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Abstract

We discuss the vanishing theorem on a convex domain of the
Wiener space. We show that there is no harmonic form satisfying
the absolute boundary condition. Our method relies on an expression
of the bilinear form associated with the Hodge-Kodaira operator.

1 Introduction

In this paper, we discuss the vanishing theorem on a domain of the Wiener
space. Our object is the Hodge-Kodaira operator for differential forms. On a
whole Wiener space, this problem is well-known (see [5]). In fact, the Hodge-
Kodaira operator is nothing but the Ornstein-Uhlenbeck operator and all
the spectrum is known and there is no harmonic p-forms for p ≥ 1. But
the Hodge-Kodaira operator on a domain has not been considered. In this
paper, assuming the convexity of the domain, we prove that the spectrum of
the Hodge-Kodaira operator for p-forms is contained in (−∞,−p]. Here our
domain has a boundary and so we have to specify the boundary condition.
We take the absolute boundary condition and the relative boundary condition
(the precise definition will be given later.)

The organization of the paper is as follows. We give an integration by
parts formula in §2 . It is a kind of Gauss’ formula. We also generalize it to
differential forms.

In §3 , we discuss the Hodge-Kodaira operator for differential forms. Our
domain having a boundary, we need to introduce boundary conditions. Two
boundary conditions are classical in finite dimensional case. They are the
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absolute boundary condition (corresponding to the Dirichlet boundary con-
dition) and the relative boundary condition (corresponding to the Neumann
boundary condition, see, e.g., [7]). We show that the same boundary condi-
tions can be defined in infinite dimensional case. We give an expression of the
associated bilinear form. The second fundamental form naturally appears.
Using this expression, we show the vanishing theorem on a convex domain.
We also give an example with the relative boundary condition.

2 Integration by parts formula on a domain

of the Wiener space

We consider a domain of an abstract Wiener space (B,H,µ) where B is a
Banach space, H is a Hilbert space densely and continuously inbedded in B
and µ is the Wiener measure with the Cameron-Martin space H. Suppose
we are given a smooth non-degenerate Wiener functional F in the sense of
Malliavin calculus. The domain is given as

M = {x ∈ B;F (x) ≤ 0}.(2.1)

M is nothing but a subset of B but we regard it as a smooth manifold with
boundary. The boundary ∂M of M is naturally defined by

∂M = {x ∈ B;F (x) = 0}.(2.2)

Since F can be chosen to be quasi-continuous, we always take a quasi-
continuous modification. ∂M depends on a choice of modification but it
is unique up to quasi-sure equivalence. We set

ωN = − DF

|DF | .(2.3)

Here D denotes the Malliavin derivative (H-derivative). ωN is an H∗-valued
function. Since H and H∗ are isomorphic to each other by the Riesz theorem,
we denote the isomorphism by 
 : H∗ → H. Using this notation, we can define
the inner normal vector field N on the boundary as

N = ω�
N = −DF �

|DF | .(2.4)

The surface measure σ on ∂M is given by

σ = |DF | δ0(F )(2.5)
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where δ0(F ) is a composite of the Dirac measure and F in the sense of
Watanabe.

The Gauss’ divergence formula is formulated as follows;

Proposition 2.1. For smooth 1-form θ, it holds that
∫

M

D∗θ dµ =

∫
∂M

〈θ,N〉 dσ.(2.6)

Here 〈 , 〉 denotes the natural coupling between H∗ and H.

Proof. Take any φ ∈ C∞
0 (the set of all C∞ functions on R with compact

support). It follows from the definition of δt(F ) that
∫ ∞

−∞

d

dt
E[〈θ,N〉|DF |δt(F )]φ(t) dt = −

∫ ∞

−∞
E[〈θ,N〉|DF |δt(F )]φ′(t) dt

= −E[〈θ,N〉|DF |φ′(F )]

= E[(θ,DF )φ′(F )]

= E[(θ,D(φ(F ))]

= E[D∗θφ(F )]

=

∫ ∞

−∞
E[D∗θδt(F )]φ(t) dt.

