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Abstract. We discuss the semigroup domination on a Riemannian manifold with bound-
ary. Our main interest is the Hodge-Kodaira Laplacian for differential forms. We consider
two kinds of boundary conditions; the absolutely boundary condition and the relative
boundary condition. Our main tool is the square field operator. We also develop a
general theory of semigroup commutation.

1. Introduction

In this paper, we discuss a theory of semigroup domination. To be precise, let (X,B,m)
be a σ-finite measure space. Suppose we are given a semigroup {Tt} on L2 = L2(m). We

assume that {Tt} is positivity preserving. Besides, we are given a semigroup {�Tt} acting
on Hilbert space valued square integrable functions. We denote the norm of the Hilbert
space by | · |. If we have

|�Ttu| ≤ Tt|u|, ∀u ∈ L2, (1.1)

we say that the semigroup {�Tt} is dominated by {Tt}. We are interested in when this
inequality holds.
A necessary and sufficient condition for (1.1) is given by the abstract Kato theorem

due to B. Simon [18, 19]. Later E. Ouhabaz [13] gave a necessary and sufficient condition
in terms of bilinear form under the sector condition. In my previous paper [16], we
discuss this problem in the framework of square field operator. Typical example to which
our theorem is applicable is the Hodge-Kodaira Laplacian for differential forms on a
Riemannian manifold (see also [10] in this direction).
In this paper, we consider the Hodge-Kodaira Laplacian on a Riemannian manifold

with boundary. We consider two kinds of boundary condition: the relative boundary
condition and the absolute boundary condition. In this case, we cannot apply the result
in [16] and so we generalize the notion of �Γ that corresponds to the Bakry-Emery Γ2. So

far, �Γ is an L1 function. But in our formulation, it is no more a function; it is a smooth
measure in the sense of Dirichlet form. The positivity of the smooth measure is essential.
Using this notion, we give a sufficient condition to (1.1).
We remark that this kind of problem was also discussed by Donnelly-Li [6]. They proved

the heat kernel domination. We take a different approach. Méritet [12] also proved the
cohomology vanishing theorem.
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The organization of this paper is as follows. In Section 2, we give a generalization of
�Γ and prepare the general theory for the semigroup domination. To do this, we use the
Ouhabaz criterion for the semigroup domination. We also discuss the theory of semigroup
commutation in Section 3. Combining the semigroup domination with the semigroup
commutation, we can reformulate the Bakry-Emery criterion for the logarithmic Sobolev
inequality. In Section 4, we consider the Hodge-Kodaira Laplacian and apply our theory
to it. To give a sufficient condition for the domination, the second fundamental form on
the boundary is crucial.

2. Square field operator and the contraction semigroup

In this section, we discuss the contraction semigroup in the framework of the square
field operator, which is called “opérateur carré du champ” in the French literature. Our
main interest is the semigroup domination on a Riemannian manifold with boundary in
Section 4, but we prepare a general theory in this section.
Let (X,B) be a measurable space and m be a σ-finite measure. Suppose we are given

a strongly continuous contraction symmetric semigroup {Tt} on L2. We further assume
that Tt is Markovian, i.e., if f ∈ L2 satisfies 0 ≤ f ≤ 1, then 0 ≤ Ttf ≤ 1. Here these
inequalities hold a.e. But we do not specify ‘a.e.’ either in the sequel. We denote the
generator by A and the associated Dirichlet form by E .
We note that we can regard {Tt} as a semigroup on Lp(m), p ≥ 1 by the Riesz-Thorin

interpolation theorem. We denote the generator of {Tt} on Lp(m) by Ap.
To introduce the square field operator, we assume the following condition (see Bouleau-

Hirsch [3, Chapter 1, §4] for details):
(Γ) For f , g ∈ Dom(A2), we have f · g ∈ Dom(A1).

Under the above assumption, we set

Γ(f, g) =
1

2
{A1(f · g)− A2f · g − f ·A2g}. (2.1)

Here we remark that our definition of Γ is different from that of [3] up to a constant.
Furthermore we suppose that E has the local property in the following sense (see [3,

Definition I.5.1.2]):

(L) For any real valued function f ∈ Dom(E), F,G ∈ C∞
0 (R),

suppF ∩ suppG = ∅ =⇒ E(F0(f), G0(f) = 0, (2.2)

where F0(x) = F (x)− F (0), G0(x) = G(x)−G(0).

The above condition is satisfied as soon as it is satisfied for each element of a dense
subset of Dom(E). In particular, the following identity is most commonly used: For f ,
g ∈ Dom(E) ∩ L∞,

Γ(fg, h) = fΓ(g, h) + gΓ(f, h) for ∀h ∈ Dom(E). (2.3)

In addition, we are given a strongly continuous semigroup {�Tt} on L2(m;K) where
L2(m;K) is the set of all square integrable K-valued functions, K being a separable

Hilbert space. We denote the generator by �A (or �A2 to specify the space L
2(m;K)). We

also assume that {�Tt} is symmetric and is associated with a bilinear form �E . Of course,
�E is bounded from below.
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Our interest is the following semigroup domination:

|�Ttu| ≤ Tt|u|, ∀u ∈ L2, (2.4)

To give a sufficient condition for (2.4), we now define the square field operator for {�Tt}.
To do this, we imposed the following condition in [16]:

(�Γλ) For u, v ∈ Dom( �A2), we have (u|v)K ∈ Dom(A1) and there exists λ ∈ R such that

A1|u|2 − 2( �A2u|u)K + 2λ|u|2 ≥ 0. (2.5)

Under the above condition we define �Γ by

�Γ(u, v) =
1

2
{A1(u|v)K − ( �A2u|v)K − (u| �A2v)K}. (2.6)

The condition (�Γλ) is rather restrictive. In particular we have to assume that (u|v)K ∈
Dom(A1) for u, v ∈ Dom( �A2). We can define �Γ without this condition. In fact, under the
above definition, a formal calculation leads to

−E((u, v), f) + �E(fu, v) + �E(u, fv) = 2
∫

X

�Γ(u, v)fdm. (2.7)

In the above expression it is only necessary to assume that (u, v) ∈ Dom(E), fu, fv ∈
Dom(�E).
Keeping in mind this observation, we modify the condition (�Γλ) as follows:

(�Γ′
λ-1) For u, v ∈ Dom(�E) ∩ L∞ and f ∈ Dom(E) ∩ L∞, we have (u, v) ∈ Dom(E), fu,

fv ∈ Dom(�E) and moreover Dom(�E) ∩ L∞ is dense in Dom(�E).

(�Γ′
λ-2) There exists

�Γ: Dom(�E)∩L∞ ×Dom(�E)∩L∞ → L1, a smooth measure σ, and a
non-negative symmetric tensor �γ (i.e, �γ is an H∗ ⊗H∗-valued function on X) such that

−E((u, v), f) + �E(fu, v) + �E(u, fv) = 2
∫

X

�Γ(u, v)fdm + 2

∫
X

�γ(ũ, ṽ)f̃dσ

∀f ∈ Dom(E) ∩ L∞, ∀u, v ∈ Dom(�E) ∩ L∞. (2.8)

Here ũ, ṽ, f̃ are quasi-continuous modification of u, v, f , respectively. Of course, we have
assumed that each element of Dom(�E) admits a quasi-continuous modification.

