An example of an infinitely renormalizable cubic polynomial and its combinatorial class

Hiroyuki Inou (稲生 啓行)

Department of Mathematics, Kyoto University

Holomorphic dynamics and related fields SCMS (上海数学中心) September 26, 2019

The unicritical family and the Multibrot set

For $d \ge 2$, consider the *unicritical family*

$$f_c(z) = z^d + c, \quad c \in \mathbb{C}.$$

Its connectedness locus

$$\mathcal{M}_d = \{ c \in \mathbb{C}; \ K(f_c) \text{ is connected} \}$$

is called the *Multibrot set* of degree *d*. We often identify $c \in M_d$ with the corresponding map f_c .

Hyperbolicity

- ► A map $f_c \in M_d$ is *hyperbolic* $\stackrel{\text{def}}{\longleftrightarrow} f_c$ has an attracting cycle.
- A hyperbolic component in M_d := a connected component of the set of hyperbolic maps in M_d (open set).
- ► The *period* of a hyperbolic component H := the period of the (unique) attracting cycle for f_c ∈ H (independent of the choice of f_c).
- ► \mathcal{H} : satellite $\stackrel{\text{def}}{\iff} \mathcal{H}$ has a common boundary point with another hyperbolic component \mathcal{H}' of lower period.
- \mathcal{H} : *primitive* $\stackrel{\text{def}}{\iff}$ not satellite.
- *H*₀: the main hyperbolic component (0 ∈ *H*₀, period=1)

Theorem 1

For every hyperbolic component $\mathcal{H} \in \operatorname{int} \mathcal{M}_d$ of period p, there exists a "baby Multibrot set" centered at \mathcal{H} ; more precisely, there exist

• $M(\mathcal{H}) \subset \mathcal{M}_d$ and

►
$$\exists \chi_{\mathcal{H}} : M(\mathcal{H}) \rightarrow \mathcal{M}_d$$
: a homeomorphism

such that

- $\mathcal{H} \subset M(\mathcal{H})$ and $\chi_{\mathcal{H}}(\mathcal{H}) = \mathcal{H}_0$.
- For every c ∈ M(H) (except the root for satellite H), f_c is renormalizable of period p; i.e., there exists a polynomial-like restriction f^p_c : U'_c → U_c of degree d with connected filled Julia set.
- The renormalization $f_c^P : U'_c \to U_c$ is hybrid equivalent to $f_{\chi_H(c)}$.

The map $\chi_{\mathcal{H}} : M(\mathcal{H}) \to \mathcal{M}_d$ is called the *straightening map*, and the inverse operation is called *tuning*:

$$\mathcal{M}_{d} \ni \boldsymbol{c}' \mapsto \boldsymbol{c} = \mathcal{H} \ast \boldsymbol{c}' := \chi_{\mathcal{H}}^{-1}(\boldsymbol{c}).$$

Roughly speaking, the filled Julia set of f_c can be obtained by replacing the closure of each Fatou component for $K(f_{c_0})$ for $c_0 \in \mathcal{H}$ by the filled Julia set of $K(f_{c'})$.

Satellites

For each hyperbolic component \mathcal{H} of period p, We can associate the *multiplier map*

$$\lambda_{\rho}: \mathcal{H}_0 \ni \boldsymbol{c} \mapsto \lambda(f_{\boldsymbol{c}}) := (f_{\boldsymbol{c}}^{\rho})'(\boldsymbol{x}_{\boldsymbol{c}}) \in \mathbb{D} := \{|\boldsymbol{z}| < 1\},$$

where x_c is an attracting periodic point for f_c .

The multiplier map is a branched covering of degree d-1, branched only at the *center* $\lambda_p^{-1}(0)$ and extends continuously to the closure $\overline{\mathcal{H}} \to \overline{\mathbb{D}}$.

For each

$$c\in\partial\mathcal{H}$$
 with $\lambda_{
ho}(c)=e^{2\pi im/q},\quad(m/q\in\mathbb{Q}/\mathbb{Z},\ m
eq0),$

there exists a unique hyperbolic component $\mathcal{H}' \neq \mathcal{H}$ such that $c \in \partial \mathcal{H}'$. We say \mathcal{H}' is a **satellite attached** to \mathcal{H} with **internal angle** m'/q. There are d - 1 satellites of internal angle m'/p.

Satellites: Cubic Multibrot set

Satellites: 1/3-satellite \mathcal{H}_3

Satellites: 1/4-satellite of 1/3-satellite $\mathcal{H}_3 * \mathcal{H}_4$

Satellites: $\mathcal{H}_3 * \mathcal{H}_4 * \mathcal{H}_5$

Let \mathcal{H}_q be the satellite attached to \mathcal{H}_0 with internal angle 1/q, closest to the positive real axis (q > 1).

