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Abstract
Renormalization can be considered as an operator extracting from a given poly-

nomial a skew map on ZN×C over k → (k+1) on ZN whose restriction on each �ber
is a polynomial. By using a quasiconformal surgery, we construct some inverse
branches of this renormalization operator. Namely, from a given N-polynomial
with �berwise connected Julia sets, gluing N-sheets of the complex plane together
and construct a polynomial having a renormalization of period N which is hybrid
equivalent to it and whose small �lled Julia sets have a repelling �xed point of the
constructed polynomial.

1 Introduction
In this paper, we introduce a new method to construct a new polynomial from given
polynomials by quasiconformal surgery. This construction, which we call �rotatory
intertwining surgery�, is considered as an inverse branch of renormalization.

Roughly speaking, a renormalization of period N for a polynomial f is a polynomial-
like restriction f N : U → V with connected �lled Julia set (the precise de�nition is
given in Section 2). In this paper, we decompose a renormalization f N : U → V into
N restrictions of f and consider it as an N-tuple of proper maps ( f : Uk → Vk+1)k∈ZN

such that Uk is a relatively compact subset of Vk and that its �lled Julia set is �berwise
connected (that is, the �lled Julia set on each Vk is connected). Then it is uniquely (up
to affine conjugacy) hybrid equivalent to some N-tuple of polynomials G = (Gk)k∈ZN

which acts on ZN × C by G(k, z) = (k + 1,Gk(z)).
On the contrary, for a given N-tuple of polynomials G = (Gk)k∈ZN with �berwise

connected �lled Julia set, can we construct a polynomial f having a renormalization of
period N hybrid equivalent to G?
∗Partially supported by JSPS Research Fellowship for Young Scientists.
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Such f is not unique. For example, consider three polynomials:

f1(z) = z2 − 0.1225611... + 0.7448617... i,
f2(z) = z2 − 1.754877...,
f3(z) = z3 + (−0.5178286... + 0.396073... i) z − 0.3177042... − 0.5544967... i.

Then fk has a period three renormalization hybrid equivalent to (z2, z, z) for k = 1, 2, 3.

Figure 1: The Julia sets of f1, f2, and f3.

In this paper, we only treats the case like f1. More precisely, we construct a polynomial
having a renormalization hybrid equivalent to given G = (G0, . . . ,GN−1) whose �lled
Julia set contains a �xed point of this polynomial, and no critical point outside the �lled
Julia set of the renormalization.

The idea of construction is based on the intertwining surgery [EY], but we cycli-
cally rotate sectors by the map de�ned on them. And its uniqueness follows from the
combinatorial property and the fact that the set of points in the Julia set whose for-
ward orbit does not hit the Julia set of the renormalization has zero Lebesgue measure
(Theorem 5.1).

We can also consider renormalization as an operator from some subset of the con-
nectedness locus of a family of polynomials to the connected locus of another family of
polynomials (or tuples of polynomials). It is known that this renormalization operator
is not continuous, when the degree is greater than two [DH]. But our result implies that
it is a bijection when the �lled Julia set of renormalization contains a �xed point. So
this can be considered as a part of the self-similarity of the connectedness locus for a
family of polynomials.

Acknowledgement. I would like to thank Mitsuhiro Shishikura for helpful comments,
especially on the proof of Theorem 5.1. I also thank Akira Kono for valuable sugges-
tion.

2 N-polynomial maps
We �rst give a notion of N-polynomial maps. An N-polynomial map is simply a skew
map from a union of N sheets of the complex plane ZN × C to itself, whose restriction
of each sheet is a polynomial and mapped to the next sheet. We can easily generalize
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the theory on dynamics of usual polynomials to N-polynomial maps. In this section,
we give an overview of its dynamical properties. Furthermore, we consider a renor-
malization of a given polynomial as an N-polynomial-like restriction. So we can also
consider it as the operator extracting an N-polynomial map from a given polynomial.

De�nition. Let N > 0. An N-polynomial map is an N-tuple of polynomials. An N-
polynomial map F = (F0, . . . , FN−1) is considered as a map on ZN × C to itself as
follows:

F(k, z) = (k + 1, Fk(z)).
The �lled Julia set K(F) is the set of all points whose forward orbits by F are

bounded. The Julia set J(F) is the boundary of K(F). The k-th small �lled Julia set is
de�ned by Kk(F) = { z | (k, z) ∈ K(F)} and k-th small Julia set Jk(F) = ∂Kk(F).

C(F) = { (k, z) | Fk(z) = 0} is the set of critical points of F and

P(F) =
⋃

n>0
Fn(C(F))

is called the postcritical set of F.

De�nition. An N-polynomial-like map is an N-tuple of holomorphic proper maps F =

(Fk : Uk → Vk+1)k∈ZN such that:

• Uk and Vk are topological disks in C.

• Uk is a relatively compact subset of Vk.

We also consider an N-polynomial-like map F as a map between disjoint union of
disks:

F :
⊔

k∈ZN

Uk →
⊔

k∈ZN

Vk F|Uk = Fk.

The k-th small �lled Julia set Kk(F) is de�ned by

Kk(F) =
{

z ∈ Uk
∣∣∣ Fn(z) ∈ Un+k

}

and the k-th small Julia set Jk(F) is de�ned by the boundary of Kk(F). The (resp. �lled)
Julia set is de�ned by the disjoint union of the k-th small (resp. �lled) Julia sets. We
say the (�lled) Julia set is �berwise connected if k-th small (�lled) Julia set is connected
for any k.

For an N-polynomial or an N-polynomial-like map F = (Fk), we write

Fn
k = Fk+n−1 ◦ · · · ◦ Fk+1 ◦ Fk,

so that Fn(k, z) = (k + n, Fn
k (z)).

Note that the degree of an N-polynomial map (or an N-polynomial-like map) F is
not well-de�ned (deg(Fk) may be different). So we de�ne the multi-degree of F by
m.deg F = (deg F0, . . . , deg FN−1). The degree of FN is well-de�ned (it is equal to∏ deg(Fk) ). In this paper, we always assume deg FN > 1.
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De�nition. Let F = (Fk : Uk → Vk+1) and G = (Gk : U′k → V ′k+1) be N-polynomial-
like maps. We say F and G are hybrid equivalent if there exist quasiconformal home-
omorphisms φk (k ∈ ZN) between some neighborhoods of Kk(F) and Kk(G) such that
Gk ◦ φk = φk+1 ◦ Fk and ∂̄φk ≡ 0 on Kk(F).