(�Γ′
λ-3) For the real constant λ, it holds that

�Γ(u, u) + λ|u|2 ≥ 0 for u ∈ Dom( �A2). (2.9)

(�Γ′
λ-4) It holds that

�E(u, v) =
∫

X

�Γ(u, v)dm +

∫
X

�γ(ũ, ṽ)dσ ∀u, v ∈ Dom(�E) ∩ L∞. (2.10)

In the sequel, (�Γ′
λ) refers to these four conditions. We emphasize that we assumed the

positivity of �γ and σ. Since Dom(�E) ∩ L∞ is dense in Dom(�E), it is easy to see that �Γ is
well-defined on Dom(�E) × Dom(�E) as a continuous bilinear mapping into L1 and (2.10)

holds for u, v ∈ Dom(�E)
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Next we introduce the following condition on �Γ and �E . It was already appeared in [16].
It is related to the derivation property of �Γ.

( �D) For u, v ∈ Dom(�E) ∩ L∞, f ∈ Dom(E) ∩ L∞, it holds that

2f�Γ(u, v) = −Γ(f, (v|u)K) + �Γ(u, fv) + �Γ(fu, v), (2.11)

From this, we have

2f�Γ(u, u) = −Γ(f, |u|2) + 2�Γ(u, fu). (2.12)

Further, by (2.8), we have

−E((u, u), f) + 2�E(fu, u) = 2
∫

X

�Γ(u, u)fdm + 2

∫
X

�γ(ũ, ũ)f̃dσ. (2.13)

Substituting (2.12) into this equation, we have

−E((u, u), f) + 2�E(fu, u) = −
∫

X

Γ(f, |u|2)dm+ 2
∫

X

�Γ(fu, u)dm+ 2

∫
X

�γ(ũ, ũ)f̃dσ

= −E((u, u), f) + 2
∫

X

�Γ(fu, u)dm+ 2

∫
X

�γ(ũ, ũ)f̃dσ

Thus we have

�E(fu, u) =
∫

X

�Γ(fu, u)dm +

∫
X

�γ(ũ, ũ)f̃dσ. (2.14)

In particular, for f ≥ 0, it holds that
�E(fu, u) ≥

∫
X

�Γ(fu, u)dm. (2.15)

We remark that if 1 ∈ Dom(E), (2.10) follows from (2.14). Here 1 denotes the function
identically equal to 1.
We can give a sufficient condition for (2.4) in terms of square field operator. To do

this, we need the following Ouhabaz’ criterion. For the semigroup domination (2.4), the
following condition is necessary and sufficient:

1. If u ∈ Dom(E), then |u| ∈ Dom(E) and
E(|u|, |u|) ≤ �E(u, u) + λ‖u‖2

2. (2.16)

2. If u ∈ Dom(�E) and f ∈ Dom(E) with 0 ≤ f ≤ |u|, then f sgn u ∈ Dom(�E) and
E(f, |u|) ≤ �E(u, f sgn u) + λ(f, |u|) (2.17)

where sgn u = u/|u|.
Now we have the following theorem.

Theorem 2.1. Assume conditions (Γ), (L), (�Γλ) and ( �D). Then, for u ∈ Dom(�E) we
have |u| ∈ Dom(E) and

Γ(|u|, |u|) ≤ �Γ(u, u) + λ|u|2. (2.18)

In addition, for f ∈ Dom(E) ∩ L∞ and u ∈ Dom(�E) ∩ L∞, we have

{�Γ(fu, fu) + λ|fu|2}1/2 ≤ |f |{�Γ(u, u) + λ|u|2}1/2 + |u|Γ(f, f)1/2. (2.19)
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Furthermore we have the following semigroup domination:

|�Ttu| ≤ eλtTt|u| for u ∈ L2(X ;K) (2.20)

Proof. Many parts are the same as in [16]. We give a proof for completeness. For sim-

plicity, we give a proof in the case λ = 0. Take u ∈ Dom(�E)∩L∞ and f ∈ Dom(E)∩L∞.
From the assumption, v = fu ∈ Dom(�E) and we substitute v in (2.11):

�Γ(fu, fu) + �Γ(u, |f |2u) = 2f�Γ(u, fu) + Γ(f, f |u|2).
Hence

�Γ(fu, fu) = −�Γ(u, |f |2u) + 2f�Γ(u, fu) + Γ(f, f |u|2)
= −|f |2�Γ(u, u)− 1

2
Γ(|f |2, |u|2) + f{2f�Γ(u, u) + Γ(f, |u|2)}+ Γ(f, f |u|2)

= −|f |2�Γ(u, u)− 1

2
fΓ(f, |u|2)− 1

2
fΓ(f, |u|2) + 2|f |2�Γ(u, u)

+ fΓ(f, |u|2) + fΓ(f, |u|2) + |u|2Γ(f, f)
= |f |2�Γ(u, u) + 1

2
fΓ(f, |u|2) + 1

2
fΓ(f, |u|2) + |u|2Γ(f, f).

In particular, if we take f = |u|2, we get
�Γ(|u|2u, |u|2u) = |u|4�Γ(u, u) + 2|u|2Γ(|u|2, |u|2). (2.21)

On the other hand, substituting v = u and f = |u|2 in (2.11), we have
2|u|2�Γ(u, u) + Γ(|u|2, |u|2) = 2�Γ(|u|2u, u).

Taking square,

4|u|4�Γ(u, u)2 + 4|u|2�Γ(u, u)Γ(|u|2, |u|2) + Γ(|u|2, |u|2)2
= 4�Γ(|u|2u, u)2
≤ 4�Γ(|u|2u, |u|2u)�Γ(u, u) (by the Schwarz inequality)

= 4{|u|4�Γ(u, u) + 2|u|2Γ(|u|2, |u|2)}�Γ(u, u) (∵ (2.21))

= 4|u|4�Γ(u, u)2 + 8|u|2Γ(|u|2, |u|2)�Γ(u, u).
Thus we have

Γ(|u|2, |u|2) ≤ 4|u|2�Γ(u, u). (2.22)

Now for ε > 0, set ϕε(t) =
√
t+ ε2 − ε. Then by the derivation property and (2.22),

Γ(ϕε(|u|2), ϕε(|u|2)) ≤ 1

4(|u|2 + ε2)
Γ(|u|2, |u|2) ≤ 4|u|2

4(|u|2 + ε2)
�Γ(u, u) ≤ �Γ(u, u).

From this we can show that {ϕε(|u|2)}ε>0 is a bounded set in Dom(E). In fact
E(ϕε(|u|2), ϕε(|u|2)) =

∫
X

Γ(ϕε(|u|2), ϕε(|u|2))dm

≤
∫

X

�Γ(u, u)dm

≤ �E(u, u).
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Hence we can take a sequence {εj} tending to 0 such that {ϕεj
(|u|2)}j converges weakly

in Dom(E). The limit is |u| since it converges to |u| strongly in L2. This means that
|u| ∈ Dom(E). Further, taking a subsequence if necessary, we may assume that the
Cesaro mean converges strongly in Dom(E), i.e.,

1

n

n∑
j=1

ϕεj
(|u|2)→ |u| strongly in Dom(E).

By the continuity of Γ, we have

Γ(
1

n

n∑
j=1

ϕεj
(|u|2), 1

n

n∑
j=1

ϕεj
(|u|2))→ Γ(|u|, |u|) strongly in L1.

