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Abstract.

The Meyer equivalence on an abstract Wiener space states that
the Lp-norm of square root of the Ornstein-Uhlenbeck operator is
equivalent to Lp-norm of the Malliavin derivative. We prove the
equivalence in the framework of Orlicz space. We also discuss the
logarithmic Sobolev inequality in Lp setting and higher order loga-
rithmic Sobolev inequality.

§1. Introduction

Let (B,H,µ) be an abstract Wiener space: B is a separable real
Banach space, H is a separable real Hilbert space which is embedded
densely and continuously in B and µ is a Gaussian measure with∫

B

exp
{√−1 B∗〈l, x〉B

}
µ(dx) = exp

{
−1
2
|l|2H∗

}
, l ∈ B∗ ↪→ H∗.

On an abstract Wiener space, the Ornstein-Uhlenbeck semigroup is de-
fined as

Ttf(x) =
∫

B

f(e−tx+
√
1− e−2ty)µ(dy).(1)

The generator of the semigroup {Tt} is called the Ornstein-Uhlenbeck
operator and we denote it by L. Then the following Meyer equivalence
is well-known: for any 1 < p < ∞, there exists positive constants C1

and C2 such that

C1{‖Df‖p + ‖f‖p} ≤ ‖√1− Lf‖p ≤ C2{‖Df‖p + ‖f‖p}.(2)
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Here D is the Malliavin H-derivation and ‖ ‖p is the Lp-norm. The
constants C1 and C2 depend only on p.

In this paper we show that similar inequalities hold in the framework
of Orlicz space, i.e., the above inequalities hold for the Orlicz norm in
place of Lp-norm. Typical example we are in mind is Lp logβ L. As an
application, we discuss the logarithmic Sobolev inequality in Lp setting
and higher order logarithmic Sobolev inequality.

§2. Orlicz space

In this section, we review the Orlicz space (see, e.g., [1] or [8] for
details). First we need the notion of Young function. Young function is
a function Φ defined as

Φ(x) =
∫ x

0

φ(t)dt, x ≥ 0(3)

where φ is a non-negative, right continuous, non-decreasing function. If,
in addition, φ satisfies φ(0) = 0, φ(t) > 0 for t > 0, φ(∞) = ∞, then Φ
is called a nice Young function or N -function. Define ψ by

ψ(u) = inf{t ; φ(t) > u}.
ψ is right continuous and non-decreasing. The function Ψ defined by

Ψ(y) =
∫ y

0

ψ(u)du, y ≥ 0

is called a complementary function. The following properties are funda-
mental.

xy ≤ Φ(x) + Ψ(y),(4)

xφ(x) = Φ(x) + Ψ(φ(x)).(5)

(4) is called the Young inequality.
The Orlicz space associated with Φ is defined as follows. Let (M,m)

be a measure space and Φ be a nice Young function. Define a norm ‖ ‖Φ

by

‖f‖Φ := inf{λ > 0 ;
∫

M

Φ(|f |/λ)dm ≤ 1}.(6)

LΦ(m) is the set of all measurable functions f which satisfy ‖f‖Φ <∞.
We call LΦ(m) an Orlicz space. It is a Banach space with the norm
‖ ‖Φ. If Φ satisfies the ∆2 condition, i.e., there exists a constant C such
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that Φ(2x) ≤ CΦ(x), then the dual space is identified with LΨ(m), Ψ
being the complementary function of Φ.

We introduce some classes of functions.