Theorem 2.1 (Straightening theorem for N-polynomial-like maps). For any N-
polynomial-like map F, there exist an N-polynomial map G of the same multi-degree
as F hybrid equivalent to F.

Furthermore, if the Julia set of F is �berwise connected, then G is unique up to
affine conjugacy.

Proof. Let dk = deg Fk and d =
∏ dk(= deg FN). Take a C1-simple closed curve

γk ⊂ Vk \Uk which encloses all critical values of Fk−1 and Kk(F). Then δk = F−1
k (γk+1)

is also a simple closed curve and encloses all critical point of Fk and Kk(F). Let Ak be
the closed annulus between γk and δk. Let Dk be the bounded component of C \ Ak and
Ek = int(Dk ∪ Ak) (note that Ek = Fk−1(Dk−1)).

Fix Rk with Rdk
k > Rk+1 for all k ∈ ZN and let R′k = R1/dk

k+1 . We can take C1-
diffeomorphisms φk : Ak → {R′k ≤ |z| ≤ Rk} (k ∈ ZN) with (φk(z))dk = φk+1 ◦ Fk(z) on
δk. Let σ0 be the standard complex structure and de�ne an almost complex structure σ
on ⊔ Vk by:

σ =



φ∗kσ0 on Ak,

(Fn)∗σ on F−n(⋃ Ak) for some n > 0,
σ0 on K( f ).

Then F∗σ = σ and since φk is quasiconformal and F is holomorphic, σ is of bounded
dilatation ratio, so it is in fact a complex structure by the Riemann mapping theorem.
Let ψk : Vk → C be a quasiconformal map with ψ∗kσ0 = σ. Then �Gk = ψk+1 ◦Fk ◦ψ−1

k :
ψk(Uk) → ψk+1(Vk+1) is holomorphic, ψk ◦ φ−1

k : {R′k ≤ |z| ≤ Rk} → C is conformal,
and �G = ( �G0, . . . , �GN−1) is an N-polynomial-like map hybrid equivalent to F.

For k ∈ ZN , consider a Riemann surface S k = (ψk(Uk)∪ { |z| ≥ R′k} ∪∞)/(ψk ◦ φ−1
k ).

We can identify S k conformally to C̄ = C ∪ {∞}. De�ne a map Gk : S k → S k+1 by

Gk(z) =


Fk(z) if z ∈ ψk(Uk),
zdk if z ∈ { |z| > R′k}.

Then Gk is a polynomial of degree dk. Therefore, the N-polynomial map G = (G0, . . . ,GN−1)
is hybrid equivalent to F.

When the Julia set of F is �berwise connected, uniqueness follows from the fact
that the Teichmüller space of a superattractive basin without critical points other than
the superattractive periodic point is trivial. �

Usually, we consider a renormalization as a polynomial-like map with connected
Julia set which is a restriction of some iterate of a polynomial. But here, we consider it
as an N-polynomial-like map;

De�nition. A polynomial f is renormalizable for period N if there exist disks Uk and
Vk (k ∈ ZN) such that:
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• G = ( f : Uk → Vk+1)k∈ZN is an N-polynomial-like map with �berwise connected
Julia set.

• Uk ∩ Uk′ contains no critical point of f if k , k′.

• When N = 1, U0 does not contain all the critical points of f .

We call G a renormalization of period N.

The small �lled Julia sets of a renormalization are �almost disjoint� (they intersects
only at a repelling periodic orbit [Mc], [In]). So we de�ne the (resp. �lled) Julia set of
a renormalization by the union (not the disjoint union) of the small (resp. �lled) Julia
sets.

We may assume an N-polynomial map F is monic (that is, each Fk is monic). Let
∆ = {|z| < 1}. Easy calculation shows:

Proposition 2.2 (The existence of the Böttcher coordinates). For a given monic N-
polynomial map F, there exist conformal maps ϕk : (C \ ∆) → (C \ Kk(F)) such that
ϕk+1(zdeg Fk ) = Fk ◦ ϕk(z).

In fact, we may take ϕk the Böttcher coordinate for the monic polynomial FN
k =

Fk−1 ◦ · · · ◦ Fk+1 ◦ Fk.
So, we can de�ne external rays for F just as the usual polynomial case.

De�nition. Let F and ϕk as above. The k-th external ray Rk(F; θ) of angle θ for an
N-polynomial map F is de�ned by:

Rk(F; θ) =
{
ϕk(r exp(2πiθ))

∣∣∣ 1 < r < ∞
}
.

If the limit
x = lim

r→1
ϕk(r exp(2πiθ))

exists, then we say Rk(F; θ) lands at x and θ is the landing angle for (k, x).

Let R > 1. We also de�ne

Rk(F; θ,R) =
{
ϕk(r exp(2πiθ))

∣∣∣ 1 < r < ∞
}
,

Rk(F; θ,R, ε) =
{
ϕk(r exp(2πiη))

∣∣∣ 1 < r < ∞, η = θ + ε log r
}
.

If R(F; θ) lands at x, then R(F; θ,R, ε) also converges to x. By the proposition above,

F(Rk(F; θ)) = Rk+1(F; deg(Fk) · θ),
F(Rk(F; θ,R)) = Rk+1(F; deg(Fk) · θ, Rdeg(Fk)),

F(Rk(F; θ,R, ε)) = Rk+1(F; deg(Fk) · θ, Rdeg(Fk), ε).

We say the ray is periodic if Fn(Rk(F; θ)) = Rk(F; θ) for some n > 0. The least such
n is called the period of this ray. Clearly, the period of every periodic ray is divisible
by N.
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Let x = (k, z) be a periodic point of F with period n. If x is repelling or parabolic,
then there are �nite number of rays landing at x and they have same period. Let q
be the number of rays landing at x and let θ1, . . . θq be the angle of these rays ordered
counterclockwise. Since Fn permutes the rays landing at x and it preserves the cyclic
order of them, there exist p such that Fn(Rk(F; θi)) = Fn(Rk(F; θi+p)) for every i ∈ Zq.
We say that the (combinatorial) rotation number of the periodic point x is p/q.

We also consider external rays for an N-polynomial-like map. They are de�ned by
the inverse images of external rays for an N-polynomial map hybrid equivalent to it by
the hybrid conjugacy given in Proposition 2.1.

3 Results
Let F be an N-polynomial map with �berwise connected Julia set and O = { (k, xk) | k ∈
ZN} be a repelling periodic orbit of period N with rotation number p0/q0.