On the other hand, by the Minkowski inequality, it follows that

Γ(
1

n

n∑
j=1

ϕεj
(|u|2), 1

n

n∑
j=1

ϕεj
(|u|2))1/2 ≤ 1

n

n∑
j=1

Γ(ϕεj
(|u|2), ϕεj

(|u|2))1/2 ≤ �Γ(u, u)1/2.

Therefore we have

Γ(|u|, |u|) ≤ �Γ(u, u). (2.23)

In fact, it is enough to take a sequence {εn} such that the Cesaro mean of {ϕεn(|u|2)}
converges to |u| in Dom(E).
Now we return to �Γ(fu, fu):

�Γ(fu, fu) = |f |2�Γ(u, u) + 1
2
fΓ(f, |u|2) + 1

2
fΓ(f, |u|2) + |u|2Γ(f, f)

≤ |f |2�Γ(u, u) + |f |Γ(|u|2, |u|2)1/2Γ(f, f)1/2 + |u|2Γ(f, f)
≤ |f |2�Γ(u, u) + 2|f ||u|�Γ(u, u)1/2Γ(f, f)1/2 + |u|2Γ(f, f)
= {|f |�Γ(u, u)1/2 + |u|Γ(f, f)1/2}2

which shows (2.19).

We show that for g ∈ Dom(E) ∩ L∞
+ and u ∈ Dom(�E) ∩ L∞ we have

�E(u, gu) ≥ E(g|u|, |u|). (2.24)

To see this,

�E(u, gu) ≥
∫

X

�Γ(u, gu)dm (∵ (2.15))

=

∫
X

{g�Γ(u, u) + 1
2
Γ(g, |u|2)}dm

≥
∫

X

{gΓ(|u|, |u|) + |u|Γ(g, |u|)}dm

=

∫
X

Γ(g|u|, |u|)dm
= E(g|u|, |u|).
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Now we have to check Ouhabaz’ condition. Since we have assumed that Dom(�E) ∩ L∞ is

dense in Dom(�E), for any u ∈ Dom(�E), we take a sequence {un} ⊆ Dom(�E) ∩ L∞ that

converges to u in Dom(�E). Set
ψε(t) =

1

1 + εt
, t ≥ 0.

Then ψε(|un|)|un| ∈ Dom(E) and by (2.19) we have
�Γ(ψε(|un|)un, ψε(|un|)un)

1/2 ≤ ψε(|un|)�Γ(un, un)
1/2 + |un|Γ(ψε(|un|), ψε(|un|))1/2

≤ ψε(|un|)�Γ(un, un)
1/2 + |un||ψ′

ε|Γ(|un|, |un|)1/2

≤
{
ψε(|un|) + ε|un|

(1 + ε|un|)2
}
�Γ(un, un)

1/2

≤ 2ψε(|un|)�Γ(un, un)
1/2

≤ 2�Γ(un, un)
1/2.

Now

�E(ψε(|un|)un, ψε(|un|)un)

=

∫
X

�Γ(ψε(|un|)un, ψε(|un|)un)dm+

∫
X

�γ(ψε(|un|)un, ψε(|un|)un)dσ

≤
∫

X

�Γ(un, un)dm+

∫
X

�γ(un, un)dσ

= �E(un, un).

Thus we have {ψε(|un|)un} is �E1 bounded and converges to ψε(|u|)u strongly in L2 by

taking a subsequence if necessary. Therefore we have ψε(|u|)u ∈ Dom(�E) ∩ L∞.
For any f ∈ Dom(E) and u ∈ Dom(�E) with 0 ≤ f ≤ |u|. We further assume that u is

bounded. Set

ϕε(t) =
1

t+ ε
and

g = fϕε(|u|) = f

|u|+ ε
.

Clearly g ∈ Dom(E) ∩ L∞. Now substituting g into (2.24), we have

E(|u|, f

|u|+ ε
|u|) ≤ �E(u, f

|u|+ ε
u).

We note that the boundedness of u is necessary to obtain this inequality. Letting ε → 0,
we get the desired result. To do this, we note

�Γ(fϕε(|u|)u, fϕε(|u|)u)1/2 ≤ fϕε(|u|)�Γ(u, u) + |u|Γ(fϕε(|u|), fϕε(|u|))1/2

and further

�Γ(fϕε(|u|), fϕε(|u|))1/2 ≤ fΓ(ϕε(|u|), ϕε(|u|))1/2 + ϕε(|u|)Γ(f, f)
≤ f |ϕ′

ε(|u|)|Γ(|u|, |u|)1/2+ ϕε(|u|)Γ(f, f)
≤ ϕε(|u|){Γ(|u|, |u|)1/2+ Γ(f, f)}.
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Combining both of them, we have

�Γ(fϕε(|u|)u, fϕε(|u|)u)1/2 ≤ fϕε(|u|)�Γ(u, u) + |u|ϕε(|u|){Γ(|u|, |u|)1/2+ Γ(f, f)}
≤ 2�Γ(u, u)1/2 + Γ(f, f)1/2.

Now we have {fϕε(|u|)u; ε > 0} is bounded in Dom(�E). Clearly fϕε(|u|)u → f sgn u in

L2 and hence we have f sgn u ∈ Dom(�E). Moreover, we can take a sequence whose Cesaro
mean converges strongly in Dom(�E), and hence we have

�Γ(f sgn u, f sgn u)1/2 ≤ 2�Γ(u, u)1/2 + Γ(f, f)1/2 (2.25)

and

E(|u|, f) ≤ �E(u, f sgn u). (2.26)

Lastly we remove the restriction of the boundedness of u. So now we do not assume
that u is bounded. So first we notice that

ψε(|u|)|u| ≥ ψε(f)f

and both are bounded. We take a sequence εj converging to 0 such that

uN =
1

N

N∑
j=1

ψεj
(|u|)u → u strongly in Dom(�E),

fN =
1

N

N∑
j=1

ψεj
(f)f → f strongly in Dom(E).

Now uN is bounded and fN ≤ |uN | and hence, by using (2.26) we have
E(|uN |, fN) ≤ �E(uN , fN sgn uN). (2.27)

By taking a subsequence if necessary, we may assume that {|uN |} converges to |u| weakly
in Dom(E) and {fN sgn uN} converges to f sgn u weakly in Dom(�E). Hence, by taking
limit, we have

E(|u|, f) ≤ �E(u, f sgn u) (2.28)

which is the desired result. This completes the proof.

As before, it is sufficient to assume ( �D) for elements of a core. We state it as a
proposition. We also include an analogue of (Γ′).

