- <u>Return to RatProbAlgTori</u>
- <u>Return to MultInvField</u>

FlabbyResolution.gap

Definition of M_G

Let G be a finite subgroup of $\operatorname{GL}(n, \mathbb{Z})$. The G-lattice M_G of rank n is defined to be the G-lattice with a \mathbb{Z} -basis $\{u_1, \ldots, u_n\}$ on which G acts by $\sigma(u_i) = \sum_{j=1}^n a_{i,j} u_j$ for any $\sigma = [a_{i,j}] \in G$.

Hminus1

▶ Hminus1(G)

returns the Tate cohomology group $\widehat{H}^{-1}(G,M_G)$ for a finite subgroup $G \leq \operatorname{GL}(n,\mathbb{Z}).$

H0

► H0(G)

returns the Tate cohomology group $\widehat{H}^0(G,M_G)$ for a finite subgroup $G \leq \operatorname{GL}(n,\mathbb{Z}).$

H1

► H1(G)

returns the cohomology group $H^1(G, M_G)$ for a finite subgroup $G \leq \operatorname{GL}(n, \mathbb{Z}).$

Z0lattice

Z0lattice(G)

returns a \mathbb{Z} -basis of the group of Tate 0-cocycles $\widehat{Z}^0(G, M_G)$ for a finite subgroup $G \leq \operatorname{GL}(n, \mathbb{Z})$.

ConjugacyClassesSubgroups2, ConjugacyClassesSubgroupsFromPerm

ConjugacyClassesSubgroups2(G)

ConjugacyClassesSubgroupsFromPerm(G)

returns the list of conjugacy classes of subgroups of a group G. We use this function because the ordering of the conjugacy classes of subgroups of G by the built-in function ConjugacyClassesSubgroups(G) is not fixed for some groups. If a group G is too big, ConjugacyClassesSubgroups2(G) may not work well.

IsFlabby

```
► IsFlabby(G)
```

returns whether G-lattice M_G is flabby or not.

IsCoflabby

IsCoflabby(G)

returns whether G-lattice M_G is coflabby or not.

FlabbyResoluton

FlabbyResolution(G)

returns a flabby resolution $0 o M_G \stackrel{\iota}{ o} P \stackrel{\phi}{ o} F o 0$ of M_G as follows:

FlabbyResolution(G).actionP

returns the matrix representation of the action of G on P;

FlabbyResolution(G).actionF

returns the matrix representation of the action of G on F;

FlabbyResolution(G).injection

returns the matrix which corresponds to the injection $\iota: M_G \to P$;

FlabbyResolution(G).surjection

returns the matrix which corresponds to the surjection $\phi: P o F$.

IsInvertibleF

```
▸ IsInvertibleF(G)
```

returns whether $[M_G]^{fl}$ is invertible.

flfl

returns the G-lattice E with $[[M_G]^{fl}]^{fl} = [E]$.

PossibilityOfStablyPermutationF

PossibilityOfStablyPermutationF(G)

returns a basis $\mathcal{L} = \{l_1, \ldots, l_s\}$ of the solution space of the system of linear equations which is obtained by computing some \mathbb{Z} -class invariants. Each isomorphism class of irreducible permutation *G*-lattices corresponds to a conjugacy class of subgroup *H* of *G* by $H \leftrightarrow \mathbb{Z}[G/H]$. Let H_1, \ldots, H_r be conjugacy classes of subgroups of *G* whose ordering corresponds to the GAP function ConjugacyClassesSubgroups2(*G*). Let *F* be the flabby class of M_G . We assume that *F* is stably permutation, i.e. for $x_{r+1} = \pm 1$,

$$\left(igoplus_{i=1}^r \mathbb{Z}[G/H_i]^{\oplus x_i}
ight) \oplus F^{\oplus x_{r+1}} \ \simeq \ igoplus_{i=1}^r \mathbb{Z}[G/H_i]^{\oplus y_i}.$$

Define $a_i=x_i-y_i$ and $b_1=x_{r+1}.$ Then we have for $b_1=\pm 1,$

$$igoplus_{i=1}^r \mathbb{Z}[G/H_i]^{\oplus a_i} \ \simeq \ F^{\oplus (-b_1)}.$$

 $[M_G]^{fl}=0\Longrightarrow$ there exist $a_1,\ldots,a_r\in\mathbb{Z}$ and $b_1=\pm 1$ which satisfy the system of linear equations.

PossibilityOfStablyPermutationM

PossibilityOfStablyPermutationM(G)

returns the same as PossibilityOfStablyPermutationF(G) but with respect to M_G instead of F.

Nlist

Nlist(L)

returns the negative part of the list l.

Plist

Plist(l)

returns the positive part of the list l.