De�nition. We say a polynomial (g, x) with a marked �xed point x is a p-rotatory
intertwining of (F,O) if:

• g has a renormalization of period N hybrid equivalent to F.

• x corresponds to O by the hybrid conjugacy above.

• x has a rotation number p/(Nq0).

• deg(g) =
∑(deg(Fk)−1) + 1. (Equivalently, all critical points of g lie in the �lled

Julia set of the renormalization above.)

Note that the �lled Julia set of such a polynomial is connected.
To construct a p-rotatory intertwining of (F,O), we need some combinatorial prop-

erty of the dynamics near the �xed point x.

De�nition. A 4-tuple of integers (N, p0, q0, p) is admissible if p ≡ p0 mod q0 and p
and N are relatively prime.

Note that the above de�nition also makes sense when N and q0 are integers, p0 ∈
Zq0 and p ∈ ZNq0 . The following proposition is easy:

Proposition 3.1. If a p-rotatory intertwining of (F,O) exists, then (N, p0, q0, p) is ad-
missible.

Theorem 3.2. Let F be an N-polynomial map with �berwise connected Julia set and
O = {(k, xk)} is a repelling periodic orbit of period N with rotation number p0/q0.

When an integer p satis�es that (N, p0, q0, p) is admissible, then there exists a p-
rotatory intertwining (g, x) of (F,O) and it is unique up to affine conjugacy.

The following two sections are devoted to prove this theorem.
LetMD(p/q,N) be the set of all pairs (F,O), where F is a N-polynomial map of

multi-degree D = (d0, . . . , dN−1) with connected �lled Julia sets and O is a repelling
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periodic point of period N with rotation number p/q. LetMd(p/q) =M(d)(p/q, 1). By
the theorem above, we can de�ne the map

MD(p0/q0) 3 (F,O) 7→ (g, x) ∈ Md(p/q0).

The following corollary is easy to prove.

Corollary 3.3. When (N, p0, q0, p) is admissible, the map (F,O) 7→ (g, x) is a bijection
MD(p0/q0,N) into its image, which is a subset ofMd(p/(Nq0)), where d =

∏ dk. Its
inverse is given by renormalization.

4 Construction
In this section, we prove the existence part of Theorem 3.2. We use the idea of the
intertwining surgery [EY].

Let (F,O) be an N-polynomial map with a marked periodic point satisfying the
assumption of Theorem 3.2. Fix R > 0 and let

Vk =
{

(k, z)
∣∣∣ |ϕk(z)| < R

}
∪ Kk(F)

and Uk = F−1
k (Vk+1). Let V =

⊔ Vk and U =
⊔ Uk. Then (Fk : Uk → Vk+1) is an

N-polynomial-like map (we also use the word F for it and simply write F : U → V).
Let θ0, . . . , θq0−1 be all the external angles for (0, x0) ordered counterclockwise.
Let ε > 0 and 0 < δ < ε/(2N). For 0 ≤ k < N and l ∈ Zq0 , consider arcs

γ0(k + Nl) = R0

(
F; θk,R,

(
k
N −

1
2

)
ε

)
,

γ±0 (k + Nl) = R0

(
F; θk,R,

(
k
N −

1
2

)
ε ± δ

)
.

When ε is sufficiently small, these arcs are mutually disjoint. For j ∈ ZNq0 , let

γk( j) = Fk(γk−1( j − p) ∩ Uk−1),
γ±k ( j) = Fk(γ±k−1( j − p) ∩ Uk−1) (1)

for k = 1, . . . ,N − 1. Let S k( j) (resp. Lk( j)) be the open sector in Vk between γk( j − 1)
and γk( j) (resp. γ+

k ( j − 1) and γ−k ( j)).
Then, since the rotation number of x0 for FN

0 is p0/q0, we can easily verify FN
0 (γ0( j)∩

F−N
0 (V0)) = γ0( j + N p0). Therefore, by the assumption that (N, p0, q0, p) is admissible,

FN−1(γN−1( j − p) ∩ UN−1) = FN
0 (γ0( j − N p) ∩ F−N−1

0 (UN−1))
= γ0( j − N p + N p0)
= γ0( j).

This equation also holds for γ±k instead of γk. Therefore, the equation (1) holds for any
k ∈ ZN .
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γ0(Nq0 − 1)

γ0(0)

γ0(1)

γ0(2)

γ0(N − 2)γ0(N − 1)γ0(N)

S 0(0)

S 0(1)

S 0(2)

S 0(N)

x0J( f )

Lk( j)

γk( j)

γk( j − 1)

γ+
k ( j − 1)

γ−k ( j)

xk

S k( j)

Figure 2: Sectors.

Since O is repelling, F is linearizable at O. Namely, there are a neighborhood Ok of
xk and a map ψk : Ok → C for each k such that ψk(xk) = 0 and ψk+1 ◦ Fk(z) = λk · ψk(z)
on O′k, where λk = F′k(xk) and O′k is the component of F−1

k (Ok+1) containing xk.
For each j ∈ ZNq0 , the quotient space (Lk( j) ∩ Ok)/FNq0

k is an annulus of �nite
modulus. So we denote the modulus of this quotient annulus by mod Lk( j). Since Fk
maps Lk( j)∩O′k univalently to Lk+1( j+ p)∩Ok+1, we have mod Lk( j) = mod Lk+1( j+ p).

We want to identify N disks V0, . . . ,VN−1 quasiconformally and de�ne a quasireg-
ular map on it. Before doing this, we deform the N-polynomial-like map F : U → V
by some hybrid conjugacy.

Lemma 4.1. There exists an N-polynomial-like map �F = ( �Fk : �Uk → �Vk+1)k∈ZN hybrid
equivalent to F such that the sector �Lk( j) which corresponds to Lk( j) satis�es that

mod �Lk( j) = mod �Lk′( j)

for any k, k′ ∈ ZN and j ∈ ZNq0 .

Proof. For l ∈ Zq0 , let Al be an annulus with mod Al = ml = mod L0(lN). For k =

1, . . . ,N − 1, take a quasiconformal homeomorphism

ρl,k : (L0(lN) ∩ O0)/FNq0
0 → Al.

Since FN
0 induces a conformal isomorphism (FN

0 )∧ between L0(lN + pk)/FNq0
0 and

L0((l + p)N + pk)/FNq0
0 , we can choose ρl,k so that

ρl+p,k ◦ FN
0 = ρl,k. (2)

De�ne a complex structure σ on L0(lN + pk) by pulling back by ρl,k and lifting
the standard complex structure σ0 on Al. Note that, since (N, p0, q0, p) is admissible,
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L0(lN + pk) does not intersect the �lled Julia set and we can push forward a complex
structure on (L0(lN + pk))∩O0 to entire L0(lN + pk) by FNq0

0 . By (2), σ is FN
0 -invariant.