Proposition 2.2. Assume that the assumptions (Γ) and (L) hold. Furthermore assume

that there exist an algebra C ⊆ Dom(E) ∩ L∞ and a subspace D ⊆ Dom( �A2) ∩ L∞ such

that fu ∈ D (i.e, D is a C-module), (u, v) ∈ C for f ∈ C, u, v ∈ D and further (�Γ′
λ)

and ( �D) hold for f ∈ C, u, v ∈ D, e.g., (�Γ′
λ-2) means that any element in D admits a

quasi-continuous modification and (2.8) holds. We also suppose that C is a core for E and

D is a core for �E .
Then (�Γλ) and ( �D) are satisfied for f ∈ Dom(E) ∩ L∞, u, v ∈ Dom(�E) ∩ L∞.
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Proof. We may suppose λ = 0. Take u ∈ D and f ∈ C. From the assumption, v = fu ∈ D.
Now by the same argument as in the proof of Theorem 2.1, we have

�Γ(fu, fu) = f2�Γ(u, u) +
1

2
fΓ(f, |u|2) + 1

2
fΓ(f, |u|2) + |u|2Γ(f, f)

≤ f2�Γ(u, u) + |f |Γ(f, f)1/2Γ(|u|2, |u|2)1/2 + |u|2Γ(f, f).
Clearly this shows that

�E(fu, fu) =
∫

X

�Γ(fu, fu)dm +

∫
X

�γ(fu, fu)dσ

≤ ‖f‖2
∞

∫
X

�Γ(u, u)dm+ ‖f‖∞
∫

X

Γ(f, f)1/2Γ(|u|2, |u|2)1/2dm

+ ‖u‖2
∞

∫
X

Γ(f, f)dm+ ‖f‖2
∞

∫
X

�γ(u, u)dσ

≤ ‖f‖2
∞

∫
X

�Γ(u, u)dm+ ‖f‖∞
{∫

X

Γ(f, f)dm
}1/2{∫

X

Γ(|u|2, |u|2)dm
}1/2

+ ‖u‖2
∞

∫
X

Γ(f, f)dm+ ‖f‖2
∞

∫
X

�γ(u, u)dσ

= ‖f‖2
∞�E(u, u) + ‖f‖∞E(f, f)1/2E(|u|2, |u|2)1/2 + ‖u‖2

∞E(f, f).
We claim that for f ∈ Dom(E) ∩ L∞, u ∈ D, we have fu ∈ Dom(�E) and (2.11), (2.8)

hold. To show this, take any real valued function f ∈ C. Then, for any C1-function
F : R → R, we take a sequence of polynomials {Pn} such that Pn → F uniformly on

any compact sets up to the first derivative. Since �E(Pn(f)u, Pn(f)u) is bounded and

Pn(f)u → F (f)u in L2. Thus we have F (f)u ∈ Dom(�E) and
2F (f)�Γ(u, v) = Γ(F (f), (u|v)K)− �Γ(u, F (f)v) − �Γ(F (f)u, v) (2.29)

�E(F (f)u, F (f)u) ≤ 2‖F (f)‖2
∞�E(u, u) + 2‖F (f)‖∞E(F (f), F (f))1/2E(|u|2, |u|2)1/2

+ 2‖u‖2
∞E(F (f)f, F (f)). (2.30)

Now for any f ∈ Dom(E) ∩ L∞, we take a bounded C1 function ϕ such that ϕ(t) = t
for |t| ≤ ‖f‖∞. Let {fn} ⊆ C be a sequence converging to f in Dom(E). Clearly
gn = ϕ(fn) → f weakly in Dom(E) and {gn} is uniformly bounded. Moreover, by (2.30)
we have supn

�E(gnu, gnu) < ∞. Hence we can extract a subsequence {gnj
u} whose Cesaro

mean converges strongly in Dom(�E). Together with the fact that gnu → fu in L2, we can

see that for f ∈ Dom(E) ∩ L∞ and u ∈ D, we have fu ∈ Dom(�E) and (2.11) hold.
Since (2.11) holds for u, v ∈ D and f ∈ Dom(E) ∩ L∞, we can take f = |u|2. By

repeating the argument in the proof of Theorem 2.1, for u ∈ D and f ∈ Dom(E) ∩ L∞,
we have fu ∈ Dom(�E) and

�Γ(fu, fu)1/2 ≤ |f |�Γ(u, u)1/2 + |u|Γ(f, f)1/2 (2.31)

Γ(|u|, |u|) ≤ �Γ(u, u) (2.32)

Since D is dense in Dom(�E), it is easy to see that (2.32) holds for u ∈ Dom(�E).

9



Now we can prove (2.11) for f ∈ Dom(E)∩L∞ and u ∈ Dom(�E)∩L∞. Take any u ∈ D.
For ε > 0, set

ψε(t) =
1

1 + εt
, t ∈ [0,∞).

Note that ψ′
ε = − ε

(1+εt)2
. Since ψε(|u|) ∈ Dom(E), we have ψε(|u|)u ∈ Dom(�E), and

�Γ(fψε(|u|)u, fψε(|u|)u)1/2

≤ |f |ψε(|u|)�Γ(u, u)1/2 + |u|Γ(fψε(|u|), fψε(|u|))1/2

≤ |f |ψε(|u|)�Γ(u, u)1/2 + |u|{ψε(|u|)2Γ(f, f) + 2ψε(|u|)ψ′
ε(|u|)fΓ(|u|, f)

+ f2ψ′
ε(|u|)2Γ(|u|, |u|)}1/2

≤ |f |ψε(|u|)�Γ(u, u)1/2 + |u|{ψε(|u|)2Γ(f) + 2ψε(|u|)ψ′
ε(|u|)|f |Γ(|u|, |u|)1/2Γ(f, f)1/2

+ f2ψ′
ε(|u|)2Γ(|u|, |u|)}1/2

≤ |f |ψε(|u|)�Γ(u, u)1/2 + |u|ψε(|u|)Γ(f, f)1/2

+ 2ψε(|u|)|ψ′
ε(|u|)||f |Γ(|u|, |u|)1/2Γ(f, f)1/2 + f2|ψ′

ε(|u|)|2Γ(|u|, |u|)}1/2

≤ |f |ψε(|u|)�Γ(u, u)1/2 + |u|ψε(|u|)Γ(f, f)1/2 + |u||f ||ψ′
ε(|u|)|�Γ(u, u)1/2.

Now for any v ∈ Dom(�E)∩L∞, we take a sequence {un} ⊆ D converging to v in Dom(�E).
Then by the above estimate, we can see that

sup
n

�E(fψε(|un|)un, fψε(|un|)un) < ∞.

Hence, by virtue of Banach-Saks theorem, we have, by taking a subsequence if necessary,
the Cesaro mean of {fψε(|un|)un} converges to fψε(|u|)u in Dom(�E). Moreover, by noting
that

�Γ(
1

n

n∑
k=1

fψε(|uk|)uk,
1

n

n∑
k=1

fψε(|uk|)uk)
1/2

≤ 1

n

n∑
k=1

�Γ(fψε(|uk|)uk, fψε(|uk|)uk)
1/2

≤ 1

n

n∑
k=1

{|f |ψε(|uk|)�Γ(uk, uk)
1/2 + |uk|ψε(|uk|)Γ(f, f)1/2 + |uk||f ||ψ′

ε(|uk|)|�Γ(uk, uk)
1/2}.

Letting n→ ∞, we have for v ∈ Dom(�E) ∩ L∞,

�Γ(fψε(|u|)v, fψε(|v|)v)1/2 ≤ |f |ψε(|v|)�Γ(v, v)1/2 + |v|ψε(|v|)Γ(f, f)1/2

+ |v||f ||ψ′
ε(|v|)|�Γ(v, v)1/2.

Next, letting ε → 0, we eventually obtain that fv ∈ Dom(�E) and
�Γ(fv, fv)1/2 ≤ |f |�Γ(v, v)1/2 + |v|Γ(f, f)1/2.