Definition 2.1. For non-negative constant α, we define a set of
functions L(α), U(α) as follows:

(i) φ ∈ L(α) def⇐⇒ αφ(t) ≤ tφ′(t), ∀t > 0.
(ii) φ ∈ U(α) def⇐⇒ tφ′(t) ≤ αφ(t), ∀t > 0.
The following inequality for semimartingales is important in our

later argument.
Let (Zt) (t ∈ [0,∞]) be a non-negative submartingale. We assume

that (Zt) is right continuous and has left hand limits. By the Doob-
Meyer decomposition theorem, (Zt) can be decomposed as

Zt =Mt + At

where (Mt) is a martingale and (At) is an increasing process. We assume
that (At) is continuous and A0 = 0. If Φ ∈ U(α), then the following
inequality holds (see [4, Theorem VI.99]):

E[Φ(A∞)] ≤ E[Φ(αZ∞)].(7)

Further, a generalization of the Doob’s inequality also holds. It
is stated as follows (see [4, Chapter VI, Section 3]). We assume that
Φ ∈ L(α) for an α > 1. Then, setting Z∗

t := sup
s≤t

Zs, it holds that

E[Φ(Z∗
∞)] ≤ E[Φ(αZ∞)].(8)

From this inequality, we can have the following maximal ergodic inequal-
ity. ∫

B

Φ(sup
t≥0

|Ttf(x)|)µ(dx) ≤
∫

B

Φ(α|f(x)|)µ(dx).(9)

Here {Tt} is the Ornstein-Uhlenbeck semigroup on an abstract Wiener
space (B,H,µ).

§3. Littlewood-Paley inequality

Let (B,H,µ) be an abstract Wiener space and K be a separable
Hilbert space. {Tt} is the Ornstein-Uhlenbeck semigroup on Lp(E,µ;K)
defined by (1). For α > 0, set

T
(α)
t = e−αtTt.
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Then the generator of {T (α)
t } is L − α. We further define a semigroup

{Q(α)
t } by subordination as follows:

Q
(α)
t =

∫ ∞

0

T (α)
s λt(ds) =

∫ ∞

0

e−αsTsλt(ds)

Here λt is a probability measure on [0,∞) whose Laplace transform is
given by ∫ ∞

0

e−γsλt(ds) = e−
√

γt.

When α = 0, Q(0)
t is simply denoted by Qt and called the Cauchy

semigroup. For F ∈ LΦ(B,µ;K), it holds that

‖Q(α)
t F‖Φ ≤ e−

√
αt‖F‖Φ

and {Q(α)
t } is a strongly continuous semigroup on LΦ. The generator

will be denoted by −√
α − L.

We denote by P(K) a set of all functions f : B → K which can be
expressed as

f(x) =
∑

i

pi(〈l1, x〉), . . . , 〈ln, x〉)ki

where pi is a polynomial on R
n and k1, . . . , kn ∈ K, l1, . . . , ln ∈ B∗.

For f ∈ P(K), define
g→f(x, t) = |∂tQ

(α)
t (x, f)|K ,

g↑f(x, t) = |DQ(α)
t (x, f)|HS ,

gf(x, t) =
√
g→f(x, t)2 + g↑f(x, t)2 .

Here Q(α)
a (x, f) = Q

(α)
a f(x) and the norm | |HS denotes the Hilbert-

Schmidt norm. g→f , g↑f , gf all depend on α but we fix it throughout
the argument and suppress it for simplicity. We further define

G→f(x) =
{∫ ∞

0

tg→f(x, t)2dt
}1/2

,

G↑f(x) =
{∫ ∞

0

tg↑f(x, t)2dt
}1/2

,

Gf(x) =
{∫ ∞

0

tgf(x, t)2dt
}1/2

.

We call them Littlewood-Paley G-functions.
Our aim in this section is to prove the following theorem.
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Theorem 3.1. Assume that Φ ∈ L(α) ∩ U(β) for constants 1 <
α < β. Further assume that φ is either convex or concave. Then we
have

‖Φ(Gf)‖1 � ‖Φ(|f |)‖1,(10)

‖Φ(|f |)‖1 � ‖Φ(G→f)‖1.(11)

In the above theorem, A � B stands for A ≤ CB for a positive
constant C that is independent of f . We use this convention in the
sequel without mentioning.

We give a probabilistic proof. To do this, we take the Ornstein-
Uhlenbeck process (Xt) on B, i.e., the diffusion process generated by
L. We also take a process (Bt) on R generated by d2

da2 . We assume
that the initial distribution of (Xt) is the stationary measure µ so that
the process becomes stationary. We denote the starting point of the
Brownian motion (Bt) by N . EN stands for the integration with respect
to this measure. Later we let N → ∞.

