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Abstract.

We consider a non-symmetric diffusion on a Riemannian manifold
generated by A = 1

2
4 + b. We give a sufficient condition for which A

generates a C0-semigroup in L2. To do this, we show that A is maximal
dissipative. Further we give a characterization of the generator domain.

We also discuss the same issue in Lp (1 < p <∞) setting and give
a sufficient condition for which A generates a C0-semigroup in Lp.

§1. Introduction

We consider diffusion processes on a Riemannian manifold gener-
ated by the operator 1

24+ b. Here 4 is the Laplace-Beltrami operator
and b is a vector field. We assume that coefficients are all C∞. So
we can construct a diffusion process up to the explosion time by solv-
ing a stochastic differential equation. Our interest is to construct a Lp

semigroup. Symmetry assumption in L2 setting does not simplify the
problem of essentially self-adjointness. So we consider the problem in
non-symmetric case.

We will give a sufficient condition to construct a C0 semigroup, i.e.,
strongly continuous semigroup, in L2 or even in Lp. Further, in L2, we
can determine the domain of the generator. To do this, the intertwining
property of operators plays an essential role.

The organization of the paper is as follows. In Section 2, we give
a sufficient condition for the existence of C0 semigroup in L2. We have
to show that the operator is maximal dissipative. In Section 3, we
determine the domain of the generator. We use the intertwining property
and the symmetric part of the associated bilinear form. In Section 4,
we construct a C0 semigroup in Lp and last we give some examples in
Section 5.
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§2. Non-symmetric diffusion on a Riemannian manifold

Let (M, g) be a smooth d-dimensional Riemannian manifold. We
assume that M is complete but we do not assume that M is compact in
general. We consider a diffusion process on M whose generator is

(2.1) A =
1
2
4+ b.

Here 4 is the Laplace-Beltrami operator, b is a vector field. We assume
that b and other vector fields, tensor fields, etc, are all C∞. We de-
note the Riemannian volume on M by m = vol and operators will be
considered in L2(m), or Lp(m) later.

The adjoint operator of A is

(2.2) A∗ =
1
2
4− b− div b.

The symmetrization of A is defined by

(2.3) Ã =
1
2
(A + A∗) =

1
2
4− 1

2
div b.

So far, all operators are well-defined on C∞0 (M), the set of all smooth
functions on M with compact support.

The bilinear form E associated with A is given by

(2.4) E(u, v) = −(Au, v)2 =
1
2

∫

M

(∇u,∇v) dm−
∫

M

(bu)v dm.

Here ( , )2 denotes the inner product in L2(m), (·, ·) the Riemannian
metric, and ∇ the gradient operator. Further we consider the bilinear
form Ẽ associated with Ã as follows:

(2.5) Ẽ(u, v) =
1
2

∫

M

(∇u,∇v) dm+
1
2

∫

M

(div b)uv dm.

We impose the following condition to ensure that A is bounded from
above.

(A.1): There exists a constant γ so that 1
2 div b ≥ −γ.

To be precise, 1
2 (div b)x ≥ −γ for all x ∈ M . Under this condition,

we can see that Ẽ is bounded from below and so we can take a closure
of it. By taking closure, we may assume that Ẽ is closed. Our aim is to
deal with semigroups without sector condition.

We denote the metric function on M by d. We fix a reference point
o ∈ M and set ρ(x) = d(o, x). Since ρ is a Lipschitz function, ∇ρ can
be defined as a vector valued bounded function. Using this, we add the
following assumption on b:
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(A.2): There exists a positive non-increasing function κ : [0,∞) →
[0, 1] so that

∫∞
0
κ(x) dx = ∞ and κ(ρ)bρ ≥ −1.

To be precise, κ(ρ(x))bρ(x) ≥ −1 for all x ∈M . The function κ(x) = 1
x

is a typical example satisfying
∫∞
0
κ(x) dx = ∞.

To construct a semigroup, it suffices to show that our operator
is maximal dissipative. Here, an operator A is called dissipative if
(Au, u) ≤ 0 for any u ∈ Dom(A) and if it has no proper dissipative
extension, it is called maximal dissipative. For the general theory of
semigroup, refer to e.g., Pazy [7, Chapter 1, Section 4] or Goldstein [4,
Chapter 1, Section 3].