The modulus mod(L0(lN + pk), σ) with respect to the complex structure σ is equal to
ml.

Now we de�ne an F-invariant complex structure �σ on ZN × C as follows: We
identify L0( j) and {0} × L0( j) and let

�σ =


(Fn)∗σ on F−n(L0(lN + pk)) for some k ∈ {1, . . . ,N − 1} and n > −N.
σ0 otherwise.

Since ⋃

l∈Zq0 ,k=1,...,N−1
L0(lN + pk)

is forward invariant by FN
0 and σ is FN

0 -invariant, �σ is well-de�ned and F-invariant.
By the measurable Riemann mapping theorem, there exists a quasiconformal map

φ :
⊔

Vk →
⊔

�Vk

such that φ∗σ0 = σ. Let �F = φ ◦ F ◦ φ−1 and �Lk( j) = φ(Lk( j)). Then �F is holomorphic
and by the equation ml = ml+p and (2), we have mod �L0( j) = mod �L0( j + p) and

mod �Lk( j) = mod �L0( j − pk))
= mod �L0( j).

�

Denote the point and the sets which correspond to xk, γk( j), γ±k ( j), S k( j), Ok and
O′k respectively by the hybrid conjugacy in the above lemma by �xk, �γk( j), �γ±k ( j), �S k( j),
�Ok and �O′k.

Now we construct quasiconformal maps τk : �V0 → �Vk (k ∈ ZN) to identify
�V0, . . . , �VN−1 together. Let τ0 be the identity. Take C1 diffeomorphisms

�τk :
⋃

j
�γk( j)→

⋃

j
�γk+1( j)

which maps �γk( j) to �γk+1( j) for any j as follows. First of all, take �τ0 be a diffeomor-
phism such that

• It gives the conjugacy between �FN
0 and �FN

1 . That is, �τ0 ◦ �FN
0 = �FN

1 ◦ �τ0.

• (�τ−1
0 ◦ �F0)N = �FN

0 .

Lemma 4.2. Such a diffeomorphism �τ0 exists.

Proof. Let y0
k( j) be the edge point of �γk( j) other than �xk. For n > 0, let yn

k( j) be the
point of �γk( j) which satis�es that Fn

k (yn
k( j)) = y0

k+n( j + pn).
All rays �γk( j) have the same period cN. The quotient space (⋃ j �γk( j))/FN

k is dif-
feomorphic to the disjoint union of circles and each component is of the form ηk( j) =
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�γk( j)/FcN
k . The points {yn

k( j)} corresponds to the cN points {[yn
k( j)]}k=0,...,cN−1 (the

equivalent class [yn
k( j)] = [yn+cN

k ( j)] in ηk( j)). �Fk induces a diffeomorphism α :
ηk( j)→ ηk+1( j+ p) (for simplicity, we neglect indices k and j for α). Then α([yn

k( j)]) =

[yn
k+1 − 1( j + p)] and αN : ηk( j)→ ηk( j + pN) is identity map on (⋃ j �γk( j))/FN

k .
Furthermore, we identify each η0( j) and the circle R/(cNZ) diffeomorphically so

that {[yn
0( j)]} corresponds to {[n]}. De�ne R : R/(cNZ) → R/(cNZ) by R(x) = x − 1.

Since RcN = αcN = id, we may assume that the following diagram commutes:

η0( j) αN
// η0( j + pN)

R/(cNZ)
RN

// R/(cNZ).

Let �τ : η0( j)→ η1( j) be the diffeomorphism de�ned by:

η0( j) � R/(cNZ) R−1

−−→ R/(cNZ) � η0( j − p) α−→ η1( j).

Then the following diagram commutes:

R/(cNZ) R // R/(cNZ) R // · · · R // R/(cNZ)

η0( j)

�τ
²²

α

&&LLLLLLLLLL η0( j + p)

�τ
²²

α

""EE
EE

EE
EE

EE
· · ·

α

##HHHHHHHHHH η0( j + pN)

�τ
²²

η1( j) η1( j + p) · · · η1( j + pN),

so,
(�τ−1 ◦ α)N = RN = αN . (3)

Let �τ0 : �γ0( j) → �γ1( j) be the diffeomorphism which is a lift of �τ. Then �τ0 ◦ �FN
0 =

�FN
1 ◦ �τ0. Furthermore, since �F0 is a lift of α, (3) implies (�τ−1 ◦ �F0)N = �FN

0 . �

De�ne �τk for k = 1, . . . ,N − 1 inductively by the equation

�Fk ◦ �τk−1 = �τk ◦ �Fk−1. (4)

Then this equation is also valid for k = 0. Indeed,

�τ0 ◦ �FN−1 ◦ �FN−2
0 = �τ0 ◦ �FN

0 = �FN
1 ◦ �τ0

= �F0 ◦ �FN−1 ◦ · · · ◦ �F1 ◦ �τ0

= �F0 ◦ �FN−1 ◦ · · · ◦ �τ1 ◦ �F0

· · ·
= �F0 ◦ �τN−1 ◦ �FN−2

0 .
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Since �FN−1
0 maps the subarc of �γ0( j − (N − 2)p) from �xk to yN−2

0 ( j − (N − 2p)) diffeo-
morphically to �γN−2( j), we have �F0 ◦ �τN−1 = �τ0 ◦ �FN−1.

Similarly, we can also show that
�FN

0 = (�τ−1
0 ◦ �F0)N

= �τN−1 ◦ · · · ◦ �τ0 ◦ �FN
0 ,

so
�τN−1 ◦ · · · ◦ �τ0 = id . (5)

And it is easy to see that �τk(yn
k( j)) = yn

k+1( j). Let τk = �τk−1 ◦ · · · ◦ �τ0 on ⋃ �γk( j).
Let τk | �L0( j) : �L0( j) → �Lk( j) be the conformal isomorphism which sends �x0 to �xk,

�γ+
0 ( j−1) to �γ+

0 ( j−1), and �γ−0 ( j) to �γ−0 ( j). Taking �Lk( j) smaller (that is, taking ε greater)
if necessary, we may assume τk | �L0( j) extends smoothly on γ+

0 ( j − 1) and γ−0 ( j).
The following lemma is due to Bielefeld [Bi, Lemma 6.4, 6.5].