Here we denote by E the integral with respect to µ. The identity above holds
for any φ and hence we have

d

dt
E[〈θ,N〉|DF | δt(F )] = E[D∗θ δt(F )].

Integrating both hands from −∞ to 0 with respect to t, we get

E[〈θ,N〉|DF | δ0(F )] = E[〈θ,N〉|DF | δ0(F )]− lim
t→−∞

E[〈θ,N〉|DF | δt(F )]

=

∫ 0

−∞

d

dt
E[〈θ,N〉|DF | δt(F )]dt

=

∫ 0

−∞
E[D∗θδt(F )] dt

= E[D∗θ;F ≤ 0],

which completes the proof.

Set η = fθ for a scalar function f and a 1-form θ. Then it holds that

D∗(fθ) = fD∗θ − (Df, θ).
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Now the proposition above leads to
∫

M

(fD∗θ − (Df, θ)) dµ =

∫
∂M

f〈θ,N〉 dσ.

Thus we have ∫
M

(Df, θ) dµ =

∫
M

fD∗θdµ−
∫

∂M

f〈θ,N〉 dσ.(2.7)

Using this identity, we can have the integration by parts formula for tensor
fields as follows. Set H∗⊗p := H∗ ⊗ · · · ⊗H∗ (p-fold). H∗⊗p-valued function
is called a tensor field of type (0, p). If in addition it is alternate, it is called
a differential form of order p or p-form for short. We need to introduce the
covariant derivative ∇ for tensor fields, but it is nothing but the Malliavain
derivative in our case: ∇u := Du. For (0, p)-tensor u, the interior product i
is defined by

(i(h)u)(h1, . . . , hp−1) = u(h, h1, . . . , hp−1), h, h1, . . . , hp−1 ∈ H.

Proposition 2.2. Let u be a tensor of type (0, p) and v be a tensor of type
(0, p + 1). Then it holds that

∫
M

(∇u, v)dµ =

∫
M

(u,∇∗v)dµ−
∫

∂M

(u, i(N)v)dσ.(2.8)

Proof. It is enough to prove this in the case where

u = fω1 ⊗ · · · ⊗ ωp,

v = gω̃0 ⊗ ω̃1 ⊗ · · · ⊗ ω̃p.

Here f , g are smooth scalar functions and ωi, ω̃i are constant 1-forms (i.e.,
elements of H∗). We have

∫
M

(∇u, v)dµ =

∫
M

(Df ⊗ ω1 ⊗ · · · ⊗ ωp, gω̃0 ⊗ · · · ⊗ ω̃p)dµ

=

∫
M

(Df, gω̃0)(ω1 ⊗ · · · ⊗ ωp, ω̃1 ⊗ · · · ⊗ ω̃p)dµ

=

∫
M

fD∗(gω̃0)(ω1 ⊗ · · · ⊗ ωp, ω̃1 ⊗ · · · ⊗ ω̃p)dµ

−
∫

∂M

f〈N, gω̃0〉(ω1 ⊗ · · · ⊗ ωp, ω̃1 ⊗ · · · ⊗ ω̃p)dσ

=

∫
M

(fω1 ⊗ · · · ⊗ ωp,∇∗(gω̃0 ⊗ · · · ⊗ ω̃p)dµ
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−
∫

∂M

(fω1 ⊗ · · · ⊗ ωp, i(N)(gω̃0 ⊗ · · · ⊗ ω̃p)dσ

=

∫
M

(u,∇∗v)dµ−
∫

∂M

(u, i(N)v)dσ.

This completes the proof.

A similar formula holds for differential forms. We recall that the exterior
differentiation is defined as follows: for a p-form θ,

dθ(h1, h2, . . . , hp+1) :=
∑

τ

sgn τ ∇θ(hτ (1), . . . , hτ (p+1))

where τ runs over all permutations of degree p + 1. The dual operator d∗ of
d (with respect to the measure µ) coincides with ∇∗. Now we can easily get
the following identity for forms.

