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The mod 3 cohomology ring of the finite projective general group of degree 3

We compute the mod 3 cohomology ring of the projective finite general linear group

PGLs(F,).
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Symmetric topological complexity and its combinatorial description
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Pontrjagin-Thom construction in topological coincidence theory

Topological coincedence theory is the study on the coincedence set of continuous maps
f,9: M — N. In this talk, we study the primary obstruction to deforming f,g to coin-
cidence free maps. The aim of this talk is to see how the Pontrjagin-Thom construction
is applied in topological coincidence theory. First, the primary obstruction is constructed
as the map S° — M~TM — Hoeq(f,9)"¥ ="M to the Thom spectrum of the homotopy
equalizer. Second, the property called Jiang invariance of the primary obstruction comes
from the action of the string topology spectrum LM ~7M on Hoeq(f, g)"™V ="M . Finally, we
compute the primary obstruction for some f, g using the Serre spectral sequence.
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Classification of toric manifolds over an n-cube with one vertex cut

Let ve(I™) be the simple polytope obtained from the cube I™ by cutting off one vertex, and
consider the toric manifolds over it. It is known that the Oda 3-fold, the simplest toric
manifold which is non-projective, is a toric manifold over ve(I?). The goals of this talk are
to classify the toric manifolds over vc(I™) for n > 3 and to determine the (non-)projectivity
of them. Finally we see that these toric manifolds are classified by their cohomology rings if
so are the n-stage Bott manifolds, and, if n > 4, they contain more than one non-projective
toric manifolds as varieties but they all are diffeomorphic.

This is a joint work with Hideya Kuwata (Kindai University Technical College), Mikiya
Masuda (Osaka City University), Seonjeong Park (Sungkyunkwan University).
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Representation theory of Hopf algebroids



A Hopf algebroid is a groupoid in the opposite category of the category of commutative
graded algebras. By using the notion of fibered category of modules, a comodule over
a Hopf algebroid is regarded as a representation of a Hopf algebroid. We give various
fundamental and concrete constructions on representations of Hopf algebroids such as left
regular representations, restrictions and left induced representations which are left adjoint
of restrictions.