Lemma 4.3. We can extend τk quasiconformally to τk : �V0 → �Vk for k = 1, . . . ,N − 1.

Proof. τk is already de�ned on ⋃(�γk( j) ∪ �Lk( j)). So we must de�ne τk on ⋃( �S k( j) \
�Lk( j)) quasiconformally.

For k ∈ ZN and j ∈ ZNq0 , let S −k ( j) (resp. S +
k ( j)) be the open sector between �γ−k ( j)

and �γk( j) (resp. �γk( j) and �γ+
k ( j)). Then ⋃( �S k( j) \ �Lk( j)) =

⋃(S +
k ( j) ∪ S −k ( j)). So we

should extend τk quasiconformally on S −0 ( j), which maps to S −k ( j) (the case on S +
0 ( j)

is quite similar). Furthermore, Since τk is smooth on γ±0 ( j), we need only show the
extensibility of τk on �O0, where F is linearizable. So we consider S −0 ( j) ∩ �O0 instead
of S −0 ( j).

Let hk(z) = logψk(z) on (S −k ( j) ∪ Lk( j)) ∩ �Ok and λ = (∏k λk)q0 . Then, since
ψk( �FNq0

k (z)) = λψk(z),
hk( �FNq0

k (z)) = hk(z) + log λ. (6)
Let T−k ( j) = hk( �S −0 ( j) ∩ �O0), Mk( j) = hk( �Lk( j) ∩ �O0) and

χk = hk ◦ τk ◦ h−1
0 : ∂±T−0 ( j) ∪ M0( j)→ ∂±T−k ( j) ∪ Mk( j).

where ∂+T−k ( j) = hk(�γk( j)) and ∂−T−k ( j) = hk(�γ−k ( j)) are the upper and lower bound-
aries of the strip T−k ( j). Then, by (4), (5) and (6), for z ∈ ∂+T−k ( j),

χk(z + log λ) = hk ◦ τk ◦ h−1
0 (z + log λ)

= hk ◦ τk ◦ �FNq0
0 (h−1

0 (z))
= hk ◦ �τk−1 ◦ · · · ◦ �τ0 ◦ �FNq0

0 ◦ h−1
0 (z)

= hk ◦ �τk−1 ◦ · · · ◦ �τ1 ◦ �FNq0
1 ◦ �τ0 ◦ h−1

0 (z)
· · ·
= hk ◦ �FNq0

k ◦ τk ◦ h−1
0 (z)

= hk(τk ◦ h−1
0 (z)) + log λ

= χk(z) + log λ.
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Mk( j)

T−k ( j)
∂+T−k ( j)

∂−T−k ( j) = ∂+Mk( j)

∂−Mk( j)
hk(Ok)

Ok

Lk( j)

S −k ( j)

γk( j)
γ−k ( j)

γ+
k ( j − 1)

→
hk

→
sk

→

0

Figure 3: Conjugacy to translations and linear expansion.

We call such a diffeomorphism on curves in C a near translation. More precisely, we
say a diffeomorphism on curve is a near translation if it is of the form z + O(1) and its
derivative is bounded away from zero and in�nity.
Claim. χk |∂−T−0 ( j) is a near translation.

Since τk | �Lk( j) is conformal, χk |M0( j) : M0( j) → Mk( j) is conformal and it maps
the upper boundary ∂+M0( j) (= ∂−T0( j)) to ∂+Mk( j) (= ∂−Tk( j)) diffeomorphically.
Let m = mod(Mk( j)/(z 7→ z + log λ)) = mod �Lk( j). Then by the assumption, m is
independent of k.

Let Hν = { z log λ | 0 < Im z < ν}. Then there exists some ν > 0 such that for any k ∈
ZN , there is a conformal map sk from Mk( j) into Hν which maps the upper and lower
boundary to the upper and lower boundary respectively, and which gives a conjugacy
from z 7→ z + log λ to itself. (ν is given by the equation mod(Hν/(z 7→ z + log λ)) = m.)
Since sk(z + log λ) = sk(z) + log λ, sk |∂+ M0( j) is a near translation. Let

�χk = e ◦ sk ◦ χk ◦ s−1
0 ◦ e−1

where e(z) = exp
(

π

ν log λ z
)
.
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Then �χk can be extended to some neighborhood of 0 by the re�ection principle. Hence
it is of the form rz + O(z2). Thus

sk ◦ χk ◦ s−1
k (z) = e−1 ◦ �χk ◦ e(z)

= z + O(1),
so it is a near translation. Since the composition of near translations is also a near
translation, χk is also a near translation.

Just as in the case of Mk( j), let �tk be a conformal map from T−k ( j) into Hν′k which
gives a conjugacy from z 7→ z + log λ to itself. (Note that in this case, ν′k may depends
on k.) Let tk = �tk/(ν′1 log λ) : T−k ( j) → {0 < Im z < νk/ν1}. Then �χ±k = tk ◦ χk ◦ t0
restricted to the upper and lower boundary respectively are both near translations. We
de�ne �χk : t0(M0( j))→ tk(Mk( j)) as follows:

�χk(x + iy) = y( �χ+
k (x + i) − i) + (1 − y) �χ−k (x) + iνk

ν1
y.

(Although it may not be mapped into tk(Mk( j)), it makes no problem because we only
need to construct this map near the left in�nity.) It is easy to check �χk is a quasicon-
formal diffeomorphism. Therefore, τk = h−1

k ◦ t−1
k ◦ �χk ◦ t0 ◦ h0 on �S −0 ( j) ∩ �O0 is a

quasiconformal extension. �

Let V = �V0 and

U =
⋃

j∈Zq,k=0,...,N−1
τ−1

k

(
�S k( jN + kp) ∩ �Uk

)
.

Note that since (N, p0, q0, p) is admissible, jN + kp moves all elements of ZNq0 . De�ne
a quasiregular map g : U → V as follows. When z ∈ �S 0( jN +kp)∩U for some j ∈ Zq0 ,
let

�g(z) = τ−1
k+1 ◦ �Fk ◦ τk(z).

By (4), �g extends continuously on U.
Lemma 4.4.

1. Let E =
⋃ �S 0( j) \ �L0( j). Then �g(E ∩ U) ⊂ E. In other words, E is forward

invariant by �g.

2. τk ◦ �gN ◦ τ−1
k is conformal on �S k( jN + kp) \ �Lk( jN + kp).