Next, we see that (2.11) holds for u, v ∈ Dom(�E) ∩ L∞ and f ∈ Dom(E) ∩ L∞. To see
this, we first note the following identity: for u, v ∈ D and f, ψ ∈ Dom(E),

2f�Γ(ψu, v) = Γ(f, (v|ψu)K)− �Γ(ψu, fv) − �Γ(fψu, v).
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This identity is clear from the assumption if ψ ∈ C. By an approximating argument, we
can see it for ψ ∈ Dom(E) ∩ L∞. Using this, we can repeat the above argument and get
the desired result.
So far, we have obtained that Dom(�E) ∩ L∞ is a Dom(E) ∩ L∞-module. We can also

prove (2.8). Here we remark that every element of Dom(�E) admits a quasi-continuous
modification. To see this, we note that for u ∈ D,

Cap1(|u| ≥ ε) ≤ 1

ε2
E1(|u|, |u|)

≤ 1

ε2

∫
X

Γ(|u|, |u|)dm+
∫

X

|u|2dm

≤ 1

ε2

∫
X

�Γ(u, u)dm+

∫
X

|u|2dm

≤ 1

ε2
�E1(u, u).

The rest is easy by a standard Borel-Cantelli argument.
This completes the proof.

3. Commutation relation

In this section, we discuss the commutation relation between two semigroups. Combin-
ing this with semigroup domination, we can discuss the logarithmic Sobolev inequality
along the Bakry-Emery argument.
Let B and B̂ be Banach spaces. We assume that B̂ is reflexive. Suppose we are given

strongly continuous semigroups {Tt} on B and {T̂t} on B̂. We denote their generators

by A and Â, respectively. We also denote the resolvents of A and Â by Gα and Ĝα,
respectively. Further, we are given a closed linear operator D from B to B̂ with the
dense domain Dom(D). The dual operator of D is denoted by D∗. We assume that
Dom(A) ⊆ Dom(D). Under this condition, we have the following theorem.
Theorem 3.1. Then the following conditions are equivalent to each other.

(i) Dom(Â∗) ⊆ Dom(D∗) and

〈Au,D∗θ〉 = 〈Du, Â∗θ〉, ∀u ∈ Dom(A), ∀θ ∈ Dom(Â∗). (3.1)

(ii) For sufficiently large α,

DGαu = ĜαDu, ∀u ∈ Dom(D). (3.2)

(iii) For any t ≥ 0, TtDom(D) ⊆ Dom(D) and

DTtu = T̂tDu, ∀u ∈ Dom(D). (3.3)

Proof. First we show the implication (i) ⇒ (ii). We note that {T̂ ∗
t } is also a strongly

continuous semigroup with the generator Â∗ from the reflexivity of B̂. From (i), we have,
for u ∈ Dom(A) and θ ∈ Dom(Â∗),

〈(α−A)u,D∗θ〉 = 〈Du, (α − Â∗)θ〉.
Substituting u = Gαv, θ = Ĝ∗

αξ, we have

〈v,D∗Ĝ∗
αξ〉 = 〈DGαv, ξ〉.
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If v ∈ Dom(D), it follows
〈ĜαDv, ξ〉 = 〈DGαv, ξ〉

which implies (ii).
To show (ii) ⇒ (iii), we note that for any integer n,

DGn
αu = Ĝn

αDu

which can be easily shown by the induction on n. Since the semigroup can be expresses
in terms of the resolvents as

Ttu = lim
n→∞

(n
t
Gnt

)n

u,

we have for u ∈ Dom(D),
T̂tDu = lim

n→∞

(n
t
Ĝnt

)n

Du

= lim
n→∞

D
(n
t
Ĝnt

)n

u.

This, combined with the closeness of D, implies Ttu ∈ Dom(D) and T̂tDu = DTtu.
The implication (iii) ⇒ (ii) can be similarly shown by noting

Gαu =

∫ ∞

0

e−αtTtudt.

Lastly we show (ii) ⇒ (i). From assumption Dom(A) ⊆ Dom(D), the closed operator

S = DGα is defined whole space B and hence bounded. Hence, for u ∈ Dom(D), θ ∈ B̂∗,
we have

〈u, S∗θ〉 = 〈Su, θ〉 = 〈DGαu, θ〉 = 〈ĜαDu, θ〉 = 〈Du, Ĝ∗
αθ〉.

Now, setting θ = (α− Â∗)ξ, ξ ∈ Dom(Â∗), we have

〈u, S∗(α − Â∗)ξ〉 = 〈Du, ξ〉.
From this, it follows ξ ∈ Dom(D∗). Thus, for ξ ∈ Dom(Â∗), it holds that

〈Su, (α − Â∗)ξ〉 = 〈u,D∗ξ〉, ∀u ∈ Dom(D). (3.4)

Since Dom(D) is dense in B, the above identity holds for all u ∈ B. In particular, if we
set u = (α− A)v, v ∈ Dom(A), we have

〈S(α −A)v, (α − Â∗)ξ〉 = 〈(α− A)v,D∗ξ〉.
By noting S(α − A)v = DGα(α −A)v = Dv, we get (i). This completes the proof.

Next we give an sufficient condition for the above theorem. We consider the same
situation as in Theorem 3.1. In the sequel, any domain of an operator is equipped with a
topology given by the graph norm.

Proposition 3.2. Suppose that there exist a subspace D ⊂ Dom(A) satisfying one of the
following conditions:

(i) AD ⊆ Dom(D), DD ⊆ Dom(Â), D is dense in Dom(A) and Dom(Â∗) ⊆ Dom(D∗),
Further for any u ∈ D, it holds that

DAu = ÂDu. (3.5)

(ii) AD ⊆ Dom(D), DD ⊆ Dom(Â) and (α − A)D is dense in Dom(D) for sufficiently
large α. Further (3.5) holds for any u ∈ D.
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Then, one of (and hence all) three conditions in Theorem 3.1 holds.

Proof. First we assume (i). Then, for any u ∈ D and θ ∈ Dom(Â∗), we have

〈Au,D∗θ〉 = 〈DAu, θ〉 = 〈ÂDu, θ〉 = 〈Du, Â∗θ〉.
Since D is dense in Dom(A), we can see that 〈Au,D∗θ〉 = 〈Du, Â∗θ〉 holds for u ∈ Dom(A)
and θ ∈ Dom(Â∗). Here, we use that D is a bounded operator from Dom(A) to B̂. Hence
(i) in Theorem 3.1 holds.

Next assume (ii). From the assumption, we have for u ∈ D and θ ∈ Dom(Â∗),

〈D(α−A)u, θ〉 = 〈(α− Â)Du, θ〉 = 〈Du, (α − Â∗)θ〉.
If we see v = (α− A)u ∈ (α − A)D, it follows that

〈Dv, θ〉 = 〈DGαv, (α − Â∗)θ〉.
Now, using the denseness of (α − A)D in Dom(D), the above identity holds for all v ∈
Dom(D). Further, as was seen in the proof of Theorem 3.1, S = DGα is a bounded
operator on B, we have

〈Dv, θ〉 = 〈v, S∗(α − Â∗)θ〉 ∀v ∈ Dom(D).
Then it follows θ ∈ Dom(D∗) which implies Dom(Â∗) ⊆ Dom(D∗). Hence, this case is
reduce to the case (i).