In symmetric case, i.e., A = 1
24, this is equivalent to the essentially

self-adjointness. This problem of essentially self-adjointness was solved
by Gaffney [3] (see also Davies [1]). We have to modify it to handle the
vector field b.

Theorem 2.1. Assume (A.1) and (A.2). Then the closure of
(A, C∞0 (M)) generates a Markovian C0 semigroup in L2(m). (See, e.g.,
Ma-Röckner [6] for the Markovian property. To be precise we should say
“sub-Markovian” but we use this terminology for simplicity.)

Proof. We first show that A−γ is dissipative. Here, γ is a constant
that appeared in (A.1). From (A.2), we have

((A− γ)u, u)2 =
∫

M

(
1
2
4u+ bu− γu)u dm

= −Ẽ(u, u)− γ(u, u)2

= −1
2

∫

M

(|∇u|2 + u2 div b) dm−
∫

M

γu2 dm ≤ 0,

which shows that A− γ is dissipative.
To show that the closure of A−γ generates a contraction semigroup,

it suffices to show that the image (A−γ−1)(C∞0 (M)) is dense in L2(m),
which means that A− γ is maximal-dissipative; in other words, to show
that u = 0 if

∫

M

u(A− γ)φdm = (u, φ)2, ∀φ ∈ C∞0 (M).

Assume this identity. Then, by the hypoellipticity of the elliptic opera-
tor, we have u ∈ C∞(M). Using this, we have

(u, φ)2 =
∫

M

u(A− γ)φdm(2.6)
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= −1
2

∫

M

∇u · ∇φdm+
∫

M

(ubφ− γuφ) dm, ∀φ ∈ C∞0 .

By an approximation argument, we easily see that the identity holds for
φ ∈ H1

loc(M).
To truncate u, we introduce a bump function χn in the following

procedure. Take a C∞ function ψ : R → [0, 1] such that ψ(t) = 1 for
t ∈ [0, 1] and ψ(t) = 0 for t ∈ [3,∞) and further −1 ≤ ψ′(t) ≤ 0. Define
h(x) by

h(x) =
∫ x

0

κ(y) dy

and then set

(2.7) χn(x) = ψ(h(ρ(x))/n).

Here ρ(x) = d(o, x). Clearly we have

bχn = ψ′(h(ρ)/n)
κ(ρ)
n

bρ.

Take φ = χ2
nu as a test function. Then, from (2.6), we have

∫

M

uχ2
nu dm

= −1
2

∫

M

∇u · ∇(χ2
nu) dm+

∫

M

{ub(χ2
nu)− γuχ2

nu} dm

= −1
2

∫

M

∇u · (∇(χnu)χn + χnu∇χn) dm

+
∫

M

{u(b(χnu)χn + uχnubχn)− γχ2
nu

2} dm

= −1
2

∫

M

{χn∇u · ∇(χnu) + χnu∇u · ∇χn} dm

+
∫

M

{χnu(b(χnu) + χnu
2bχn)− γχ2

nu
2} dm

= −1
2

∫

M

{(∇(χnu)− u∇χn) · ∇(χnu) + χnu∇u · ∇χn} dm

+
∫

M

{1
2
b(χ2

nu
2) + χnu

2bχn − γχ2
nu

2} dm

= −1
2

∫

M

{|∇(χnu)|2 − u∇χn · (∇χnu+ χn∇u) + χnu∇u · ∇χn} dm
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+
∫

M

{−1
2
χ2

nu
2 div b+ χnu

2χn − γχ2
nu

2} dm

= −1
2

∫

M

{|∇(χnu)|2 − u2|∇χn|2} dm

+
∫

M

{χnu
2bχn − 1

2
χ2

nu
2 div b− γχ2

nu
2} dm.

Hence

1
2

∫

M

|∇(χnu)|2 dm+
1
2

∫

M

χ2
nu

2 div b dm+
∫

M

(γ + 1)χ2
nu

2 dm(2.8)

=
1
2

∫

M

u2|∇χn|2 dm+
∫

M

χnu
2bχn dm.