Proposition 2.3. Let θ be a p-form and η be a p + 1-form. Then it holds
that ∫

M

(dθ, η)dµ =

∫
M

(θ, d∗η)dµ−
∫

∂M

(θ, i(N)η)dσ.(2.9)

3 Hodge-Kodaira operator on a domain of

the Wiener space

In this section, we discuss the Hodge-Kodaira operator for differential forms.
To do this, we use the following bilinear form:

Ea
(p)(θ, η) =

∫
M

(dθ, dη) dµ +

∫
M

(d∗θ, d∗η) dµ(3.1)

with the domain

Dom(Ea
(p)) = {θ ∈ W∞,∞−

p |i(N)θ = 0 on ∂M}.
Here W∞,∞−

p denotes the set of all smooth p-forms in the sense of Malliavin.
Taking closure, we obtain a closed bilinear form which we also denote by Ea

(p).
The associated self-adjoint operator is called the Hodge-Kodaira operator
with the absolute boundary condition and will be denoted by �a

(p).
We introduce a different kind of boundary condition as follows: consider

the bilinear form is given by

Er
(p)(θ, η) =

∫
M

(dθ, dη) dµ +

∫
M

(d∗θ, d∗η) dµ(3.2)
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with the domain

Dom(E r
(p)) = {θ ∈ W∞,∞−

p |θ ∧ ωN = 0 on ∂M}.
Here ωN is a 1-form defined by (2.3) . We also denote its closure by Er

(p)

and the associated self-adjoint operator by �r
(p). In this case, the boundary

condition is called the relative boundary condition.
We have to see the closability of bilinear forms. It follows from the fol-

lowing theorem.

Theorem 3.1. Take any θ, η ∈ Dom(Ea
(p)) and suppose that i(N)dθ = 0 on

∂M . Then it holds that

Ea
(p)(θ, η) =

∫
M

((dd∗ + d∗d)θ, η) dµ.(3.3)

Similarly, for θ, η ∈ Dom(E r
(p)) with d∗θ∧ωN = 0 on ∂M instead, it holds

that

Er
(p)(θ, η) =

∫
M

((dd∗ + d∗d)θ, η) dµ.(3.4)

Proof. By virtue of Proposition 2.3 , we have∫
M

(dθ, dη) dµ +

∫
M

(d∗θ, d∗η) dµ =

∫
M

(d∗dθ, η) dµ−
∫

∂M

(i(N)dθ, η) dσ

+

∫
M

(dd∗θ, η) dµ +

∫
∂M

(d∗θ, i(N)η) dσ.

In the case of absolute boundary condition, we can easily see that the bound-
ary integrals above vanish and we get the desired results.

In the case of relative boundary condition, note that (i(N)dθ, η) =
(dθ, ωN ∧ η). We can see that the boundary integral vanishes as well. This
completes the proof.

In Theorem 3.1 , we have imposed the additional boundary condition.
We show that such functions are rich enough. Let us first see the absolute
boundary case. We take C∞-function φ such that φ′ ≤ 1 and

φ(t) =




−2, t ≤ −3,
t, −1 ≤ t ≤ 1,
2, t ≥ 3.

and set φε(t) = εφ(t/ε). p-form θ is assumed to satisfy i(N)θ = 0 on ∂M .
Set η = dθ(N, ·). Then, taking the same function φε as before, we have

d
(
φε(F )

η

|DF |
)

= φ′
ε(F )dF ∧ η

|DF | + φε(F )d
( η

|DF |
)
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= φ′
ε(F )ωN ∧ η + φε(F )d

( η

|DF |
)
.

Hence

i(N)d
(
φε(F )

η

|DF |
)

= η on ∂M .

Thus, setting

θ̃ε = θ − φε(F )
η

|DF |,(3.5)

θ̃ε satisfies i(N)θ̃ε = 0 and i(N)dθ̃ε = 0 on ∂M . Moreover limε→0 θ̃ε = θ and
limε→0 ∇θ̃ε = ∇θ in L2.