Now, for f ∈ P(K), set u(x, a) = Q(α)
a (x, f). Then u(x, a) satisfies

{
u(x, 0) = f(x)
Lxu(x, a) + ∂2

au(x, a)− αu(x, a) = 0.(12)

Define a stopping time τ by

τ = inf{t > 0 | Bt = 0}.
Then we can think of u(Xt, Bt) for t ≤ τ . Set

Mt = QBt∧τ (Xt∧τ , f) − α
∫ t∧τ

0

QBs(Xs, f)ds

= u(Xt∧τ , Bt∧τ )− α
∫ t∧τ

0

QBs(Xs, f)ds.

Then (Mt) is a martingale with M0 = QB0f(X0). The quadratic varia-
tion is given as

〈M〉t = 2
∫ t∧τ

0

gf2(Xs, Bs)ds.(13)

Therefore we have

d|u|2 = 2(u, dM) + 2α|u|2dt+ 〈dM,dM〉(14)

= 2(u, dM) + (2α|u|2 + 2gf2)dt
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Now set

Zt = |u(Xt∧τ , Bt∧τ)|2.

(Zt) is a non-negative submartingale. To compute Φ(
√
Zt), we approx-

imate it as follows. Take any ε > 0 and set F (x) = Φ(
√
x+ ε). Recall

that φ is either convex or concave. We divide into tow cases.

(i) φ is concave.
We need the following proposition.

Proposition 3.2. Assume Φ ∈ L(α) (α > 1). Then it holds that,
for u, v ≥ 0,

Φ(v) ≤ 1
α− 1

(1
2
φ′(u)v2 +Φ(u)

)
.(15)

Proof. From the assumption, αΦ(x) ≤ xφ(x) holds. Since φ is
concave, Φ(x) ≥ 1

2xφ(x) which leads to α ≤ 2. Hence (15) clearly holds
when u ≥ v.

If v ≥ u, we have

|{(x, y) ; 0 ≤ x ≤ u, φ(x) ≤ y ≤ φ(u)}| ≤ 1
2
uφ(u)

|{(x, y) ; 0 ≤ x ≤ u, φ(u) ≤ y ≤ φ(v)}| ≤ u(φ(v)− φ(u)) ≤ uφ′(u)(v − u)
|{(x, y) ; u ≤ x ≤ v, φ(x) ≤ y ≤ φ(v)}| ≤ 1

2
(v − u)2φ′(u).

These are easily obtained by observing the graph.
Summing up three terms of the left-hand side and Φ(v), we have

vφ(v). Therefore

1
2
uφ(u) + uφ′(u)(v − u) + 1

2
(v − u)2φ′(u) + Φ(v) ≥ vφ(v) ≥ αΦ(v).

Hence we have

(α − 1)Φ(v) ≤ 1
2
uφ(u) + φ′(u)(v − u)

(
u+

1
2
v − 1

2
u
)

=
1
2
uφ(u) +

1
2
φ′(u)(v2 − u2)

≤ Φ(u) + 1
2
φ′(u)v2

which is the desired result. Q.E.D.
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The derivatives of F (x) = Φ(
√
x+ ε) are

F ′(x) = Φ′(
√
x+ ε)

1
2
√
x+ ε

,

F ′′(x) = Φ′′(
√
x+ ε)

1
4(x+ ε)

+ Φ′(
√
x+ ε)

1
2

(
−1
2

) 1√
x+ ε3

.