Now, we take Hilbert spaces H and Ĥ in place of Banach spaces B and B̂. Moreover
generators A and Â are self-adjoint and associated with the closed quadratic forms E and
Ê , respectively. Of course, E and Ê are bounded from below. Then we have the following;
Proposition 3.3. Suppose that there exist a subspace D ⊂ Dom(A3/2) satisfying the

following conditions. Dom(E) ⊆ Dom(D), DD ⊆ Dom(Â), D is dense in Dom(A3/2),
and it holds that

DAu = ÂDu, ∀u ∈ D. (3.6)

Then, one of (and hence all) three conditions in Theorem 3.1 holds.

Proof. From the assumption D ⊆ Dom(A3/2), we have (α−A)D ⊆ Dom(A1/2) = Dom(E).
Moreover (α−A)D is dense in Dom(E) by virtue of the denseness of D in Dom(A3/2). By
an argument similar to the proof of Proposition 3.2 (ii), we can get the conclusion.

We can also give another sufficient condition.

Proposition 3.4. We assume the following conditions:

D ⊆ Dom(A) ⊆ Dom(E) ⊆ Dom(D),
D̂ ⊆ Dom(Â) ⊆ Dom(Ê) ⊆ Dom(D∗),

DDom(A) ⊆ Dom(Ê),
D∗D̂ ⊆ Dom(E).

D is a dense subspace of Dom(E) and D̂ is a dense subspace of Dom(Ê). Further, we
assume that it holds

(Au,D∗θ) = (Du, Âθ), for u ∈ D, θ ∈ D̂. (3.7)

Then, one of (and hence all) three conditions in Theorem 3.1 holds.
13



Proof. Take any u ∈ D, θ ∈ D̂. From the assumption, D∗θ ∈ Dom(E) and hence
E(u,D∗θ) = (Au,D∗θ) = (Du, Âθ).

Now using the denseness of D in Dom(E), we have
E(u,D∗θ) = (Du, Âθ), for u ∈ Dom(E), θ ∈ D̂.

In particular, Du ∈ Dom(Ê) for u ∈ Dom(Ê), we have, for θ ∈ D̂
(Au,D∗θ) = E(u,D∗θ) = (Du, Âθ),= Ê(Du, θ).

Since D̂ is dense in Dom(Ê), we obtain
(Au,D∗θ) = Ê(Du, θ) for u ∈ Dom(A), θ ∈ Dom(Ê).

Taking θ from Dom(Â) ⊆ Dom(E), it holds that
(Au,D∗θ) = Ê(Du, θ) = (Du, Âθ), for u ∈ Dom(A), θ ∈ Dom(Â),

which is the desired result.

Remark 3.1. The condition (3.7) can be replaced by DAu = ÂDu for u ∈ D. Of course
in this case we assume that they are well-defined.

In many applications, E is given by
E(u, v) = (Du,Dv)Ĥ . (3.8)

Hence the assumption Dom(D) ⊆ Dom(E) is automatic, i.e., the identity holds.
Now we formulate the Bakry-Emery criterion for the logarithmic Sobolev inequality

in our setting. Let the notations be as before and we impose the following conditions.
The Hilbert space H is L2(X,m) on a measure space (X,m). We assume that m is a
probability measure. The quadratic form E is a local Dirichlet form with 1 ∈ Dom(E)
and E(1, 1) = 0. D is a closed operator (usually first order differential operator) from
L2(X,m) to the space of L2 sections of a vector bundle E over X . We assume, for the
notational simplicity, that E is a trivial bundle with a fiber K that is a Hilbert space.
We denote ∇ instead of D. We assume that the square field operator is given by

Γ(f, g)(x) = (∇f(x),∇g(x))K (3.9)

The Dirichlet form E is written as
E(f, g) =

∫
X

(∇f(x),∇g(x))Kdm (3.10)

Suppose further that we are given another symmetric semigroup {�Tt} on L2(m;K). We
assume the following semigroup domination for which we have given a sufficient condition
in the previous section.

|�Ttθ| ≤ e−λtTt|θ| (3.11)

Lastly we assume that the following commutativity condition:

�Tt∇f = ∇Ttf. (3.12)

As we have seen, we already have sufficient conditions for this.
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Under the above conditions, we can show the logarithmic Sobolev inequality for the
Dirichlet form E . Before that, let us see the relation to the Bakry-Emery Γ2-criterion.
Suppose the following commutativity condition on a space D,

∇Af = �A∇f, ∀f ∈ D. (3.13)

Of course, we have to choose a suitable space D. We ignore the technical detail for a
while. We also assume the condition (�Γλ). Hence �Γ is realized as an L

1 function. Under
these conditions,

2�Γ(∇f,∇g) = A1(∇f,∇g)− ( �A∇f,∇g)− (∇f, �A∇g)
= A1(∇f,∇g)− (∇Af,∇g)− (∇f,∇Ag)
= A1Γ(f, g)− Γ(Af, g)− Γ(f, Ag).

The right hand side is usually called the Bakry-Emery Γ2. So our condition (2.9) corre-
sponds to

Γ2(f, f) ≥ λΓ(f, f)

which is the famous Bakry-Emery criterion.
Now we can state the Bakry-Emery theorem in our formulation as follows:

Theorem 3.5. Under assumptions (3.11) and (3.12) for λ > 0, the following logarithmic
Sobolev inequality holds:∫

X

f2 log(f2/‖f‖2
2)dm ≤ 2

λ
E(f, f), ∀f ∈ Dom(E). (3.14)

Proof. From our assumption, it holds that

|�Ttω| ≤ e−λtTt|ω|.
Therefore, taking ω = ∇f , we have

|∇Ttf | ≤ e−λtTt|∇f |.
Now the rest is the standard argument (see e.g., Deuschel-Stroock [4, Proof of Theo-

rem 6.2.42]).

4. Riemannian manifold with boundary

In this section, we consider a Riemannian manifold with boundary.
Let M be a d-dimensional compact Riemannian manifold with a boundary ∂M . We

assume that everything is smooth. As usual, the Hodge-Kodaira Laplacian is defined as
follows:

� = −(dδ + δd). (4.1)

Here d is the exterior differentiation and δ is its (formal) dual. To specify that it acts
p-forms, we denote it by �(p). Moreover we suppose that � is defined on a set of all
C∞ differential forms. We always assume that differential forms are always smooth, i.e.,
C∞. Later we consider symmetric operators but they are all essentially self-adjoint on
smooth differential forms (to be precise, under a suitable boundary condition) and hence
it is enough to achieve formal calculation on smooth forms. We denote the p-th exterior
bundle of T ∗M by

∧p T ∗M . The set of all smooth differential p-forms, i.e., smooth sections
of

∧p T ∗M , will be denoted by Ap(M).
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Since the manifold M has a boundary, we have to impose boundary condition. Several
boundary conditions are known but we consider the two conditions: the absolute boundary
condition and the relative boundary condition. To describe boundary condition, we intro-
duce the following local coordinate (x1, x2, . . . , xd−1, r) near the boundary: The local coor-
dinate gives an diffeomorphism between a neighborhood inM and U× [0, ε) ⊂ R

d−1×R+.
We identify the neighborhood in M with U × [0, ε) through the local coordinate. We as-
sume that, on the boundary ∂M , r = 0 and ∂