For simplicity, we only consider hyperbolic components obtained by tuning of \mathcal{H}_q 's.

Let $c \in M(\mathcal{H}_q)$. Then f_c has a fixed point x_1 of rotation number 1/q. The external ray of angle $1/(2^q - 1)$ lands at x_1 . Let $K_1 \subset K(f_c)$ be the filled Julia set of the renormalization $f_c^q : U'_c \to U_c$. Then $x_1 \in K_1$.

By the Yoccoz inequality, if *q* is sufficiently large, then x_1 is arbitrarily close to another fixed point x_0 , which is the landing point of $R_{f_c}(0)$.

Satellites: 1/3-satellite \mathcal{H}_3

Satellites: 1/4-satellite H₄

Satellites: 1/10-satellite \mathcal{H}_{10}

Satellites: 1/100-satellite H₁₀₀

As $q \to \infty$, $M(\mathcal{H}_q)$ converges to $c = \frac{2}{\sqrt{3}}$, for which f_c has a parabolic fixed point.

For a finite sequence (q_1, \ldots, q_n) with $q_k \ge 2$, let

$$\mathcal{H}_{(q_1,q_2,\ldots,q_n)} := \mathcal{H}_{q_1} * \mathcal{H}_{q_2} * \cdots * \mathcal{H}_{q_n}$$
$$= \chi_{\mathcal{H}_{q_1}}^{-1} \circ \cdots \circ \chi_{\mathcal{H}_{q_{n-1}}}^{-1} (\mathcal{H}_{q_n}).$$

For $c \in M(\mathcal{H}_{(q_1,...,q_n)})$ and $1 \le k \le n$, let K_k be the filled Julia set of *k*-th (simple) renormalization for f_c of period

$$p_k := q_1 \dots q_k$$

and let $x_k \in K_k$ be the periodic point of period p_{k-1} .

For a small $\varepsilon > 0$, if the sequence (q_1, \ldots, q_n) glows sufficiently fast, then

$$|x_k-x_{k-1}|<\frac{\varepsilon}{2^k}, \qquad |x_0-x_n|<\varepsilon.$$

Fibers and combinatorial classes

Following Milnor, Sørensen, Pérez-Marco

Consider an infinite sequence $\underline{q} = (q_1, q_2, \dots, q_n, \dots)$ and let $\underline{q}_n = (q_1, \dots, q_n)$. Let us consider the *fiber*

$$M_{\underline{q}} = \bigcap_{n} M(\mathcal{H}_{\underline{q}_{n}}).$$

in \mathcal{M}_d associated to \boldsymbol{q} .

By the above argument, we have the following:

Theorem 2

If q_n tends to infinity sufficiently fast as $n \to \infty$, then $\bigcap_n K_n$ is not a singleton for $c \in M_q$. In particular, $K(f_c)$ is not locally connected.

The set $\bigcap_n K_n$ is the *fiber* in $K(f_c)$ containing 0.

More generally, fibers are defined as follows:

For $K = M_d$ or $K(f_c)$ ($c \in M_d$), we say $z, z' \in K$ are **separated** if there exists two external rays of rational angles landing at the same point such that z and z' lie in different complementary component of the union of the rays and their common landing point.

A *fiber* is the maximal set of points which are not separated from each other.

Conjecture

The Multibrot set \mathcal{M}_d is locally connected.

In particular, every infinitely renormalizable fiber in \mathcal{M}_d is conjecturally trivial (a singleton).

Now consider the cubic family

$$f_{a,b}(z)=z^3-3a^2z+b, \quad (a,b)\in \mathbb{C}^2.$$

Let

 $C_3 = \{(a, b); K(f_{a,b}) \text{ is connected}\}$

be the cubic connectedness locus.

We identify the slice $\{a = 0\}$ with the cubic unicritical family, so

$$C_3 \cap \{a = 0\} = \mathcal{M}_3, \qquad f_c(z) = f_{0,c}(z) = z^3 + c.$$

Rational lamination and combinatorial renormalization

For $(a, b) \in C_3$, let $\lambda(f_{a,b})$ be the *rational lamination* of $f_{a,b}$. Namely, it is an equivalence relation \mathbb{Q}/\mathbb{Z} and t and s are equivalent if $R_{f_{a,b}}(t)$ and $R_{f_{a,b}}(s)$ land at the same point.

For
$$\underline{\boldsymbol{q}} = (\boldsymbol{q}_1, \boldsymbol{q}_2, \dots)$$
, let

$$\lambda(\mathcal{H}_{\underline{q}_n}) := \lambda(f_c),$$

which is independent of the choice of $c \in \mathcal{H}_{\underline{q}_n}$.