By the Itô formula,

dΦ(
√
Zt + ε) =

Φ′(
√
Zt + ε)

2
√
Zt + ε

dZt

+
1
2

{
Φ′′(

√
Zt + ε)

4(Zt + ε)
− 1
4
Φ′(

√
Zt + ε)√
Zt + ε

3

}
〈dZ, dZ〉

=
φ(

√|u|2 + ε)
2
√|u|2 + ε {2(u, dM) + 2(α|u|2 + gf2)dt}

+
1
2

{
φ′(

√|u|2 + ε)
4(|u|2 + ε) − 1

4
φ(

√|u|2 + ε)√|u|2 + ε3
}
〈dZ, dZ〉

=
φ(

√|u|2 + ε)√|u|2 + ε (u, dM) +
φ(

√|u|2 + ε)√|u|2 + ε (α|u|2 + gf2)dt

+
1
8

1
|u|2 + ε

{
φ′(

√
|u|2 + ε)− φ(

√|u|2 + ε)√|u|2 + ε

}
〈dZ, dZ〉.

Now we note 〈dZ, dZ〉 ≤ 4|u|2〈dM,dM〉 = 8|u|2gf2dt. Further
φ′(t) ≤ φ(t)/t since φ is concave. We therefore have

φ(
√|u|2 + ε)√|u|2 + ε gf2dt+

1
8

1
|u|2 + ε

{
φ′(

√
|u|2 + ε)− φ(

√|u|2 + ε)√|u|2 + ε

}
〈dZ, dZ〉

≥ φ(
√|u|2 + ε)√|u|2 + ε gf2dt+

{
φ′(

√
|u|2 + ε)− φ(

√|u|2 + ε)√|u|2 + ε

}
gf2dt

= φ′(
√

|u|2 + ε)gf2dt.

Integrating from 0 to τ and taking expectation, we have

‖Φ(
√

|f |2 + ε)‖1 ≥ EN

[∫ τ

0

φ′(
√

|u|2 + ε)gf2dt

]
.(16)

We will give an estimate from below of the right-hand side. We note
that f∗(x) := supt≥0 |Ttf(x)| ≥ supa≥0 |u(x, a)|.

EN

[∫ τ

0

φ′(
√

|u|2 + ε)gf2dt

]
=

∥∥∥∥
∫ ∞

0

φ′(
√

|u|2 + ε)gf2( · , a)(a ∧N)da
∥∥∥∥

1
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≥
∥∥∥∥
∫ ∞

0

φ′(
√
f∗2 + ε)gf2( · , a)(a ∧N)da

∥∥∥∥
1

.

(∵ φ′ is non-increasing)

Combining this with (16) and letting N → ∞

‖Φ(
√

|f |2 + ε)‖1 ≥
∥∥∥∥
∫ ∞

0

φ′(
√
f∗2 + ε)gf2( · , a)ada

∥∥∥∥
1

= ‖φ′(
√
f∗2 + ε)Gf2‖1

Now we use the inequality Φ(v) ≤ 1
α−1 (

1
2φ

′(u)v2 + Φ(u)) in Proposi-
tion 3.2 and get

‖Φ(Gf)‖1 � ‖φ′(
√
f∗2 + ε)Gf2‖1 + ‖Φ(

√
f∗2 + ε)‖1

≤ ‖Φ(
√

|f |2 + ε)‖1 + ‖Φ(
√
f∗2 + ε)‖1.

Letting ε→ 0 and using the maximal ergodic inequality (9), we have

‖Φ(Gf)‖1 � ‖Φ(|f |)‖1 + ‖Φ(f∗)‖1 � ‖Φ(|f |)‖1.

This completes the proof in the case that φ is concave.

(ii) φ is convex.
Set Φ̃(x) = Φ(

√
x). Then Φ̃ is convex. In fact, by differentiating,

we have

d

dx
Φ(

√
x) = Φ′(

√
x)

1
2
√
x
=
φ(
√
x)

2
√
x
.

The function is increasing since φ is convex and so the convexity of Φ̃
follows. Further Φ̃ ∈ U(α/2) since

xΦ̃′(x)
Φ̃(x)

=
xΦ′(

√
x)

2
√
xΦ(

√
x)
=

√
xΦ′(

√
x)

2Φ(
√
x)

.

The submartingale Zt = |u(Xt∧τ , Bt∧τ )|2 is decomposed as a sum
of a martingale and an increasing process as in (14). By using (7), we
get

EN [Φ̃(
∫ τ

0

gf(Xs , Bs)2ds)] � EN [Φ̃(Z∞)] = EN [Φ̃(|f(Xτ )|2)](17)

= EN [Φ(|f(Xτ )|)] = ‖Φ(|f |)‖1
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Now we introduce H-functions as follows.

