An example of an infinitely renormalizable cubic polynomial and its combinatorial class

Hiroyuki Inou（稲生 啓行）
Department of Mathematics，Kyoto University

Holomorphic dynamics and related fields SCMS（上海数学中心） September 26， 2019

The unicritical family and the Multibrot set

For $d \geq 2$, consider the unicritical family

$$
f_{c}(z)=z^{d}+c, \quad c \in \mathbb{C} .
$$

Its connectedness locus

$$
\mathcal{M}_{d}=\left\{c \in \mathbb{C} ; K\left(f_{c}\right) \text { is connected }\right\}
$$

is called the Multibrot set of degree d.
We often identify $c \in \mathcal{M}_{d}$ with the corresponding map f_{c}.

Hyperbolicity

- A map $f_{c} \in \mathcal{M}_{d}$ is hyperbolic $\stackrel{\text { det }}{\Longleftrightarrow} f_{c}$ has an attracting cycle.
- A hyperbolic component in $\mathcal{M}_{d}:=$ a connected component of the set of hyperbolic maps in \mathcal{M}_{d} (open set).
- The period of a hyperbolic component $\mathcal{H}:=$ the period of the (unique) attracting cycle for $f_{c} \in \mathcal{H}$ (independent of the choice of f_{c}).
- \mathcal{H} : satellite $\stackrel{\text { def }}{\Longleftrightarrow} \mathcal{H}$ has a common boundary point with another hyperbolic component \mathcal{H}^{\prime} of lower period.
- \mathcal{H} : primitive $\stackrel{\text { def }}{\Longleftrightarrow}$ not satellite.
- \mathcal{H}_{0} : the main hyperbolic component
($0 \in \mathcal{H}_{0}$, period=1)

Self-similarity

Theorem 1

For every hyperbolic component $\mathcal{H} \in \operatorname{int} \mathcal{M}_{d}$ of period p, there exists a "baby Multibrot set" centered at \mathcal{H}; more precisely, there exist

- $M(\mathcal{H}) \subset \mathcal{M}_{d}$ and
- $\exists \chi_{\mathcal{H}}: M(\mathcal{H}) \rightarrow \mathcal{M}_{d}$: a homeomorphism

such that

- $\mathcal{H} \subset M(\mathcal{H})$ and $\chi_{\mathcal{H}}(\mathcal{H})=\mathcal{H}_{0}$.
- For every $c \in M(\mathcal{H})$ (except the root for satellite \mathcal{H}), f_{c} is renormalizable of period p; i.e., there exists a polynomial-like restriction $f_{c}^{p}: U_{c}^{\prime} \rightarrow U_{c}$ of degree d with connected filled Julia set.
- The renormalization $f_{c}^{P}: U_{c}^{\prime} \rightarrow U_{c}$ is hybrid equivalent to $f_{\chi \mathcal{H}(c)}$.

Straightenings and tunings

The map $\chi_{\mathcal{H}}: M(\mathcal{H}) \rightarrow \mathcal{M}_{d}$ is called the straightening map, and the inverse operation is called tuning:

$$
\mathcal{M}_{d} \ni c^{\prime} \mapsto c=\mathcal{H} * c^{\prime}:=\chi_{\mathcal{H}}^{-1}(c)
$$

Roughly speaking, the filled Julia set of f_{c} can be obtained by replacing the closure of each Fatou component for $K\left(f_{c_{0}}\right)$ for $c_{0} \in \mathcal{H}$ by the filled Julia set of $K\left(f_{c^{\prime}}\right)$.

Satellites

For each hyperbolic component \mathcal{H} of period p, We can associate the multiplier map

$$
\lambda_{p}: \mathcal{H}_{0} \ni c \mapsto \lambda\left(f_{c}\right):=\left(f_{c}^{p}\right)^{\prime}\left(x_{c}\right) \in \mathbb{D}:=\{|z|<1\}
$$

where x_{c} is an attracting periodic point for f_{c}.
The multiplier map is a branched covering of degree $d-1$, branched only at the center $\lambda_{p}^{-1}(0)$ and extends continuously to the closure $\overline{\mathcal{H}} \rightarrow \overline{\mathbb{D}}$.