Note that bχn = ψ′(h(ρ)/n)κ(ρ)
n bρ. Using −1 ≤ ψ′ ≤ 0 and the assump-

tion κ(ρ)bρ ≥ −1, we have

bχn ≤ 1
n

and hence
∫

M

χnu
2bχn dm ≤ 1

n

∫

M

χnu
2 dm.

Further, since ∇χn = ψ′(h(ρ))/n)κ(ρ)
n ∇ρ and |∇ρ| ≤ 1, we have

|∇χn| ≤ 1
n
.

Thus, the right hand side of (2.8) is bounded and so χnu has a subse-
quence which converges weakly in Ẽ. We can easily show that the limit
is u and, by letting n→∞, we have

Ẽ(u, u) + (γ + 1)(u, u)2 ≤ lim
n→∞

{
1
2

∫

M

u2|∇χn|2 dm+
1
n

∫

M

χnu
2 dm

}

= 0.

The positivity of Ẽγ = Ẽ + γ( , )2 brings u = 0.
Thus we have shown that (A − γ − 1)(C∞0 (M)) is dense in L2(m).

This means that the closure of A−γ with a domain C∞0 (M) is maximal
dissipertive and so it generates a contraction semigroup. From now on,
taking closure, we regard A as a closed operaotr. We also note that this
means that C∞0 (M) is dense in Dom(A) with respect to the graph norm.
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Last we show the Markovian property. The criterion is the following
(see e.g., [6] when γ = 0 and [12] for general γ):

(2.9) (Au, u− u ∧ 1)2 ≤ γ‖u− u ∧ 1‖22, ∀u ∈ Dom(A).

Here, a ∧ b = min{a, b} and ‖ ‖2 denotes the L2 norm. Since we have
shown that C∞0 (M) is dense in Dom(A), it suffices to show (2.9) for u ∈
C∞0 (M). Take u ∈ C∞0 (M). We construct an approximating sequence
to the function t 7→ t∧ 1. Take any ε > 0 and take a C∞ function ϕε so
that

ϕε(t) =





t, t ≤ 1,
∈ [1, 1 + ε], 1 ≤ t ≤ 1 + 2ε,
1 + ε, t ≥ 1 + 2ε

and 0 ≤ ϕ′ε ≤ 1. Recall that E(u, v) = −(Au, v)2. We first show

(2.10) lim
ε→0

E(ϕε(u), u− ϕε(u)) ≥ 0.

To do this, note

E(ϕε(u), u− ϕε(u))

=
∫

M

{1
2
∇ϕε(u) · ∇(u− ϕε(u))− bϕε(u)(u− ϕε(u))} dm

=
1
2

∫

M

ϕ′ε(u)(1− ϕ′ε(u))|∇u|2 dm−
∫

M

ϕ′ε(u)bu (u− ϕε(u)) dm.

The first term of the right hand side is non-negative. In the second
term, the integrand is not 0 only when 1 ≤ u ≤ 1 + 2ε and in this case,
|u−ϕε(u)| ≤ ε. Hence the second term goes to 0 as ε→ 0 which proves
(2.10). In addition, since Ẽγ is non-negative, we have

Ẽγ(u− ϕε(u), u− ϕε(u)) ≥ 0.

Combining both of them, we get

0 ≤ lim
ε→0

{E(ϕε(u), u− ϕε(u)) + Ẽγ(u− ϕε(u), u− ϕε(u))}

≤ lim
ε→0

{E(ϕε(u), u− ϕε(u)) + E(u− ϕε(u), u− ϕε(u)) + γ‖u− ϕε(u)‖22}

≤ lim
ε→0

{E(u, u− ϕε(u)) + γ‖u− ϕε(u)‖22}

≤ lim
ε→0

{−(Au, u− ϕε(u))2 + γ‖u− ϕε(u)‖22}
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≤ −(Au, u− u ∧ 1)2 + γ‖u− u ∧ 1‖22,

which is (2.9) as desired. Q.E.D.