H→f(x) =
{∫ ∞

0

tQtg
→f(x, t)2dt

}1/2

,

H↑f(x) =
{∫ ∞

0

tQtg
↑f(x, t)2dt

}1/2

,

Hf(x) =
{∫ ∞

0

tQtgf(x, t)2dt
}1/2

.

Then we have

‖Φ(Hf)‖1 = ‖Φ̃(Hf2)‖1

= lim
N→∞

∥∥∥∥Φ̃
(∫ ∞

0

Qagf( · , a)2(a ∧N)da
)∥∥∥∥

1

= lim
N→∞

∫
B

Φ̃
(
EN

[∫ τ

0

gf2(Xt, Bt)dt
∣∣∣∣Xτ = x

])
µ(dx)

≤ lim
N→∞

∫
B

EN

[
Φ̃

(∫ τ

0

gf2(Xt, Bt)dt
)∣∣∣∣Xτ = x

])
µ(dx)

≤ lim
N→∞

EN

[
Φ̃

(∫ τ

0

gf2(Xt, Bt)dt
)]

� ‖Φ(|f |)‖1. (∵ (17))

It is well-known that Gf is dominated by Hf (see [7]) and so (10)
follows. (11) can be shown by a standard duality argument. This com-
pletes the proof of Theorem 3.1.

Using this theorem, the Meyer equivalence in Orlicz space, which
is of our main interest, follows easily. In fact, the same proof as in Lp

setting works (see e.g., [9]).

Theorem 3.3. Assume that Φ ∈ L(α) ∩ U(β) for 1 < α < β and
that φ is either convex or concave. Then there exist positive constants
C1 and C2 such that

C1{‖Df‖Φ + ‖f‖Φ} ≤ ‖√1− Lf‖Φ ≤ C2{‖Df‖Φ + ‖f‖Φ}.(18)

§4. Examples

We give some example of nice Young functions that satisfy the con-
dition of Theorem 3.3. For indicies p > 1, β ∈ R, k ≥ 1, we set

φp,β,k(x) = xp−1 logpβ(k + x), x ≥ 0(19)
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and define

Φp,β,k(x) =
∫ x

0

φp,β,k(y)dy.(20)

We regards this as a Young function. The function does not satisfy the
condition of Young function in general since β might be negative. We
see when it is a Young function. To avoid complexity, we simply denote
φ and Φ in place of φp,β,k and Φp,β,k, respectively. Differentiating φ, we
have

φ′(x) = (p− 1)xp−2 logpβ(k + x) + pβxp−1{logpβ−1(k + x)} 1
k + x

= xp−2 logpβ(k + x)
{
p− 1 + pβ x

(k + x) log(k + x)

}
.

We look for the condition so that φ′ is positive. To do this, set

f(x) =
x

(k + x) log(k + x)
.(21)

If k = 1, f takes its maximum 1 at x = 0. If k > 1, f takes its maximum
at x = α where α is the solution of k log(k + x) − x = 0. We can see
that f(α) ≤ 1

1+log k . Therefore, in all cases of k, it holds that

0 ≤ x

(k + x) log(k + x)
≤ 1
1 + log k

.(22)

Now it is easy to see that Φ is a nice Young function if p
(
1+

β

1 + log k

)
≥

1. Further we easily have the following proposition.

Proposition 4.1. φ satisfies following inequalities:

(p− 1)φ(x) ≤ xφ′(x) ≤
(
p− 1 + pβ

1 + log k

)
φ(x), for β ≥ 0,(23)

(
p− 1 + pβ

1 + log k

)
φ(x) ≤ xφ′(x) ≤ (p− 1)φ(x), for β < 0.(24)

Similar inequalities hold for Φ. To see this, we need the following
proposition.