For each

$$
c \in \partial \mathcal{H} \text { with } \lambda_{p}(c)=e^{2 \pi i m / q}, \quad(m / q \in \mathbb{Q} / \mathbb{Z}, m \neq 0)
$$

there exists a unique hyperbolic component $\mathcal{H}^{\prime} \neq \mathcal{H}$ such that $c \in \partial \mathcal{H}^{\prime}$. We say \mathcal{H}^{\prime} is a satellite attached to \mathcal{H} with internal angle m^{\prime} / q.
There are $d-1$ satellites of internal angle m^{\prime} / p.

Satellites: Cubic Multibrot set

Satellites: 1/3-satellite \mathcal{H}_{3}

Satellites: 1/4-satellite of 1/3-satellite $\mathcal{H}_{3} * \mathcal{H}_{4}$

Satellites: $\mathcal{H}_{3} * \mathcal{H}_{4} * \mathcal{H}_{5}$

Dynamics in a satellite hyperbolic component

Let \mathcal{H}_{q} be the satellite attached to \mathcal{H}_{0} with internal angle $1 / q$, closest to the positive real axis $(q>1)$.

For simplicity, we only consider hyperbolic components obtained by tuning of \mathcal{H}_{q} 's.
Let $c \in M\left(\mathcal{H}_{q}\right)$. Then f_{c} has a fixed point x_{1} of rotation number $1 / q$. The external ray of angle $1 /\left(2^{q}-1\right)$ lands at x_{1}.
Let $K_{1} \subset K\left(f_{c}\right)$ be the filled Julia set of the renormalization $f_{c}^{q}: U_{c}^{\prime} \rightarrow U_{c}$.
Then $x_{1} \in K_{1}$.
By the Yoccoz inequality, if q is sufficiently large, then x_{1} is arbitrarily close to another fixed point x_{0}, which is the landing point of $R_{f_{c}}(0)$.

Satellites: 1/3-satellite \mathcal{H}_{3}

Satellites: 1/4-satellite \mathcal{H}_{4}

Satellites: $1 / 10$-satellite \mathcal{H}_{10}

Satellites: 1/100-satellite \mathcal{H}_{100}

"1/ ∞-satellite"

As $q \rightarrow \infty, M\left(\mathcal{H}_{q}\right)$ converges to $c=\frac{2}{\sqrt{3}}$, for which f_{c} has a parabolic fixed point.

For a finite sequence $\left(q_{1}, \ldots, q_{n}\right)$ with $q_{k} \geq 2$, let

$$
\begin{aligned}
\mathcal{H}_{\left(q_{1}, q_{2}, \ldots, q_{n}\right)} & :=\mathcal{H}_{q_{1}} * \mathcal{H}_{q_{2}} * \cdots * \mathcal{H}_{q_{n}} \\
& =\chi_{\mathcal{H}_{q_{1}}}^{-1} \circ \cdots \circ \chi_{\mathcal{H}_{q_{n-1}}}^{-1}\left(\mathcal{H}_{q_{n}}\right) .
\end{aligned}
$$

For $c \in M\left(\mathcal{H}_{\left(q_{1}, \ldots, q_{n}\right)}\right)$ and $1 \leq k \leq n$, let K_{k} be the filled Julia set of k-th (simple) renormalization for f_{c} of period

$$
p_{k}:=q_{1} \ldots q_{k}
$$

and let $x_{k} \in K_{k}$ be the periodic point of period p_{k-1}.
For a small $\varepsilon>0$, if the sequence $\left(q_{1}, \ldots, q_{n}\right)$ glows sufficiently fast, then

$$
\left|x_{k}-x_{k-1}\right|<\frac{\varepsilon}{2^{k}}, \quad\left|x_{0}-x_{n}\right|<\varepsilon
$$

Fibers and combinatorial classes

Following Milnor, Sørensen, Pérez-Marco

Consider an infinite sequence $\underline{\boldsymbol{q}}=\left(q_{1}, q_{2}, \ldots, q_{n}, \ldots\right)$ and let $\underline{\boldsymbol{q}}_{n}=\left(q_{1}, \ldots, q_{n}\right)$. Let us consider the fiber

$$
M_{\underline{\boldsymbol{q}}}=\bigcap_{n} M\left(\mathcal{H}_{\underline{\boldsymbol{q}}_{n}}\right)
$$

in \mathcal{M}_{d} associated to \underline{q}.
By the above argument, we have the following:

Theorem 2

If q_{n} tends to infinity sufficiently fast as $n \rightarrow \infty$, then $\bigcap_{n} K_{n}$ is not a singleton for $c \in M_{\boldsymbol{q}}$.
In particular, $K\left(f_{c}\right)$ is not locally connected.
The set $\bigcap_{n} K_{n}$ is the fiber in $K\left(f_{c}\right)$ containing 0 .