For the relative boundary condition case, assume that θ satisfies ωN ∧θ =
0 on ∂M . Set η = d∗θ. Then

d∗
(
φε(F )

ωN ∧ η

|DF |
)

= −φ′
ε(F )i(DF �)

ωN ∧ η

|DF | + φε(F )d∗
(ωN ∧ η

|DF |
)

= φ′
ε(F )ωN ∧ (i(N)η)− φ′

ε(F )η + φε(F )d∗
(ωN ∧ η

|DF |
)
.

Hence

ωN ∧ d∗
(
φε(F )

ωN ∧ η

|DF |
)

= −ωN ∧ η on ∂M .

Thus, setting

θ̃ε = θ + φε(F )
ωN ∧ η

|DF | ,(3.6)

θ̃ε satisfies ωN ∧ θ̃ε = 0 and ωN ∧d∗θ̃ε = 0 on ∂M . Moreover limε→0 θ̃ε = θ and
limε→0 ∇θ̃ε = ∇θ in L2. So we can find dense set satisfying the additional
boundary condition.

Next we rewrite the bilinear forms in terms of covariant derivatives. To
do this, we need the second fundamental form on ∂M . It is defined as follows.
Let X , Y be vector fields tangential to ∂M . The following bilinear form α
is called the second fundamental form:

α(X, Y ) = (∇XY,N).(3.7)

α is expressed in terms of F as follows:
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Proposition 3.2. α is given as follows:

α(X, Y ) =
D2F (X, Y )

|DF | .(3.8)

In particular, α is symmetric.

Proof. Since Y is tangential to ∂M , it follows that 〈DF, Y 〉 = 0. Therefore

0 = 〈D〈DF, Y 〉,X〉
= D2F (X, Y ) + 〈DF,∇XY 〉
= D2F (X, Y ) − (|DF |N,∇XY )

= D2F (X, Y ) − |DF |α(X, Y ).

which implies (3.8) .

Define an operator A acting on any 1-form θ by

Aθ = α(θ�, ·).(3.9)

A can be extended to differential forms as follows

dΓ(A)(ω1 ∧ · · · ∧ ωp) :=

p∑
j=1

ω1 ∧ · · · ∧Aωj ∧ · · · ∧ ωp(3.10)

Using this notation, we have a different expression of Ea
(p).

Theorem 3.3. It holds that, for θ, η ∈ Dom(Ea
(p))

Ea
(p)(θ, η) =

∫
M

(∇θ,∇η)dµ + p

∫
M

(θ, η)dµ +

∫
∂M

(dΓ(A)θ, η)dσ.(3.11)

Further, for θ, η ∈ Dom(E r
(1)), it holds that

Er
(1)(θ, η) =

∫
M

(∇θ,∇η)dµ +

∫
M

(θ, η)dµ +

∫
∂M

d∗ωN 〈θ,N〉〈η,N〉 dσ.
(3.12)

Proof. Take any θ, η. Recall the identity dd∗ + d∗d = −L + p where L =
−∇∗∇ is the Ornstein-Uhlenbeck operator. Further we assume that i(N)θ =
0, i(N)dθ = 0 on ∂M . Then, by Theorem 3.1 , we have

Ea
(p)(θ, η) =

∫
M

((d∗d + dd∗)θ, η)dµ
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=

∫
M

(∇∗∇θ, η)dµ + p

∫
M

(θ, η)dµ

=

∫
M

(∇θ,∇η)dµ + p

∫
M

(θ, η)dµ +

∫
∂M

(i(N)∇θ, η)dσ

=

∫
M

(∇θ,∇η)dµ + p

∫
M

(θ, η)dµ +

∫
∂M

(∇Nθ, η)dσ.

We have to calculate ∇Nθ. First we calculate this when p = 1. By the
definition of exterior differentiation, we have

dθ(X, Y ) = ∇θ(X, Y ) −∇θ(Y,X)

= ∇Xθ(Y ) −∇Y θ(X).