Proposition 4.2. For positive constant α, it holds that
(i) if φ ∈ L(α), then Φ ∈ L(α+ 1),
(ii) if φ ∈ U(α), then Φ ∈ U(α + 1).
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Proof. Suppose φ ∈ L(α), i.e., αφ(t) ≤ tφ′(t). By integrating both
hands, we have

αΦ(x) ≤
∫ x

0

tφ′(t)dt.(25)

On the other hand, since (tφ(t))′ = φ(t) + tφ′(t), we have

xφ(x) =
∫ x

0

{φ(t) + tφ′(t)}dt

and hence

xφ(x) − Φ(x) =
∫ x

0

tφ′(t)dt.

This combined with (25) leads

xφ(x) ≥ (α + 1)Φ(x).
(ii) can be shown similarly. Q.E.D.

Now the following proposition easily follows.

Proposition 4.3. The following inequalities hold:

pΦ(x) ≤ xΦ′(x) ≤ p
(
1 +

β

1 + log k

)
Φ(x), (β ≥ 0),(26)

p
(
1 +

β

1 + log k

)
Φ(x) ≤ xΦ′(x) ≤ pΦ(x), (β < 0).(27)

Lastly, we will see the asymptotic behavior of the complementary
function Ψ. We use the notation f ∼ g when limx→∞

f(x)
g(x)

= 1 holds.

Proposition 4.4. Assume p > 1 and let q be the conjugate expo-
nent of p: 1

p
+ 1

q
= 1. Then it holds that

pΦ(x) ∼ xp logpβ x,(28)

(q − 1)qβqΨ(x) ∼ xq log−qβ x.(29)

Proof. By the l’Hôpital theorem, we have

lim
x→∞

pΦ(x)
xp logpβ x

= lim
x→∞

pφ(x)
pxp−1 logpβ x+ xppβ(logpβ x)/x

= lim
x→∞

pxp−1 logpβ(k + x)
pxp−1 logpβ x+ pβxp−1 logpβ−1 x
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= lim
x→∞

logpβ(k + x)
logpβ x+ β logpβ−1 x

= 1

which shows (28).
As for Ψ, we have, by the l’Hôpital theorem,

lim
x→∞

qΨ(x)
xq log−qβ x

= lim
x→∞

qΨ(φ(x))
φ(x)q log−qβ φ(x)

= lim
x→∞

qΨ′(φ(x))φ′(x)
qφ(x)q−1φ′(x) log−qβ φ(x) + φ(x)q(−qβ){log−qβ−1 φ(x)}φ′(x)/φ(x)

= lim
x→∞

x

φ(x)q−1 log−qβ φ(x)− βφ(x)q−1 log−qβ−1 φ(x)

= lim
x→∞

x

φ(x)q−1 log−qβ φ(x)(1− β/ log φ(x))
= lim

x→∞
x

φ(x)q−1 log−qβ φ(x)

= lim
x→∞

x

{xp−1 logpβ(k + x)}q−1 log−qβ(xp−1 logpβ(k + x))

= lim
x→∞

x

x(p−1)(q−1) logpβ(q−1)(k + x){(p − 1) log x+ pβ log log(k + x)}−qβ

= lim
x→∞

{(p− 1) log x+ pβ log log(k + x)}qβ

logpβ(q−1)(k + x)
(∵ (p− 1)(q − 1) = 1)

= lim
x→∞

{{(p− 1) log x+ pβ log log(k + x)
log(k + x)

}qβ

(∵ q = p(q − 1))

= (p− 1)qβ

which shows (29). Q.E.D.

We denotes the Orlicz space LΦ associated with Φ by Lp logpβ L.
We do not specify k since it does not affect the asymptotic behavior at
infinity. Since the Wiener measure is finite, Lp logpβ L is independent
of k. The above theorem means that the dual space of Lp logpβ L is
Lq log−qβ L.
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§5. Logarithmic Sobolev inequality

The logarithmic Sobolev inequality in Lp setting was discussed by
D. Bakry-P. A. Meyer [3] and higher order Logarithmic Sobolev inequal-
ity was discussed by G. F. Feissner [5] and R. A. Adams [2]. They all
used the interpolation theorem. Here we take a different approach.