Proof. The �rst property is clear because �Fk(( �S k( j) \ �Lk( j)) ∩ �Uk) = �S k( j + p) \ �Lk( j).
For z ∈ �S 0( jN + kp) \ �L0( jN + kp) ∩ U, �g(z) = τ−1

k+1 ◦ �Fk ◦ τk(z) ∈ �S 0( jN + (k +

1)p) \ �L0( jN + (k + 1)p). Thus
�gN(z) = �gN−1 ◦ τ−1

k+1 ◦ �Fk ◦ τk(z).
= �gN−2 ◦ τ−1

k+2 ◦ �Fk+1 ◦ τk+1 ◦ τ−1
k+1 ◦ �Fk ◦ τk(z)

= �gN−2 ◦ τ−1
k+2 ◦ �F2

k ◦ τk(z)
= · · ·
= τ−1

k ◦ �FN
k ◦ τk.

Therefore, τk ◦ �gN ◦ τ−1
k = �FN

k and it is conformal on �S k( jN + kp) \ �Lk( jN + kp). �
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Let σ0 be the standard complex structure. On �S 0( jN + kp) \ �L0( jN + kp),

σ0 = (τk ◦ �gN ◦ τ−1
k )∗(σ0)

= (τ∗k)−1 ◦ (�gN)∗(τ∗kσ0).

by the previous lemma. Therefore,

(�gN)∗(τ∗kσ0) = τ∗kσ0 (7)

on �S 0( jN + kp) \ �L0( jN + kp).
So de�ne an almost complex structure σ on V as follows:

σ =


(τk ◦ �gn)∗σ0 on �g−n( �S 0(N j + kp)).
σ0 elsewhere.

Lemma 4.5. σ is well-de�ned and it is really a complex structure.

Proof. On �S 0(N j + kp) \ �L0( jN + kp) (1 ≤ k < N),

�g∗σ = (τ−1
k ◦ �Fk−1 ◦ τk−1)∗(τ∗kσ0)

= τ∗k−1( �F∗k−1σ0)
= τ∗k−1σ0

= σ.

Therefore, together with (7), σ is invariant under �g on E. (Note that E is forward
invariant by �g.) Since σ , σ0 only on ⋃ �g−n(E), σ is well-de�ned.

Furthermore, �g is conformal except on �g−1(E). So the maximal dilatation of σ on
V is equal to that of σ on �g−1(E), which is bounded. So σ is a complex structure. �

Therefore, there exists a quasiconformal mapping h : V → C such that h∗σ0 = σ.
Then �g = h ◦ �g ◦ h is a polynomial-like map, so there exists a polynomial g hybrid
equivalent to �g.

It is easy to check this g is a p-rotatory intertwining of F.

5 Uniqueness
In this section, we show that two p-rotatory intertwinings (g, x) and (g′, x′) of (F,O)
are affinely conjugate.

5.1 Puzzles
Let (g, x) be a p-rotatory intertwining of an N-polynomial map (F,O) with marked
periodic point of period N. Denote by K the �lled Julia set of the renormalization
G = (g : Uk → Vk+1)k∈ZN corresponding to F. Let ω0, . . . , ωNq−1 be the landing angles
of x ordered counterclockwise.
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Let ϕ : (C \ ∆) → (C \ K(g)) be the Böttcher coordinate of g. Fix R > 0 and small
ε > 0 so that sectors

�S 0, j =
{
ϕ(r exp(2πiθ))

∣∣∣ 1 < r < R, |θ − ω j| < ε log r
}
.

are mutually disjoint. Let D0 = ϕ( { |z| < R} ) ∪ K(g) and Dn = g−n(D0) for n > 0.
Let �P0, j be the component of D0 \ ⋃ �S 0, j between �S 0, j−1 and �S 0, j. Let S 0, j = �S 0, j,
P0, j = �P0, j and

Pn =
{

the closures of components of g−n( �P0, j) ( j ∈ ZNq)
}

Sn =
{

the closures of components of g−n( �S 0, j) ( j ∈ ZNq)
}
.

We call an element of Pn a piece of depth n and an element of Sn a sector of depth n.
Then Pn and Sn have the following properties. Let n ≥ 0.

1. Pn ∪ Sn is a partition of Dn.

2. For any z ∈ K(g) \⋃ j g− j(x), there exists a unique piece Pn(z) of depth n which
contains z. In particular, Pn covers K(g).

3. For any P ∈ Pn+1, there exists some P′ ∈ Pn with P ⊂ P′.

4. For P ∈ Pn+1, we have g(P) ∈ Pn.

5. When S ∈ Sn+1, either there exists some S ′ ∈ Sn with S = S ′ ∩ Dn+1, or there
exists some P ∈ Pn with S ⊂ int P.

6. For any X ∈ Pn ∪ Sn, int X ∩ g−n+1(K) , ∅ or there exists a unique y ∈ g−n(x0)
with y ∈ X.

7. For any P ∈ Pn, there exists a unique component E of g−n(K \ g−n(x0)) with
E ⊂ P. This map P 7→ E is a bijection between Pn and the set of components of
g−n(K \ g−n(x0)).

The following theorem says that K attracts almost every point in K(g).

Theorem 5.1. The set K(g) \⋃n>0 g−n(K) has zero Lebesgue measure.

Proof. Let z0 ∈ K(g) \⋃n>0 g−n(K). Our proof is divided into three cases:
Case I: lim sup d(K , gn(z0)) > 0.
Since P(g) ⊂ K(g) and d(P(g), gn(z)) → 0 for almost every z ∈ J(g) (see [Mc, Theo-
rem 3.9]), the set of such z0 has measure zero.
Case II: lim d(K , gn(z0)) = 0 and lim inf d(x, gn(z0)) > 0.
When n is sufficiently large, gn(z0) is close to Kk(G) for some k ∈ Zk. Then gn+1(z0)
must close to Kk+1(G) because K0(G), . . . ,KN−1(G) meet only at x. Inductively, gn+l(z0)
is close to Kk+l(G), so it lies in Uk+l. This implies gn(z0) lies in Kk+1(G) ⊂ K , this is a
contradiction. Therefore, this case does not occur.
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Case III: lim sup d(K , gn(z0)) = 0 and lim inf d(x, gn(z0)) = 0.
We show that the Lebesgue density of K(g) at z0 is not equal to one. Then since the set
of all such z0 is contained in K(g), It is of measure zero.

