KS.gap
- Definition of MG
- Let G be a finite subgroup of GL(n,Z). The G-lattice MG of rank n is defined to be the G-lattice with a Z-basis {u1,…,un} on which G acts by σ(ui)=∑nj=1ai,juj for any σ=[ai,j]∈G.
DirectSumMatrixGroup
DirectSumMatrixGroup(l)
returns the direct sum of the groups G1,…,Gn
for the list l=[G1,…,Gn].
DirectProductMatrixGroup
DirectProductMatrixGroup(l)
returns the direct product of the groups G1,…,Gn
for the list l=[G1,…,Gn].
IndmfMatrixGroup
IndmfMatrixGroup(n,i,j)returns Indmf(n,i,j) of dimension n (this works only for n≤6).
IndmfNumberQClasses
IndmfNumberQClasses(n)
returns the number of Q-classes of all
the indecomposable maximal finite groups of dimension n
(this works only for n≤6).
IndmfNumberZClasses
IndmfNumberZClasses(n,i)returns the number of Z-classes in the i-th Q-class of the indecomposable maximal finite groups Imf(n,i,j) of dimension n (this works only for n≤6).
AllImfMatrixGroups
AllImfMatrixGroups(n)
returns all the irreducible maximal
finite groups of dimension n.
AllIndmfMatrixGroups
AllIndmfMatrixGroups(n)
returns all the indecomposable maximal
finite groups of dimension n.
InverseProjection
InverseProjection([l1,l2])
returns the list of all groups
G such that MG≃MG1⊕MG2 and
the CrystCat ID of G1 (resp. G2) is l1 (resp. l2).
AllIndmfMatrixGroups(n:Carat)
returns the same as InverseProjection([l1,l2]) but with respect to the Carat ID
l1 and l2 instead of the CrystCat ID.
MaximalGroupsID
MaximalGroupsID(L)
returns the list of the CrystCat IDs of the maximal Z-classes
in the groups of the CrystCat IDs L.
MaximalGroupsID(L:Carat)
returns the same as
MaximalGroupsID(L) but using the Carat ID instead of the CrystCat ID.
References
[HY17] Akinari Hoshi and Aiichi Yamasaki,
Rationality problem for algebraic tori,
Mem. Amer. Math. Soc. 248 (2017) no. 1176, v+215 pp.
AMS
Preprint version:
arXiv:1210.4525.