The following logarithmic Sobolev inequality holds for the Ornstein-
Uhlenbeck process.

E
[
f2 log(f2/‖f‖2

2)
] ≤ 2E [|Df |2] .

Here E [ ] stands for the integration with respect to µ. Hereafter we
use this notation. Recall that

∫
B
(Df,Dg)H∗dµ is the Dirichlet form

associated with the Ornstein-Uhlenbeck process. We remark that the
following argument works for the diffusion Dirichlet form satisfying the
logarithmic Sobolev inequality if we assume the Dirichlet form is of the
gradient type.

We introduce a new Young function. Set

θ(x) = {x2 log(e+ x2)}(p−2)/4 logpβ/4(k + x2 log(e + x))(30)

and define

Θ(x) =
∫ x

0

θ(y)dy.(31)

Then we have the following proposition.

Proposition 5.1. For sufficient large k if necessary, there exists
a positive constant K such that

xp logp/2(e+ x2) logpβ/2(k + x2 log(e+ x2))(32)

≤ KΘ(x)2 log(e +Θ(x)2)
Proof. We divide the proof into two cases.

(a) β ≥ 0, k = 1.
Let us see the asymptotic behavior as x→ 0.

LHS ∼ xp · x(pβ/2)2 = xp(1+β).

On the other hand,

θ(x) ∼ x(p−2)/2+(pβ )/2 = xp(β+1)/2−1.

and hence

Θ(x) ∼ 2
p(β + 1)

xp(β+1)/2
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Θ(x)2 ∼ 4
p2(β + 1)2

xp(β+1).

Thus both hands have the same asymptotic behavior.
As x→ ∞,
LHS ∼ xp2p/2(logp/2 x)2pβ/2 logpβ/2 x = 2p(β+1)/2xp logp(β+1)/2 x.

On the other hand,

θ(x) ∼ x(p−2)/22(p−2)/4(log(p−2)/4 x)2pβ/4 logpβ/4 x

Θ(x) ∼ (2/p)2(p+pβ−2)/4xp/2 log(p+pβ−2)/4 x

Θ(x)2 log(e +Θ(x)2) ∼ p−22(p+pβ+2)/2xp(log(p+pβ−2)/2x)p log x

= p−12(p+pβ+2)/2xp log(p+pβ)/2x.

Hence they have the same asymptotic behavior.
(b) β < 0 and large k.

The asymptotic behavior at x = ∞ can be obtained similarly as in
the case β ≥ 0.

As x→ 0, LHS ∼ xp is clear. Further we have

θ(x) ∼ x(p−2)/2

Θ(x) ∼ 2
p
xp/2

Θ(x)2 log(e +Θ(x)2) ∼ 4
p2
xp

Thus we have the desired result. Q.E.D.

We recall the following fact. Let U and V be a non-negative func-
tions on a measure space (M,m). Assume that∫

M

Uφ(U)dm <∞,
∫

M

Uφ(U)dm ≤
∫

M

V φ(U)dm+ C.

Then it follows that∫
M

Φ(U)dm ≤
∫

M

Φ(V )dm+ C.(33)

For the proof, see [4, Lemma VI.98]. Now we have the following theorem.
In the sequel, we denote by Φp,β in place of Φp,β,k because the index k
is not essential.
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Proposition 5.2. For p > 2, β ∈ R, there exists a positive con-
stant C such that

E[Φp,(β+1)/2(|f |)] ≤ CE[Φp,(1+β)/2−(1/p)(|f |)] + CE[Φp,β/2(|Df|)].
(34)

Proof. Set g =
√
Θ(|f |)2 + e. Then

Dg =
2Θ(|f |)Θ′(|f |)D|f |
2
√
Θ(|f |)2 + e

and hence |Dg| ≤ θ(|f |)|Df |. Now, by using the logarithmic Sobolev
inequality

E
[
g2 log(g2/‖g‖2

2)
] ≤ 2E [|Dg|2] ,

we have

E
[{Θ(|f |)2 + e} log(e +Θ(|f |)2)]