From now on, we assume that A is closed by taking a closure. The
above argument shows that if u ∈ Dom(A), then u ∈ Dom(Ẽ) and we
have

(2.11) Ẽ(u, u) = −(Au, u)2.

In connection to the Markovian property, we will show the L1 con-
traction property. Here, the L1 contraction property means that semi-
group {Tt} satisfies the following: for any u ∈ L2 ∩ L1, we have

‖Ttu‖1 ≤ ‖u‖1,

where ‖ ‖1 stands for the L1-norm.
This is equivalent to the Markovian property of the dual semigroup.

But we need an additional assumption to show the Markovian property
of the dual semigroup, we give a direct proof of the L1 contraction
property. Then the Markovian property of the dual semigroup follows.
We denote the semigroup generated by A by {Tt}.

Proposition 2.2. Assume (A.1) and (A.2). Then the semigroup
{e−2tγTt} satisfies the L1 contraction property.

Proof. It is enough to verify that

(2.12) ((A− 2γ)u, u+ ∧ 1)2 ≤ −γ‖u+ ∧ 1‖22, ∀u ∈ Dom(A),

(see [12]). To show this, we may assume that u ∈ C∞0 (M).
We divide A into tow parts: 4 and b. For any ε > 0, take ϕε such

that 0 ≤ ϕ′ε ≤ 1 and

(2.13) ϕε(t) =





ε, t ≤ 0,
∈ [ε, 2ε], 0 ≤ t ≤ 2ε,
t, 2ε ≤ t ≤ 1,
∈ [1, 1 + ε], 1 ≤ t ≤ 1 + 2ε,
1 + ε, t ≥ 1 + 2ε.

Then
∫

M

4uϕε(u) dm = −
∫

M

∇u · ∇ϕε(u) dm = −
∫

M

ϕ′ε|∇u|2 dm ≤ 0.



8 I. Shigekawa

Now letting ε→ 0, we have
∫

M

4u(u+ ∧ 1) dm ≤ 0.

Next we consider the bu part. Let Φ be a primitive function of the
function t→ t+ ∧ 1. That is

(2.14) Φ(t) = t(t+ ∧ 1)− 1
2
(t+ ∧ 1)2 =





0, t ≤ 0,
1
2 t

2, 0 ≤ t ≤ 1,
t− 1

2 , t ≥ 1.

Then
∫

M

{bu(u+ ∧ 1)− 2γu(u+ ∧ 1)} dm

=
∫

M

{bΦ(u)− 2γu(u+ ∧ 1)} dm

= −
∫

M

(Φ(u) div b+ 2γu(u+ ∧ 1)) dm.

By the assumption (A.1) and the definition of Φ, we have

−Φ(u) div b ≤ 2γΦ(u) = 2γu(u+ ∧ 1)− γ(u+ ∧ 1)2.

Hence
∫

M

{bu(u+ ∧ 1)− 2γu(u+ ∧ 1)} dm ≤ −γ‖u+ ∧ 1‖22.

Combining both of them, we get the desired result. Q.E.D.

We can deal with A∗ similarly. This time, the sign of the vector field
is opposite and so we assume the following

(A.2)∗: There exists a positive non-increasing function κ : [0,∞) →
[0, 1] such that

∫∞
0
κ(x) dx = ∞ and κ(ρ)bρ ≤ 1.

We now have the following

Theorem 2.3. Assume (A.1) and (A.2)∗. Then the closure of
(A∗, C∞0 (M)) generates a C0-semigroup in L2(m). Further the semi-
group satisfies L1 contraction property. If, in addition, div b ≥ 0, then
the semigroup satisfies the Markovian property.
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Proof. The proof is similar to that of Theorem 2.1. We only see
the L1 contraction property. Define Φ by (2.14). Then Φ(t)−t(t+∧1) =
− 1

2 (t+ ∧ 1)2 and therefore
∫

M

{−bu(u+ ∧ 1)− u(u+ ∧ 1) div b} dm

=
∫

M

{Φ(u) div b− u(u+ ∧ 1) div b} dm

= −1
2

∫

M

(u+ ∧ 1)2 div b dm

≤ γ

∫

M

(u+ ∧ 1)2 dm.