By the boundary condition i(N)dθ = 0 on ∂M , it follows that

0 = dθ(N, Y )

= ∇Nθ(Y ) −∇Y θ(N)

= ∇Nθ(Y ) − (∇Y θ
�, N)

= ∇Nθ(Y ) − α(Y, θ�).

Thus we have ∇Nθ = α(·, θ�) = Aθ. This proves (3.11) for p = 1.
So far, we have imposed the boundary condition i(N)dθ = 0 on ∂M . We

have to remove this restriction. Now we only assume that i(N)θ = 0 on ∂M .
We take θ̃ε as in (3.5) . Then,

Ea
(p)(θ̃ε, η) =

∫
M

(∇θ̃ε,∇η)dµ + p

∫
M

(θ̃ε, η)dµ +

∫
∂M

(Aθ̃ε, η)dσ.

Since limε→0 θ̃ε = θ and limε→0 ∇θ̃ε = ∇θ in L2, letting ε go to 0, we get the
desired result.

For general p, we may assume θ = θ1∧· · ·∧θp and θj satisfies the boundary
condition i(N)θj = 0, i(N)dθj = 0 on ∂M . Then

∇Nθ = ∇N(θ1 ∧ · · · ∧ θp)

=

p∑
j=1

θ1 ∧ · · · ∧ ∇Nθj ∧ · · · ∧ θp

=

p∑
j=1

θ1 ∧ · · · ∧Aθj ∧ · · · ∧ θp

= dΓ(A)θ.
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This shows (3.11) .
Let us proceed to the relative boundary condition case. In the same way

as above, we may assume ωN ∧ θ = 0, ωN ∧ η = 0 and ωN ∧ d∗θ = 0 on ∂M .
We need to calculate (∇Nθ, η). Set

ξ = θ − 〈θ,N〉ωN .

From the assumption, ξ = 0 holds on ∂M . Further d∗θ can be calculated as

0 = d∗θ = d∗(〈θ,N〉ωN + ξ)

= 〈θ,N〉d∗ωN − (D〈θ,N〉, ωN) + d∗ξ.

We note that d∗ξ = 0 on ∂M . In fact, recall the following identity (see [1,
Proposition 2.5])

d∗ξ = d∗∂Mξ −∇ξ(N,N)− i(Qd∗Q)ξ.

Here d∗∂M is the dual operator on ∂M with respect to σ. We do not give the
explicit form of Qd∗Q, but we can see that i(Qd∗Q)ξ = 0 on ∂M from the
assumption. Further we have, on ∂M ,

∇ξ(N,N) = 〈∇Nξ, N〉
= ∇N〈ξ,N〉 − 〈ξ,∇NN〉
= 0 (∵ 〈ξ,N〉 = 0)

and d∗∂M ξ = 0 since ξ = 0 on ∂M . Combining these identities, we have

〈θ,N〉d∗ωN = (D〈θ,N〉, ωN) = ∇N〈θ,N〉, on ∂M .(3.13)

Now we are ready to compute (∇Nθ, η). On ∂M , we have

(∇Nθ, η) = (∇Nθ, 〈η,N〉ωN )

= (∇N〈θ,N〉ωN + 〈θ,N〉∇NωN + ∇Nξ, 〈η,N〉ωN )

= ∇N〈θ,N〉〈η,N〉 + 〈θ,N〉〈η,N〉(∇NωN , ωN ) + 〈η,N〉(∇Nξ, ωN )

= ∇N〈θ,N〉〈η,N〉 +
1

2
〈θ,N〉〈η,N〉∇N (ωN , ωN ) + 〈η,N〉〈∇Nξ, N〉

= d∗ωN 〈θ,N〉〈η,N〉 (∵ (3.13))

which shows (3.12) . This completes the proof.