Let P1, j ∈ P1 ( j ∈ ZNq) be the piece of depth 1 with x ∈ P1, j ⊂ P0, j and let
ψ : O → C be the linearizing coordinate of x for g de�ned on a neighborhood O of
x. Let �E j = O ∩ P0, j. Take �E′j and �E′′j so that �E′′j b �E′j b �E j and �E′′j contains a
fundamental domain of (K(g) ∩ �E j)/gN . Let E j = ψ( �E j), E′j = ψ( �E′j) and E′′j = ψ( �E′′j ).

J( f )

O

P0, j

P0, j+1

�E j

�E′j

�E′′j

x

S 0, j

S 0, j−1

P0, j−1

Figure 4: E j, E′j and E′′j .

If z ∈ K(g) is sufficiently close to x (say d(x, z) < δ), then there exist some s =

s(z) > 0 and j = j(z) ∈ ZN such that gs(z) ∈ �E′′j . So

λsψ(z) = ψ(gs(z)) ∈ E′′j ,

where λ = g′(x). The map ψ−1(λ−s·) maps E j univalently to a neighborhood E = E(z)
of z. Let E′(z) = ψ−1(λ−sE′j) and E′′(z) = ψ−1(λ−sE′′j ). Clearly,

m(E′j ∩ ψ(K( f )))
m(E′j)

< 1.

where m is the Lebesgue measure.
Take an ε > 0 sufficiently small so that d(g(z), x) < δwhen z < ⋃ P1, j and d(z,K) <

ε. This can be done because each P ∈ P1 \ {P1, j} are attached to K only at some point
y ∈ g−1(x).

Since z0 < g−n(K), gn(z0) 3 n ⋃ P1, j for in�nitely many n. Let {nk}k>0 be a se-
quence of n > 0 which satis�es that gn(z0) ∈ O and gn−1(z0) < ⋃ P1, j. We can take n1
sufficiently large so that we have d(gn(z0),K) < ε whenever n ≥ n1.
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For each k, let
lk = min

{
l > 0

∣∣∣ gnk+l(z0) <
⋃

P1, j
}
.

Then, since d(gnk+lk (z0),K) < ε, d(gnk+lk+1(z0), x) < δ. Since gnk+lk (z0) < ⋃ P1, j ⊃ P(g),
gnk+lk+1 is univalent on Pnk+lk+1(z0). Let yk = gnk+lk+1(z0) and �ιk : P0(yk) → Pnk+lk+1(z0)
be the inverse of the univalent map. Let j(yk), s(yk), E(yk), E′(yk) and E′′(yk) as before
(note that d(yk, x) < δ). Then

yk ∈ E′′(yk) b E′(yk) b E(yk) ⊂ P0(yk).

De�ne ιk : E j(yk) → Pnk+lk+1 by

ιk(z) = �ιk ◦ ψ−1(λ−s(yk)(z))

and let zk = ι−1
k (z0) (= λs(yk)ψ(yk)).

By the Koebe distortion theorem, there exist 0 < r1 < r2 and 0 < C3 < 1 such that

B(z0, r1ι
′
k(zk)) ⊂ ιk(E′(zk)) ⊂ B(z0, r2ι

′
k(zk)),

m(ιk(E′(yk)) ∩ K( f ))
m(ιk(E′(yk))) < C3

where B(z, r) is the ball of radius r centered at z. Therefore,

m(B(z0, r2ι
′
k(zk) ∩ K( f ))

m(B(z0, r2ι′k(zk)) < C (8)

for some C < 1 independent of l.
Since the forward orbit of z0 by g does not intersect P( f ), ‖(gn)′(z0)‖ tends to∞with

respect to the hyperbolic metric on C \ P( f ) (see [Mc, Theorem 3.6]). Furthermore,
the piece P1(gnk+lk (z0)) is disjoint from P( f ) and λs(yk)ψ ◦ g is a univalent map from
gnk+lk (ιk(E(yk))) to E j(yk), so the inverse of this map does not expand the hyperbolic
metric on E j(yk) and C \ P( f ), respectively.

Therefore the differential

‖(ι−1
k )′(z0)‖ = ‖(λs(yk)ψ ◦ g)′(gnk+lk (z0))‖ · ‖(gnk+lk )′(z0)‖

with respect to the hyperbolic metric on C \ P( f ) and E j(yk) tends to in�nity as k → ∞.
Since xk ∈ E′′j(sk) b E j(sk), this implies that |ι′k(xk)| → 0 as l→ ∞. By (8), the Lebesgue
density of K( f ) at z0 is at most C < 1. �

For a later use, we give a canonical form of the renormalization G. Take small r > 0
and η > 0. For j ∈ ZNq, let �P0, j be the union of B(x, r) and the domain in D0 \ B(x, r)
between R(g;ω j−1 − η, R) and R(g;ω j + η, R).

Let Q j be the component of g−1( �P0, j) which is contained in �P0, j. Let Uk and Vk
are disks obtained by smoothing the boundary of ⋃

j∈Zq Qk+N j and ⋃
j∈Zq

�P0,k+N j. Then
G = (g : Uk → Vk+1) is a renormalization hybrid equivalent to F.
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J(g)

P0, j

R(g;ω j−1 − η,R)

R(g;ω j + η,R)

x

B(x, r)

Figure 5: Thickened piece �P0, j and smoothing its boundary.

5.2 Proof of the uniqueness
Let (g, x) and (g′, x′) be two p-rotatory intertwinings of an N-polynomial map (F,O)
with a marked periodic point of rotation number p0/q. We use the notation in sec-
tion 5.1 for g. For g′, we attach a prime to each notation (e.g., K ′,D′n,P′n,S′n, . . . ).

In this section, we show that g and g′ are affinely conjugate. Since K(g) and K(g′)
are connected, we need only show that g and g′ are hybrid equivalent. To do this, we
�rst construct a standard hybrid conjugacy between the renormalizations G and G′.
Then by pulling back it repeatedly, we construct a quasiconformal conjugacy between
g and g′. By means of Theorem 5.1, we show that it is actually a hybrid conjugacy.

Lemma 5.2. There exists a quasiconformal map Φ0 : D0 → D′0 satis�es the following:

• ∂̄Φ0 ≡ 0 a.e. on K(G).

• Φ0 ◦ g = g′ ◦ Φ0 on ⋃(P1, j ∪ S 0, j) ∪ ∂D1.

Proof. For each k ∈ ZN , take a C1-diffeomorphism �Φk : Vk \ Uk → V ′k \ U′k which
satis�es the following:

1. �Φk(∂Vk) = ∂V ′k and �Φk(∂Uk) = ∂U′k.