Fibers and local connectivity

More generally, fibers are defined as follows:
For $K=\mathcal{M}_{d}$ or $K\left(f_{c}\right)\left(c \in \mathcal{M}_{d}\right)$, we say $z, z^{\prime} \in K$ are separated if there exists two external rays of rational angles landing at the same point such that z and z^{\prime} lie in different complementary component of the union of the rays and their common landing point.
A fiber is the maximal set of points which are not separated from each other.

Conjecture

The Multibrot set \mathcal{M}_{d} is locally connected.
In particular, every infinitely renormalizable fiber in \mathcal{M}_{d} is conjecturally trivial (a singleton).

The cubic connectedness locus

Now consider the cubic family

$$
f_{a, b}(z)=z^{3}-3 a^{2} z+b, \quad(a, b) \in \mathbb{C}^{2}
$$

Let

$$
\mathcal{C}_{3}=\left\{(a, b) ; K\left(f_{a, b}\right) \text { is connected }\right\}
$$

be the cubic connectedness locus.
We identify the slice $\{a=0\}$ with the cubic unicritical family, so

$$
\mathcal{C}_{3} \cap\{a=0\}=\mathcal{M}_{3}, \quad f_{c}(z)=f_{0, c}(z)=z^{3}+c
$$

Rational lamination and combinatorial renormalization

For $(a, b) \in \mathcal{C}_{3}$, let $\lambda\left(f_{a, b}\right)$ be the rational lamination of $f_{a, b}$. Namely, it is an equivalence relation \mathbb{Q} / \mathbb{Z} and t and s are equivalent if $R_{f_{a, b}}(t)$ and $R_{f_{a, b}}(s)$ land at the same point.
For $\underline{\boldsymbol{q}}=\left(q_{1}, q_{2}, \ldots\right)$, let

$$
\lambda\left(\mathcal{H}_{\underline{\boldsymbol{q}}_{n}}\right):=\lambda\left(f_{c}\right),
$$

which is independent of the choice of $c \in \mathcal{H}_{\boldsymbol{q}_{n}}$. Let

$$
\mathcal{C}\left(\mathcal{H}_{\underline{\boldsymbol{q}}_{n}}\right):=\left\{(a, b) \in \mathcal{C}_{3} ; \lambda\left(f_{a, b}\right) \supset \lambda\left(\mathcal{H}_{\boldsymbol{q}_{n}}\right)\right\} .
$$

be the set of combinatorially renormalizable parameters with combinatorics defined by $\underline{\boldsymbol{q}}_{n}$.

Fact

$$
\mathcal{C}\left(\mathcal{H}_{\left.{\underline{\boldsymbol{q}_{n}}}\right) \cap\{a=0\}=M\left(\mathcal{H}_{\underline{\boldsymbol{q}}_{n}}\right)}\right.
$$

Main result

Let

$$
\mathcal{C}_{\underline{\boldsymbol{q}}}=\bigcap_{n=1}^{\infty} \mathcal{C}\left(\mathcal{H}_{\left.{\underline{\boldsymbol{q}_{n}}}\right) .}\right.
$$

Theorem 3

If q_{1}, q_{2}, \ldots are sufficiently large and tends to infinity sufficiently fast as $n \rightarrow \infty$, then there exists $(a, b) \in \mathcal{C}_{\boldsymbol{q}}$ such that

- $f_{a, b}$ has two distinct critical points ω and ω^{\prime}.
- ω, ω^{\prime} lie in the same fiber $\bigcap_{n} K_{n}$, where K_{n} is the filled Julia set of n-th renormalization $f_{a, b}^{p_{n}}: U_{n}^{\prime} \rightarrow U_{n}$.
- ω is recurrent, but ω^{\prime} is not.

Cor 4

$\mathcal{C}_{\boldsymbol{q}}$ is non-trivial. Moreover, it contains a continuum.
(cf. Henriksen: Non-trivial fiber for infinitely renormalizable combinatorics of capture type.)