α is non-negative definite when the boundary ∂M is convex. In fact, since
α = D2F/|DF |, the positivity of α is equivalent to the positivity of D2F .
By the expression of (3.11) , we easily obtain the following theorem.
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Theorem 3.4. Assume that α is non-negative definite, then, for �a
(p) (p ≥

1), there is no harmonic form satisfying the absolute boundary condition.
More precisely, the spectrum of �a

(p) is contained in (−∞,−p].
On the other hand, assuming d∗ωN ≥ 0 on ∂M , we have that there is no

harmonic 1-form satisfying the relative boundary condition.

For the relative boundary condition case, we will give an example sat-
isfying the condition d∗ωN ≥ 0 on ∂M . Before that, let us compute d∗ωN

explicitly. First

D|DF | = D
√

(DF,DF ) =
2D2F (DF �, ·)
2
√

(DF,DF )
= D2F (N, ·).

Hence

d∗ωN = −D∗DF

|DF | +
(
DF,D

1

|DF |
)

=
LF

|DF |−
(
DF,

D2F (N, ·)
|DF |2

)

=
LF −D2F (N,N)

|DF | .

Thus d∗ωN ≥ 0 is equivalent to LF −D2F (N,N) ≥ 0.
Now let us take

F (x) =

∫ T

0

x(t)2dt.

Here {x(t)} is a one-dimensional Brownian motion. In this case, an abstract
Wiener space is W0 = {x ∈ C([0, T ] → R); x(0) = 0} with the Wiener mea-
sure µ. The Cameron-Martin space H is the set of all absolutely continuous
function h ∈ W0 with square integrable derivative. The inner product of H
is given by

(h, k) =

∫ T

0

h′(t)k′(t) dt.

Set M = {F ≤ C}. Then, we easily see

LF (x) = 2

∫ T

0

(x(t)2 − t)dt = 2F (x) − T 2,

DF (x) = 2

∫ T

0

x(t)htdt.

11



Here ht ∈ H is defined as follows:

ht(s) = min{s, t}.

DF (x) is an element of H∗ but we identify H∗ with H. Further we have

D2F (x) = 2

∫ T

0

ht ⊗ ht dt.

Hence we have

|D2F (x)|2 = 4

∫ T

0

∫ T

0

(ht, hs)2H dtds = 4

∫ T

0

∫ T

0

min{t, s}2 dtds =
2

3
T 4.

Therefore, on the set ∂M = {F = C},

LF (x) −D2F (x)(N,N) ≥ 2C − T 2 − |D2F (x)| = 2C −
(
1 +

2√
6

)
T 2.

Thus, assuming 2C ≥ (1+ 2√
6
)T 2, we have the vanishing theorem for 1-forms

with the relative boundary condition.
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and J. A. Yan, pp. 235–251, Walter de Gruyter, Berlin-New York, 1995.

[3] D. B. Ray and I. M. Singer, R-torsion and the Laplacian on Riemannian
manifolds, Adv. in Math., 7 (1971), 145–210.

[4] R. C. Reilly, Applications of the Hessian operator in a Riemannian man-
ifold, Indiana Univ. Math. J., 26 (1977), 459–472.

[5] I. Shigekawa, De Rham-Hodge-Kodaira’s decomposition on an abstract
Wiener space, J. Math. Kyoto Univ., 26 (1986), 191–202.

12



[6] I. Shigekawa, Semigroup domination on a Riemannian manifold with
boundary, Acta Applicandae Math., 63 (2000), 385–410.

[7] G. Schwarz, “Hodge-decomposition—a method for solving boundary
value problems ,” Lecture Notes in Math., vol. 1607, Springer-Verlag,
Berlin-Heidelberg-New York, 1995.

[8] C.-Y. Xia, The first nonzero eigenvalue for manifolds with Ricci curva-
ture having positive lower bound, in “Chinese mathematics into the 21st
century,” ed. W.-T. Wu and M.-D. Cheng, pp. 243–249, Peking Univ.
Press, Beijing, 1991.

Department of Mathematics
Graduate School of Science
Kyoto University,
Kyoto 606-8502, Japan
e-mail: ichiro@kusm.kyoto-u.ac.jp
URL: http://www.kusm.kyoto-u.ac.jp/˜ichiro/

13