∂xj ⊥ ∂
∂r
, j = 1, . . . , d−1. We denote the inner

normal vector by N , i.e., N = ∂
∂r
. Further we assume that for fixed (x1

0, . . . x
d−1
0 ) ∈ U ,

γt = (x1
0, . . . x

d−1
0 , t) is a geodesic with the velocity 1. For any 1-form θ on M , we can

decompose it as

θ = θt + θn ∧ dr (4.2)

where neither θn nor θt contains dr. This decomposition is well-defined on the boundary.
Using this decomposition, we define

Br(θ) = θt (4.3)

Ba(θ) = θn. (4.4)

Recall that θt and θn are defined only on ∂M . The suffix r stands for the relative boundary
condition and a for the absolute boundary condition. We use these operators to define
the boundary condition.
In the sequel, B stands for either Br or Ba. Now we restrict the domain of � according

to boundary condition. Set

Dom(�B
(p)) = {φ ∈ Ap(M); Bφ = 0, B(d + δ)φ = 0}. (4.5)

By an integration by parts formula for differential forms, we can see that �B
(p) is symmetric

and moreover it is essentially self-adjoint on Dom(�B
(p)). We can think of the associated

bilinear form EB
(p), which is given as follows:

Dom(EB
(p)) = {φ ∈ Ap(M); Bφ = 0} (4.6)

and

EB
(p)(ω, η) = (dω, dη) + (δω, δη). (4.7)

Let see why this is so. We recall the integration by parts formula for differential forms.
Take any ω ∈ Ap(M) and η ∈ Ap+1(M), then it holds that∫

M

(dω, η)dm =

∫
M

(ω, δη)dm +

∫
∂M

ω ∧ ∗η. (4.8)

Here ∗ is the Hodge star operator which sends p-form to d− p-form. Now we have

−(�Ba

(p)ω, η) = −
∫

M

(�Ba

(p)ω, η)dm

=

∫
M

(dδω + δdω, η)dm

=

∫
M

(δω, δη)dm+

∫
∂M

δω ∧ ∗η +
∫

M

(dω, dη)dm −
∫

∂M

η ∧ ∗dω

=

∫
M

(δω, δη)dm+

∫
M

(dω, dη)dm
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= EBa

(p) (ω, η).

Here dσ is the surface element of ∂M . We used the boundary condition Ba to get δω∧∗η =
0 on ∂M . To see this, ∗η contains dr since Baη = 0. On the other hand, δω does not
contain dr since Baδω = 0. Hence δω ∧ ∗η contains dr. Therefore δω ∧ ∗η = 0 on ∂M
since dr = 0 on ∂M . η ∧ ∗dω also vanishes on ∂M .
We can show similar identity for �Br

(p)

Next we see the commutation relation. Formally the commutation relation d� = �d
holds i.e., at least in the interior of M . But the boundary condition is involved and we
need some arguments.
Take ω ∈ Dom(�Ba

(p)), η ∈ Dom(�Ba

(p+1))

−
∫

M

(�ω, δη)dm =

∫
M

(dδω + δdω, δη)dm

=

∫
M

(δω + δdω, δδη)dm +

∫
∂M

δω ∧ ∗δη

+

∫
M

(dω, dδη)dm −
∫

∂M

δη ∧ ∗dw

=

∫
M

(dω, dδη)dm +

∫
M

(ddω, dη)dm

=

∫
M

(dω, dδη)dm +

∫
M

(dω, δdη)dm +

∫
∂M

dω ∧ ∗dη

= −
∫

M

(dω,�η)dm.

We used the boundary condition Ba. Absolutely same argument works for Br .
Now invoking the essential self-adjointness of �Ba

(p) and �Br

(p), we can get the semigroup

commutation. Of course, we must choose the same boundary condition.
We proceed to the issue of semigroup domination. For 0-forms, i.e., scalar functions,

the boundary condition Ba corresponds to the Neumann condition:
∂f
∂r
= 0 on ∂M . On

the other hand, Br corresponds to the Dirichlet boundary condition: f = 0 on ∂M . From
now on, for scalar functions, we always consider the Neumann Laplacian �Ba

(0) and we

denote it by ∆ for simplicity. We also denote the associated Dirichlet form by E , i.e.,
E = EBa

(0) . We do not use the Dirichlet form (for scalar functions) with Dirichlet boundary

condition. The reason is that the semigroup generated by Hodge-Kodaira Laplacian can
not be dominated by the Dirichlet semigroup since the diffusion dies after hitting the
boundary.
In order to apply our theorem, we have to check condition (�Γλ). In particular, to show

(2.8), we have to calculate −E((θ, η), f) + �E(fθ, η) + �E(θ, fη).
First we note that

−
∫

M

∆(θ, η)fdm =

∫
M

∇∗∇(θ, η)fdm

=

∫
M

δd(θ, η)fdm

=

∫
M

(d(θ, η), df)dm +

∫
∂M

f〈d(θ, η), N〉dσ
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(∵ Green-Stokes formula)

= E((θ, η), f) +
∫

∂M

f∇N (θ, η)dσ.

Here dσ denotes the surface element of ∂M and we recall that N is the inner normal
vector. Hence

E((θ, η), f) = −
∫

M

∆(θ, η)fdm−
∫

∂M

f∇N(θ, η)dσ.

On the other hand, it holds that

∆(θ, η) + (∇∗∇θ, η) + (θ,∇∗∇η) = 2(∇θ,∇η).
By the Weitzenböck formula −�B

(p) = ∇∗∇+ R(p), we have

∆(θ, η)− (�B
(p)θ, η) − (θ,�B

(p)η) = 2(∇θ,∇η) + 2R(p)(θ, η).

We do not give the explicit form of R(p), but we just say that R(p) can be written in terms
of the curvature. Now by combining these identities, we can obtain the following identity:

−E((θ, η), f) + EB
(p)(fθ, η) + EB

(p)(θ, fη)

= 2

∫
M

(∇θ,∇η)fdm+ 2
∫

M

R(p)(θ, η)fdm+ 2

∫
∂M

∇N(θ, η)fdσ (4.9)

In fact

−E((θ, η), f) + EB
(p)(fθ, η) + EB

(p)(θ, fη)

=

∫
M

∆(θ, η) · fdm + 2
∫

∂M

∇N(θ, η)fdσ −
∫

M

{(�B
(p)θ, η)f − (θ,�B

(p)η)f}dm

= 2

∫
M

(∇θ,∇η)fdm+ 2
∫

M

R(p)(θ, η)fdm+ 2

∫
∂M

∇N (θ, η)fdσ

Therefore �Γ in (�Γ′
λ-2) is given as

�Γ(θ, η) = (∇θ,∇η) + R(p)(θ, η). (4.10)

We can easily check the condition ( �D) in this case. The rest is to show that the third
part of L.H.S. in (4.9) corresponds to �γdσ in (2.8).
We take a local frame {ω1, . . . , ωd−1, dr} in T ∗M so that it forms a orthonormal basis

and ωj is parallel along the geodesic t → (x1, . . . , xd−1, t). We also denote the dual basis
of {ω1, . . . , ωd−1, dr} by {X1, . . . , Xd−1, N}. Note that On the other hand,

dωk[Xj, N ] = 〈∇Nω
k, Xj〉 − 〈∇Xj

ωk, N〉
= −〈∇Xj

ωk, N〉
Here we used that ∇Nω

k = 0 since ωk is parallel along the path t  → (x1, . . . , xd−1, t).
Moreover we note that 〈∇Xj

ωk, N〉 = (α(Xj, Xk), N) where α is the second fundamental
form on ∂M . Thus we have

dωk [Xj, N ] = −(α(Xj, Xk), N). (4.11)

Using the second fundamental form, we introduce an operator A as follows:

Aωi =

d−1∑
j=1

(α(Xi, Xj), N)ω
j. (4.12)
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A can be extended to a linear operator from A1(∂M) to A1(∂M) and it is independent of
the choice of {ωj}. Moreover we define dΓ(A) : Ap(∂M)→ Ap(∂M) as

dΓ(A)(θ1 ∧ · · · ∧ θp) =

p∑
j=1

θ1 ∧ · · · ∧Aθj ∧ · · · ∧ θp. (4.13)

Then we can have the follolwing.