Let

$$\mathcal{C}(\mathcal{H}_{\underline{\boldsymbol{q}}_n}) := \{(\boldsymbol{a}, \boldsymbol{b}) \in \mathcal{C}_3; \ \lambda(f_{\boldsymbol{a}, \boldsymbol{b}}) \supset \lambda(\mathcal{H}_{\underline{\boldsymbol{q}}_n})\}.$$

be the set of **combinatorially renormalizable** parameters with combinatorics defined by \boldsymbol{q}_{n} .

Fact

$$\mathcal{C}(\mathcal{H}_{\underline{q}_n}) \cap \{a = 0\} = M(\mathcal{H}_{\underline{q}_n}).$$

Main result

Let

$$C_{\underline{q}} = \bigcap_{n=1}^{\infty} C(\mathcal{H}_{\underline{q}_n}).$$

Theorem 3

If $q_1, q_2, ...$ are sufficiently large and tends to infinity sufficiently fast as $n \to \infty$, then there exists $(a, b) \in C_q$ such that

- $f_{a,b}$ has two distinct critical points ω and ω' .
- ω, ω' lie in the same fiber $\bigcap_n K_n$, where K_n is the filled Julia set of *n*-th renormalization $f_{a,b}^{p_n} : U'_n \to U_n$.
- ω is recurrent, but ω' is not.

Cor 4

 C_q is non-trivial. Moreover, it contains a continuum.

(cf. Henriksen: Non-trivial fiber for infinitely renormalizable combinatorics of capture type.)

For $q \ge 2$, let $g_q \in C(\mathcal{H}_q)$ be such that the fixed point x_1 of rotation number 1/q is parabolic and there exists a critical point ω' satisfies

$$g_q(\omega') = x_1.$$

(Julia sets for g_q w/ attr. per pt)

The Julia set of $g_{\infty} = \lim g_q$,

For $\underline{q} = (q_1, q_2, ...)$, and $n \ge 2$, let $g_{\underline{q}_n} \in \mathcal{C}(\mathcal{H}_{\underline{q}_n})$ be such that (n-1)-st renormalization of $g_{\underline{q}_n}$ is hybrid equivalent to g_{q_n} .

Lemma 6

- **1.** The periodic point x_n of period $p_{n-1}(=q_1 \dots q_{n-1})$ of rotation number $1/q_n$ in the small filled Julia set K_{n-1} is parabolic.
- **2.** There exists a critical point $\omega' \in K_{n-1}$ such that

$$g_{\underline{\boldsymbol{q}}_n}(\omega') = g_{\underline{\boldsymbol{q}}_n}(x_n).$$

3. Fix q_1, \ldots, q_{n-1} . Then

$$\lim_{q_n\to\infty}g_{\underline{q}_n}=g_{\underline{q}_{n-1}}$$

The Julia set of g_{3,3}

The Julia set of g_{3,4}

The Julia set of $g_{3,10}$

The Julia set of g_{3,100}

The Julia set of $g_3 = \lim g_{3,q}$

Consider a subsequential limit g of $\{g_{q_n}\}_{n \in \mathbb{N}}$.

Lemma 7

- 1. $g \in C_{\underline{q}}$.
- **2.** *g* is infinitely renormalizable.
- **3.** The critical points $\omega, \omega' \in \bigcap_n K_n$.

Furthermore, if $q_n \rightarrow \infty$ sufficiently fast, then

- **4.** $\omega \neq \omega'$, hence the fiber $\bigcap_n K_n$ is non-trivial.
- **5.** *g* is infinitely renormalizable in the sense of near-parabolic renormalization (I-Shishikura).
- 6. The domain of definition of each near-parabolic renormalization contains ω but not ω' .

Non-trivial fiber in the cubic connectedness locus

The fiber $C_{\underline{q}}$ is non-trivial because a non-unicritical map g and a unicritical map in $M_{\underline{q}}$ both lie in $C_{\underline{q}}$. Furthermore, for each n, there exists a path $\gamma_{\underline{q}_n}$ connecting $g_{\underline{q}_n}$ and $\mathcal{H}_{\underline{q}_n}$ in $C(\mathcal{H}_{\underline{q}_n})$.

Theorem 8

Let $n \geq 3$. For any convergent sequence in $\mathcal{C}(\mathcal{H}_{\underline{q}_n})$, the limit lies in $\mathcal{C}(\mathcal{H}_{\underline{q}_{n-2}})$. In particular, for any convergent sequence $\{f_n\}$ with $f_n \in \mathcal{C}(\mathcal{H}_{\underline{q}_n})$, the limit lies in $\mathcal{C}_{\underline{q}}$ and is infinitely renormalizable..

Therefore, the derived set

$$\bigcap_{N} \bigcup_{n \ge N} \gamma_n$$

is a continuum contained in C_q .