2. For j ∈ ZNq with P0, j ⊂ Vk (equivalently, j ≡ k mod N), we have �Φk(∂(P0, j \
Uk) ) = ∂(P′0, j \ U′k) and �Φk(P0, j \ Uk) = P′0, j \ U′k.

3. For z ∈ ∂Uk, Φk+1(g(z)) = g′(Φk(z)).
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P1,0

P1,1

P1,2

P0,0
P0,2

P0,1
D0

D1

S 0,0

S 0,1

S 0,2

Figure 6: Puzzles (the case degree two and p/q = 1/3. Φ0 ◦ g = g′ ◦ Φ0 on D1 except
on the interior of the painted area).

As in [DH], we can extend �Φk to a diffeomorphism on Vk \Kk(G) to V ′k \Kk(G′) by
the equation �Φk(g(z)) = g′(Φk(z)). Furthermore, since G and G′ are hybrid equivalent
(they are both hybrid equivalent to F), this �Φk extends to a hybrid conjugacy of G to
G′. (To do this, we use [DH, Proposition 6]. So we need to check [ �Φ0, ψ, gn, (g′)n] = 0
in Zdeg(Gn) where ψ is a given hybrid conjugacy of G and G′ considered as classical
polynomial-like maps. But it is trivial because of the property 2 above.)

We de�ne Φ0 �rst on ⋃ S 0, j. For each S 0, j, de�ne a quasiconformal map Φ0|S 0, j :
S 0, j → S ′0, j so that Φ0 ◦ g = g′ ◦ Φ0 and

Φ0 = �Φ j−1 on a neighborhood of R(g;ω j,R,−ε),
Φ0 = �Φ j on a neighborhood of R(g;ω j,R, ε).

Let �Φk : Vk \ Uk → V ′k \ U′k be a C1-diffeomorphism which satis�es the same
condition as for �Φk and for k, k′ ∈ ZN and j, j′ ∈ ZNq with j ≡ k mod N,

• �Φk = �Φk on ∂(P0, j \ Uk).

• g′ ◦ �Φk(z) = �Φk′ ◦ g(z) when z lies in P0, j ∩ ∂D1 ∩ g−1(P0, j′).

• g′ ◦ �Φk(z) = Φ0 ◦ g(z) when z lies in P0, j ∩ ∂D1 ∩ g−1(S 0, j).

As in the case of �Φk, we can extend �Φk quasiconformally to Vk and obtain hybrid
equivalence between G and G′.
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Now let Φ0 = �Φk on P0, j where k ≡ j mod N. It is easy to check this Φ0 has the
desired properties. �

Then we de�ne Φn : D0 → D′0 inductively. Suppose Φn is de�ned and satis�es:

• ∂̄Φn ≡ 0 on g−n(K).

• Φn ◦ g = g′ ◦ Φn on (D1 \ Dn+1) ∪⋃
j g−n(P1, j ∪ S 1, j).

(Clearly, Φ0 satis�es this condition for n = 0.)
To de�ne Φn+1, �rst let Φn+1|D0\Dn+1

= Φn. For P ∈ Pn+1, when int P ∩ g−n(K) , ∅,
de�ne Φn+1|P = Φn. Otherwise, by the property 6 in page 15, there exists a unique
y ∈ g−n(x) ∈ P. Let P′ ∩ Pn+1 be the piece of depth n + 1 which combinatorially
corresponds to P′, i.e. which satis�es that Φn(g(P)) = g(P′) and Φn(y) ∈ P′. Note that
when y is not a critical point of g, such P′ is unique. When y is a critical point, P′
is determined by the cyclic order of pieces and sectors at y to make Φn+1 continuous.
Then, since C(g) ⊂ K ⊂ g−n(K), g|P is conformal and so is g′|P′ . So de�ne

Φn+1|P = (g′|P′ )−1 ◦ Φn ◦ g|P : P→ P′.

Similarly, for S ∈ Sn+1, when S ⊂ S ′ for some S ′ ∈ Sn, then de�ne Φn+1|S = Φn.
Otherwise, take S ′ ∈ S′n+1 combinatorially corresponds to S and de�ne

Φn+1|S = (g′|S ′)−1 ◦ Φn ◦ g|S : S → S ′.

(In other words, Φn+1|Dn+1
is de�ned by lifting Φn by the branched covering g and g′.)

We must check Φn+1 also satis�es the properties above. First, we show the con-
tinuity of Φn+1. By the construction, Φn+1 is continuous on and outside Dn+1. For
z ∈ ∂Dn+1, since g(z) ∈ ∂Dn,

Φn+1(z) = (g′|P′ )−1 ◦ Φn ◦ g|P(z)
= (g′|P′ )−1 ◦ g′|P′ ◦ Φn(z)
= Φn(z)

by the second property above for Φn. Hence Φn+1 is continuous.
For every X ∈ Pn+1 ∩Sn+1, Φn+1|X is a quasiconformal homeomorphism from X to

the corresponding piece or sector for g′ and Φn+1|D0\Dn+1
= Φn is clearly quasiconfor-

mal. Hence Φn+1 is a quasiconformal homeomorphism. Furthermore, by the construc-
tion, the dilatation ratio of Φn+1 is equal to that of Φn and ∂Φn+1 ≡ 0 on g−n−1(K).

Clearly, g′ ◦ Φn+1 = Φn+1 ◦ g on En+1 =
⋃

j g−n−1(P1, j ∪ S 1, j) ∪ (D1 \ Dn+1). Let
z ∈ Dn+1 \ (En+1 ∪Dn+2). Then z lies in some X ∈ Pn+1 ∪Sn+1 with int X ∩ g−n(K) = ∅.
Therefore,

g′ ◦ Φn+1(z) = g′ ◦ (g′|P′)−1 ◦ Φn ◦ g(z)
= Φn ◦ g(z).

Since g(z) ∈ Dn \ Dn+1, we have Φn(g(z)) = Φn+1(g(z)) and the second property holds
for Φn+1.
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Since all Φn are quasiconformal with same dilatation ratio, they form an equicon-
tinuous family. Furthermore, Φn = Φn+1 except on Dn+1 \ g−n(K). Hence Φ = lim Φn
exists and it is quasiconformal. Also, it satis�es that ∂̄Φ ≡ 0 on ⋃

n g−n(K) and that
g′ ◦ Φ = Φ ◦ g. Since K(g) \⋃ g−n(K) has zero Lebesgue measure (Theorem 5.1), Φ

is a hybrid conjugacy between g and g′.
Therefore, a p-rotatory intertwining of (F,O) is unique up to affine conjugacy.
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