≤ E
[
Θ(|f |)2 + e] logE [

e +Θ(|f |)2]
+ E

[
|Df |2{|f |2 log(e + |f |2)}(p−2)/2 logpβ/2(k + |f |2 log(e+ |f |2))

]
,

and

E
[
Θ(|f |)2 log(e +Θ(|f |)2)]

≤ E
[
Θ(|f |)2] logE [

e +Θ(|f |)2]
+ E

[
|Df |2{|f |2 log(e + |f |2)}(p−2)/2 logpβ/2(k + |f |2 log(e+ |f |2))

]
.

We set

φ(x) = φp/2,β,k(x) = x(p/2)−1 logpβ/2(k + x),

U = |f |2 log(e+ |f |2).
Then

Uφ(U) = |f |2 log(e+ |f |2)
× {|f |2 log(e + |f |2)}(p/2)−1 logpβ/2(k + |f |2 log(e + |f |2))

= |f |p logp/2(e+ |f |2) logpβ/2(k + |f |2 log(e+ |f |2))
≤ KΘ(|f |)2 log(e +Θ(|f |)2). (∵ (32))

Combining this with the previous result, we have

K−1E[Uφ(U)] ≤ E[e+Θ(|f |)2 ] logE[e+Θ(|f |)2] + E[|Df |2φ(U)].
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Now, by (33), it follows that

E[Φ(U)] ≤ KE[e+Θ(|f |)2] logE[e+Θ(|f |)2 ] +KE[Φ(|Df |2)].
Here Φ is the integral of φ. Since Φ = Φp/2,β ,

Φ(x2) ≤ c1x
2φ(x2)

≤ c1x
2(x2)(p/2)−1 logpβ/2(k + x2)

≤ c1x
p logpβ/2(k + x2)

≤ c2Φp,β/2(x).

Further

Φ(x2 log(e + x2)) ≥ c3x2 log(e+ x2)φ(x2 log(e+ x2))

= c3x2 log(e+ x2){x2 log(e+ x2)}(p/2)−1

× logpβ/2(k + x2 log(e+ x2))

= c3xp logp/2(e+ x2) logpβ/2(k + x2 log(e+ x2))

≥ c4xp logp/2(e+ x) logpβ/2(k + x)

≥ c5xp logp(1+β)/2(k + x)

≥ c6Φp,(β+1)/2(x)

and

Θ(x)2 ≤ x2θ(x)2

≤ x2{x2 log(e+ x2)}(p−2)/2 logpβ/2(k + x2 log(e + x))

≤ c7x
p log(p−2)/2(e+ x) logpβ/2(k + x)

≤ c7x
p log(p+pβ−2)/2(k + x)

≤ c8Φp,(1+β)/2−(1/p)(x).

Thus we have eventually obtained

E[Φp,(β+1)/2(|f |)] ≤ CE[Φp,(1+β)/2−(1/p)(|f |)] + CE[Φp,β/2(|Df|)].
This completes the proof. Q.E.D.

If p = 2 and β ≥ 0, the above proof works as well in this case. We
only state the result.

Proposition 5.3. For p = 2, β ≥ 0, there exists a positive con-
stant C such that

E[Φ2,(β+1)/2(|f |)] ≤ CE[Φ2,β/2(|f |)] + CE[Φp,β/2(|Df|)].(35)
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In Section 3, we showed that the right hand side of (34) is equivalent
to E

[
Φp,β/2(

√
1− Lf)]. Therefore we easily get the following theorem.

Theorem 5.4. For p > 1, β ≥ 0, the following map is continuous:

√
1− L−1

: Lp logpβ L→ Lp logp(β+1/2)L.(36)

Recall that the dual space of Lp logpβ is Lq log−qβ L (see Proposi-
tion 4.4). Hence, when 1 < p < 2, the above equation (36) is shown by
the duality. By iterating the map

√
1− L−1

, we can have the continuity
of (1− L)−1 from Lp logpβ L to Lp logp(β+1)L.
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