Processing math: 100%

KS.gap

Definition of MG
Let G be a finite subgroup of GL(n,Z). The G-lattice MG of rank n is defined to be the G-lattice with a Z-basis {u1,,un} on which G acts by σ(ui)=nj=1ai,juj for any σ=[ai,j]G.

DirectSumMatrixGroup

DirectSumMatrixGroup(l)
returns the direct sum of the groups G1,,Gn for the list l=[G1,,Gn].

DirectProductMatrixGroup

DirectProductMatrixGroup(l)
returns the direct product of the groups G1,,Gn for the list l=[G1,,Gn].

IndmfMatrixGroup

IndmfMatrixGroup(n,i,j)
returns Indmf(n,i,j) of dimension n (this works only for n6).

IndmfNumberQClasses

IndmfNumberQClasses(n)
returns the number of Q-classes of all the indecomposable maximal finite groups of dimension n (this works only for n6).

IndmfNumberZClasses

IndmfNumberZClasses(n,i)
returns the number of Z-classes in the i-th Q-class of the indecomposable maximal finite groups Imf(n,i,j) of dimension n (this works only for n6).

AllImfMatrixGroups

AllImfMatrixGroups(n)
returns all the irreducible maximal finite groups of dimension n.

AllIndmfMatrixGroups

AllIndmfMatrixGroups(n)
returns all the indecomposable maximal finite groups of dimension n.

InverseProjection

InverseProjection([l1,l2])
returns the list of all groups G such that MGMG1MG2 and the CrystCat ID of G1 (resp. G2) is l1 (resp. l2).
AllIndmfMatrixGroups(n:Carat)
returns the same as InverseProjection([l1,l2]) but with respect to the Carat ID l1 and l2 instead of the CrystCat ID.

MaximalGroupsID

MaximalGroupsID(L)
returns the list of the CrystCat IDs of the maximal Z-classes in the groups of the CrystCat IDs L.
MaximalGroupsID(L:Carat)
returns the same as MaximalGroupsID(L) but using the Carat ID instead of the CrystCat ID.

References

[HY17] Akinari Hoshi and Aiichi Yamasaki, Rationality problem for algebraic tori, Mem. Amer. Math. Soc. 248 (2017) no. 1176, v+215 pp. AMS Preprint version: arXiv:1210.4525.