27 R*™FZ") - (2rRY™"Z") = 27 Z.

So that there is no cancellation in the integral:
1Qp

eitA / ix-E— /t|§|2 de¢ ~
\/IQ vial
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Periodically coherent solutions

Thus

™A (x)] 2 V/|Q forall (x,t)e X x T,

But the interference always reappears in the same places so

sup |e®2F(x)] > +/]Q onlyfor xe X.
o<t<1



Travelling periodically coherent solutions

Instead we take
il0.x n—1
fo(x) = €'2"%f(x), where 6€S
so that
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Travelling periodically coherent solutions

Instead we take

fo(x) = e'2%%f(x), where €S

so that
€ 5(0)] = |4 F(x — t0)].
which yields
sup |e™2f(x)| = +/|Q] forall xe U X+ th.
0<t<1

teT
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Lemma

Let0 < k < nTlrz Then there exists 6 € S"~1 such that

B(0,1/2) | J X + t6.
teT

1

This is optimal in the sense that it is not true for kK > et

After scaling and quotienting out Z", this follows from quantitive
ergodic theory on the torus T".

Lemma (Luca-R.)

There exists § € S™1 such that for all y € T" there is a
t € ROZ N (0, R) such that

ly —t0] < R~(=9/nog R,
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Conclusion of the proof
Plugging into the maximal estimate,

sup |e™2f|
o<1

S Rellfall2,
L2(B(0.1))

recalling that

sup [e™2f] > /| on B(0,1/2),
o<t<«1

we obtain

VIQLS R2(Ifll2-

Then as || 2 R™ and ||fy||2 = 1, this yields

nK
= s> — and then we take &k — .
2 n+2



an(s)2n+1—2("—ﬁ2)swhen#§s§

n
2(n+2) 4
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This follows from:

Theorem (Luca—Rogers)
Let n/2 < o < n and suppose that, for all uy € H*(R"),

lim e ug(x) = uo(x)

for all x off an a-dimensional set.
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This follows from:

Theorem (Luca—Rogers)

Let n/2 < o < n and suppose that, for all uy € H*(R"),
lim e® up(x) = wo(x)
t—0

for all x off an a-dimensional set. Then

522(’7—:_2)<n—04+1>.
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Proof

The Nikisin—Stein maximal principle does not hold in this context,
and so we first give a direct proof of the Lebesgue measure result.

We consider a sum of the previous initial data

fi=> f, 68T

j>1
where we take R = 2/ and normalise in a different way, so that

foy(x) = e'2%%f(x),

—j(ns—e)

g"\)

XQ;»

= {¢ e 2n2=Mzn : |¢g] <27} + B(0, ).
Note that |Q;| ~ 2/™, so that ||f;||ys o~ 2747 Tt
Then if s < % — ¢ we can sum so that f € H°.

To generalise to the fractal case we will take 5 < Kk < ”nf_;rl.
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By the previous calculations, for all x € E; := UseT, Xj + t0), where
X; = {x e 20+=V7" . |x| <2} + B(0,27),
L oj(k—1) —j
Ti={te —2¥Vz o<t <27},
27
there is a t;(x) € T such that |12 f (x)| > 2/°.
One can also show (essentially) that |e/5()4 >k o (X)) < C.

If k < then B(0,1/2) C Ej, and we are done.

+2' i>1

1 . . .
If K > o We consider the limit set
limsup E; := m U Ey
J7o0 J>1k>j

and prove that this is a-dimensional.

For this we use that the limit is ‘a—Hausdorff dense’.
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Falconer's density theorem

Consider the Hausdorff content ‘HS, defined by

HO(E) = inf { Za,.a CEC U B(x,-,a,-)}.

Theorem (Falconer (1985))
Suppose that, for all balls B, C B(0,1) of radius r,

liminf HE(E; N B(x, r)) > cr. (1)

Jj—oo

Then dim (Iim SUPj 00 EJ) > a.

The proof is completed by checking the density condition (f) with
Ei = UteTj Xj + tf); using a variant of the ergodic lemma. O
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Sx—0(R(E,&)) = @72 Jen1 €F7€ dX is independent of .

Thus, the Fourier transform of certain (n — 1)-dimensional
measures do not decay in every direction.

But perhaps they decay on average......

Let 5,(«) denote the supremum of the numbers /3 for which
(R IPegers) S cali)llul R

whenever R > 1 and p is a-dimensional and supported in B(0,1).

Question (Mattila (1987))
Who is Bp(a) 7

Equivalently 3,(«) is the supremum of the numbers 3 for which

1(8d0) (Rl gy S Vel Tl 2l 2gor-1y-
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Part 6:

Convergence for the wave
equation
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With this notation, we can write

u(-,t) = e"t(*A)l/2

fi + e tCA

If the initial data is in HS x /_'/5—1’ both f and f_ belong to Hs.

Thus convergence of et(=B)2 £ 1o f for all f € H* implies
convergence of u(-,t) to up for all (ug, u1) € H® x HS1.
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Corollary (of the corollary)

Let u be a solution to the Schrédinger equation with initial data
in H! or to the wave equation with initial data in H' x L?. Then

i mi <n-—1
dlm{xeR .lm)u(x,t);éuo(x)}_n 1
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Theorem (Luca-R.)
Let n> 3. Then
B (n—a)?
(@) za =1+ O o a1y

This is an improvement in the range n/2+1 < o < n.
The proof takes advantage of:
> ‘multilinear restriction’ estimates due to Bennett—Carbery—Tao

» ‘decomposition’ of Bourgain—Guth.
> ‘interpolation’ with the argument of Sjolin.

Corollary
Let u be a solution to the Schrodinger equation with initial data

in H! or to the wave equation with initial data in H' x L2. Then

dim{xER” o lim u(x, t) # up(x) } <n-—1

t—0

Thus the solution cannot diverge on spheres.




Arigatou gozaimasu!