Construction

For $q \geq 2$, let $g_{q} \in \mathcal{C}\left(\mathcal{H}_{q}\right)$ be such that the fixed point x_{1} of rotation number $1 / q$ is parabolic and there exists a critical point ω^{\prime} satisfies

$$
g_{q}\left(\omega^{\prime}\right)=x_{1}
$$

Lemma 5

$g_{\infty}:=\lim _{q \rightarrow \infty} g_{q}$ is affinely conjugate to $z(z+1)^{2}$.
(Julia sets for $g_{q} \mathrm{w} /$ attr. per pt)

The Julia set of $g_{q}, q=3$

(perturbed slightly to have an attracting cycle)

The Julia set of $g_{q}, q=4$

(perturbed slightly to have an attracting cycle)

The Julia set of $g_{q}, q=10$

(perturbed slightly to have an attracting cycle)

The Julia set of $g_{q}, q=100$

 (perturbed slightly to have an attracting cycle)

The Julia set of $g_{\infty}=\lim g_{q}$,

Construction (cont'd)

For $\underline{\boldsymbol{q}}=\left(q_{1}, q_{2}, \ldots\right)$, and $n \geq 2$, let $g_{\boldsymbol{q}_{n}} \in \mathcal{C}\left(\mathcal{H}_{\underline{q}_{n}}\right)$ be such that ($n-1$)-st renormalization of $g_{\underline{q}_{n}}$ is hybrid equivalent to $g_{q_{n}}$.

Lemma 6

1. The periodic point x_{n} of period $p_{n-1}\left(=q_{1} \ldots q_{n-1}\right)$ of rotation number $1 / q_{n}$ in the small filled Julia set K_{n-1} is parabolic.
2. There exists a critical point $\omega^{\prime} \in K_{n-1}$ such that

$$
g_{{\underline{\boldsymbol{q}_{n}}}_{n}}\left(\omega^{\prime}\right)=g_{\underline{\underline{q}}_{n}}\left(x_{n}\right)
$$

3. $\operatorname{Fix} q_{1}, \ldots, q_{n-1}$. Then

$$
\lim _{q_{n} \rightarrow \infty} g_{\underline{q}_{n}}=g_{\underline{q}_{n-1}}
$$

The Julia set of $g_{3,3}$

(perturbed slightly to have an attracting cycle)

The Julia set of $\boldsymbol{g}_{3,4}$

(perturbed slightly to have an attracting cycle)

The Julia set of $g_{3,10}$

(perturbed slightly to have an attracting cycle)

The Julia set of $g_{3,100}$

(perturbed slightly to have an attracting cycle)

The Julia set of $g_{3}=\lim g_{3, q}$

Construction (cont'd)

Consider a subsequential limit g of $\left\{g_{q_{n}}\right\}_{n \in \mathbb{N}}$.
Lemma 7

1. $g \in \mathcal{C}_{q}$.
2. g is infinitely renormalizable.
3. The critical points $\omega, \omega^{\prime} \in \bigcap_{n} K_{n}$.

Furthermore, if $q_{n} \rightarrow \infty$ sufficiently fast, then
4. $\omega \neq \omega^{\prime}$, hence the fiber $\bigcap_{n} K_{n}$ is non-trivial.
5. g is infinitely renormalizable in the sense of near-parabolic renormalization (l-Shishikura).
6. The domain of definition of each near-parabolic renormalization contains ω but not ω^{\prime}.

Non-trivial fiber in the cubic connectedness locus

The fiber $\mathcal{C}_{\boldsymbol{q}}$ is non-trivial because a non-unicritical map g and a unicritical map in $M_{\underline{q}}$ both lie in $\mathcal{C}_{\boldsymbol{q}}$.
Furthermore, for each n, there exists a path $\gamma_{\underline{\boldsymbol{q}}_{n}}$ connecting $g_{\boldsymbol{q}_{n}}$ and $\mathcal{H}_{\underline{\underline{q}}_{n}}$ in $\mathcal{C}\left(\mathcal{H}_{\underline{\underline{q}}_{n}}\right)$.

Theorem 8

Let $n \geq 3$. For any convergent sequence in $\mathcal{C}\left(\mathcal{H}_{\boldsymbol{q}_{n}}\right)$, the limit lies in $\mathcal{C}\left(\mathcal{H}_{\boldsymbol{q}_{n-2}}\right)$.
In particular, for any convergent sequence $\left\{f_{n}\right\}$ with
$f_{n} \in \mathcal{C}\left(\mathcal{H}_{\underline{q}_{n}}\right)$, the limit lies in $\mathcal{C}_{\underline{\boldsymbol{q}}}$ and is infinitely renormalizable..
Therefore, the derived set

is a continuum contained in $\mathcal{C}_{\underline{q}}$.