Lemma 4.1. On the boundary ∂M , it holds that for I = {i1 < · · · < ip} ⊆ {1, . . . , d−1},
(dωI)n = −(−1)|I|dΓ(A)ωI . (4.14)

Proof. From (4.11) and (4.12), it holds that

d−1∑
k=1

dωj [Xk, N ]ω
k = −Aωj.

Hence

dωI = d(ωi1 ∧ · · · ∧ ωip)

=

p∑
µ=1

(−1)µωi1 ∧ · · · ∧ dωiµ ∧ · · · ∧ ωip

=

p∑
µ=1

∑
1≤k≤l≤d−1

(−1)µωi1 ∧ · · · ∧ dωiµ [Xk, Xl](ω
k ∧ ωl) ∧ · · · ∧ ωip

+

p∑
µ=1

d−1∑
k=1

(−1)µωi1 ∧ · · · ∧ dωiµ [Xk, N ](ω
k ∧ dr) ∧ · · · ∧ ωip

=

p∑
µ=1

∑
1≤k≤l≤d−1

(−1)µωi1 ∧ · · · ∧ dωiµ [Xk, Xl](ω
k ∧ ωl) ∧ · · · ∧ ωip

− (−1)p
p∑

µ=1

d−1∑
k=1

ωi1 ∧ · · · ∧Aωiµ ∧ · · · ∧ ωip ∧ dr.

Now, recalling the definition of dΓ(A), we have

(dωI)n = −(−1)pdΓ(A)ωI

which is the desired result.

Now we can deal with the absolute boundary condition.

Theorem 4.2. For p-forms θ, η ∈ Dom(EBa

(p) ) and f ∈ C∞(M), it holds that

−E((θ, η), f) + EBa

(p) (fθ, η) + EBa

(p) (θ, fη)

= 2

∫
M

(∇θ,∇η)fdm+ 2
∫

M

R(p)(θ, η)fdm+ 2

∫
∂M

(dΓ(A)θt, ηt)fdσ
(4.15)
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Proof. First we write the boundary condition in terms of local coordinate. We decompose
θ as follows:

θ =
∑

I:|I|=p

fIω
I +

∑
J :|J |=p−1

gJω
J ∧ dr.

Noting that gJ = 0 on ∂M , we have,

dθ =
∑

I:|I|=p

dfI ∧ ωI +
∑

I:|I|=p

fIdω
I

+
∑

J :|J |=p−1

dgJ ∧ ωJ ∧ dr +
∑

J :|J |=p−1

gJdω
J ∧ dr

=
∑

I:|I|=p

dfI ∧ ωI +
∑

I:|I|=p

fIdω
I .

Since (dθ)n = 0, we have

0 =
∑

I:|I|=p

〈dfI , N〉dr ∧ ωI +
∑

I:|I|=p

fI(dω
I)n

=
∑

I:|I|=p

(−1)|I|〈dfI , N〉ωI ∧ dr −
∑

I:|I|=p

(−1)|I|fIdΓ(A)ω
I ∧ dr

=
∑

I:|I|=p

(−1)|I|〈dfI , N〉ωI ∧ dr − (−1)|I|dΓ(A)θt ∧ dr.

Now we have ∑
I:|I|=p

〈dfI , N〉ωI = dΓ(A)θt.

Now we calculate (∇Nθ, η).

(∇Nθ, η) =
(
∇N

{ ∑
I:|I|=p

fIω
I +

∑
J :|J |=p−1

gJω
J ∧ dr

}
, ηt

)

=
( ∑

I:|I|=p

(∇NfI)ω
I , ηt

)
(∵ ∇Nω

I = 0)

= (dΓ(A)θt, ηt).

This completes the proof

Nest we consider the relative boundary condition. This can be easily done by noting
that the Hodge operation gives an isometry which interchanges the absolute boundary
condition and the relative boundary condition. We denote the Hodge operation on ∂M
by ∗. Then we have
Theorem 4.3. For p-forms θ, η ∈ Dom(EBr

(p)) and f ∈ C∞(M), it holds that

−E((θ, η), f) + EBr

(p)(fθ, η) + EBr

(p)(θ, fη)

= 2

∫
M

(∇θ,∇η)fdm+ 2
∫

M

R(p)(θ, η)fdm+ 2

∫
∂M

(∗−1dΓ(A)∗θn, ηn)fdσ.
(4.16)
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Now we can apply Theorem 2.1. For example, if Ric ≥ λI and A is non-negative
definite, then we have

|�Ttθ| ≤ e−λt|θ|, for θ ∈ A1(M)

where �Tt is a semigroup generated by �Ba

(1). Moreover we can give an estimate of the

constant for the logarithmic Sobolev inequality.
Taking f = 1 in (4.15), we have

EBa

(p) (θ, η) =

∫
M

(∇θ,∇η)dm+
∫

M

R(p)(θ, η)dm+

∫
∂M

(dΓ(A)θt, ηt)dσ.
(4.17)

This identity is already known (see e.g., Schwarz [17, Thm 2.1.5]).
In particular, if p = 1, it holds that

EBa

(1) (θ, η) =

∫
M

(∇θ,∇η)dm+
∫

M

Ric(θ, η)dm+

∫
∂M

(Aθt, ηt)dσ. (4.18)

Here Ric denotes the Ricci curvature. Using this identity, we can show the Lichnèrowicz
theorem. Let ∆ be the Laplacian with Neumann boundary condition on M . We assume
that Ric ≥ (d− 1)ρI with ρ > 0 and A is non-negative definite. Then we have

λ1 ≥ ρd (4.19)

where λ1 is the first non-zero eigenvalue of ∆.
To see this, note that

(∆f,∆f) = −(ddf, ddf) − (δdf, δdf)
= EBa

(1) (∇f,∇f)

=

∫
M

(∇2f,∇2f)dm+

∫
M

Ric(∇f,∇f)dm+
∫

∂M

(A(∇f )t, (∇f)t)dσ.
Now, by the standard argument, we easily have

d− 1
d
(∆f,∆f) ≥

∫
M

Ric(∇f,∇f)dm ≥ (d− 1)ρE(f, f).
Now we can get the desired result.
Moreover it is known that the identity holds if and only if M is isomorphic to the

hemisphere (Xia [20]). Similar result holds for the Laplacian with Dirichlet boundary
condition, see Reilly [14].

References

[1] S. Aida, T. Masuda and I. Shigekawa, Logarithmic Sobolev inequalities and exponential integrability,
J. Func. Anal., 126 (1994), 83–101.

[2] D. Bakry and M. Emery, Diffusions hypercontractives, Séminaire de Prob. XIX, Lecture Notes in
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