StablyPermutationFCheck

```
StablyPermutationFCheck(G,L1,L2)
```

returns the matrix P which satisfies $G_1P = PG_2$ where G_1 (resp. G_2) is the matrix representation group of the action of G on $(\bigoplus_{i=1}^r \mathbb{Z}[G/H_i]^{\oplus a_i}) \oplus F^{\oplus b_1}$

(resp. $(\oplus_{i=1}^r \mathbb{Z}[G/H_i]^{\oplus a_i'}) \oplus F^{\oplus b_1'}$) with the isomorphism

$$\left(igoplus_{i=1}^r \mathbb{Z}[G/H_i]^{\oplus a_i}
ight) \oplus F^{\oplus b_1} \simeq \left(igoplus_{i=1}^r \mathbb{Z}[G/H_i]^{\oplus a_i'}
ight) \oplus F^{\oplus b_1'}$$

for lists $L_1 = [a_1, \ldots, a_r, b_1]$ and $L_2 = [a'_1, \ldots, a'_r, b'_1]$, if P exists. If such P does not exist, this returns false.

StablyPermutationMCheck

```
    StablyPermutationMCheck(G,L1,L2)
```

returns the same as StablyPermutationFCheck(G,L1,L2) but with respect to M_G instead of F.

StablyPermutationFCheckP

StablyPermutationFCheckP(G,L1,L2)

returns a basis $\mathcal{P} = \{P_1, \ldots, P_m\}$ of the solution space of $G_1P = PG_2$ where G_1 (resp. G_2) is the matrix representation group of the action of G on $(\bigoplus_{i=1}^r \mathbb{Z}[G/H_i]^{\oplus a_i}) \oplus F^{\oplus b_1}$ (resp. $(\bigoplus_{i=1}^r \mathbb{Z}[G/H_i]^{\oplus a'_i}) \oplus F^{\oplus b'_1}$) for lists $L_1 = [a_1, \ldots, a_r, b_1]$ and $L_2 = [a'_1, \ldots, a'_r, b'_1]$, if P exists. If such P does not exist, this returns [].

StablyPermutationMCheckP

```
StablyPermutationMCheckP(G,L1,L2)
```

returns the same as StablyPermutationFCheckP(G,L1,L2) but with respect to M_G instead of F.

StablyPermutationFCheckMat

```
StablyPermutationFCheckMat(G,L1,L2,P)
```

returns true if $G_1P = PG_2$ and det $P = \pm 1$ where G_1 (resp. G_2) is the matrix representation group of the action of G on $(\bigoplus_{i=1}^r \mathbb{Z}[G/H_i]^{\oplus a_i}) \oplus F^{\oplus b_1}$ (resp. $(\bigoplus_{i=1}^r \mathbb{Z}[G/H_i]^{\oplus a'_i}) \oplus F^{\oplus b'_1}$) for lists $L_1 = [a_1, \ldots, a_r, b_1]$ and $L_2 = [a'_1, \ldots, a'_r, b'_1]$. If not, this returns false.

StablyPermutationMCheckMat

```
StablyPermutationMCheckMat(G,L1,L2,P)
```

returns the same as StablyPermutationFCheckMat(G,L1,L2,P) but with respect to M_G instead of F.

StablyPermutationFCheckGen

```
StablyPermutationFCheckP(G,L1,L2)
```

returns the list $[\mathcal{M}_1, \mathcal{M}_2]$ where $\mathcal{M}_1 = [g_1, \ldots, g_t]$ (resp. $\mathcal{M}_2 = [g'_1, \ldots, g'_t]$) is a list of the generators of G_1 (resp. G_2) which is the matrix representation group of the action of G on $(\bigoplus_{i=1}^r \mathbb{Z}[G/H_i]^{\oplus a_i}) \oplus F^{\oplus b_1}$ (resp. $(\bigoplus_{i=1}^r \mathbb{Z}[G/H_i]^{\oplus a'_i}) \oplus F^{\oplus b'_1}$) for lists $L_1 = [a_1, \ldots, a_r, b_1]$ and $L_2 = [a'_1, \ldots, a'_r, b'_1]$.

StablyPermutationMCheckGen

```
StablyPermutationMCheckGen(G,L1,L2)
```

returns the same as StablyPermutationFCheckGen(G,L1,L2) but with respect to M_G instead of F.

Norm1TorusJ

▹ Norm1TorusJ(d,m)

returns the Chevalley module $J_{G/H}$ for the *m*-th transitive subgroup $G = dTm \leq S_d$ of degree d where H is the stabilizer of one of the letters in G.

DirectSumMatrixGroup

DirectSumMatrixGroup(l)

returns the direct sum of the groups G_1, \ldots, G_n for the list $l = [G_1, \ldots, G_n]$.

DirectProductMatrixGroup

```
    DirectProductMatrixGroup(l)
```

returns the direct product of the groups G_1, \ldots, G_n for the list $l = [G_1, \ldots, G_n]$.

References

[HY17] Akinari Hoshi and Aiichi Yamasaki, Rationality problem for algebraic tori, Mem. Amer. Math. Soc. **248** (2017) no. 1176, v+215 pp. <u>AMS</u> Preprint version: <u>arXiv:1210.4525</u>.

Copyright © 2012 Akinari Hoshi, Aiichi Yamasaki