This shows the L1 contraction property. Q.E.D.

§3. Domain of the generator

We now proceed to the issue of determining the generator domain.
Our main tool is the intertwining property of operators. So we first
need to investigate the intertwining property between A and ∇. Here ∇
is the covariant differentiation. We always assume that our connection
is the Levi-Civita connection. The intertwining property between 4
and ∇ is well-known as ∇4 = ¤1∇, where ¤1 is the Hodge-Kodaira
operator −(dd∗ + d∗d) acting on 1-forms. In fact, noting that ∇ = d for
scalar functions and d2 = 0, we have ∇4 = −dd∗d = −(dd∗ + d∗d)d =
¤1∇. Let us recall that ¤1 = −∇∗∇−Ric where Ric denotes the Ricci
curvature. We will use this later. What about ∇ and ∇b? To see this,
we note that for any vector field X,

∇X(bu) = ∇X〈∇u, b〉
= (∇2u)(X, b) + 〈∇u,∇Xb〉
= (∇2u)(b,X) + 〈∇u,∇Xb〉 (symmetry of ∇2u)

= 〈∇b∇u,X〉+ 〈∇u,∇Xb〉.

Now define an operator ~A acting on 1-forms as

(3.1) ~Aθ =
1
2
¤1θ +∇bθ + 〈∇·b, θ〉.

Here 〈∇·b, θ〉 is a 1-form defined by 〈∇·b, θ〉(X) = θ(∇Xb) for any vector
field X. Then

∇A = ~A∇.
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To be precise, this relation holds at least on C∞0 (M).
Next we will get a symmetric bilinear form ~E satisfying

(3.2) ~E(θ, θ) = −(~Aθ, θ)2.

To do this, note that

−(~Aθ, θ)2 = −1
2
(¤1θ, θ)2 −

∫

M

(∇bθ, θ) dm−
∫

M

(〈∇·b, θ〉, θ) dm

=
1
2
(∇θ,∇θ)2 +

1
2

∫

M

Ric(θ, θ) dm− 1
2

∫

M

∇b(θ, θ) dm

−
∫

M

(〈∇·b, θ〉, θ) dm

=
1
2
(∇θ,∇θ)2 +

1
2

∫

M

Ric(θ, θ) dm+
1
2

∫

M

|θ|2 div b dm

−
∫

M

(〈∇·b, θ〉, θ) dm.

Let B be a symmetrization of ∇b, i.e., B = 1
2 (∇·b+ (∇·b)∗). Then, ~E is

given by
(3.3)
~E(θ, η) =

1
2
(∇θ,∇η)2 +

∫

M

{1
2

Ric(θ, η) +
1
2

div b(θ, η)− (Bθ, η)} dm.

We impose the following assumption to ensure that ~E is bounded from
below.

(A.3): Ric is bounded from below and there exists a constant
δ so that 1

2 Ric + 1
2 div b−B ≥ −δ.

Let us remark that ~E in (3.3) is defined for C∞ 1-forms with compact
support. Assuming (A.3), we see that ~Eδ = ~E + δ( , )2 becomes non-
negative and we can take a closure. So we assume that ~E is closed from
now on. Further, by (3.3), we have

(3.4)
1
2
‖∇θ‖22 ≤ ~Eδ(θ, θ).

We are ready to determine the domain of A.

Theorem 3.1. Assume (A.1), (A.2), (A.2)∗ and (A.3). Then the
necessary and sufficient condition for u ∈ Dom(A) is that u ∈ Dom(4)
and bu ∈ L2(m).
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Proof. The sufficiency is easily shown by noting that C∞0 (M) is
dense in Dom(A∗). In fact, by the integration by part, we have

(
1
2
4u+ bu, φ)2 = (u,A∗φ)2, ∀φ ∈ C∞0 (M).

It is easy to see that the above identity holds for φ ∈ Dom(A∗) by
using the denseness of C∞0 (M) in Dom(A∗). This implies that u ∈
Dom(A∗∗) = Dom(A).

Next we will show the necessity. Take any u ∈ C∞0 (M). Then

((A− δ − 1)u,4u)2 = −((A− δ − 1)u,∇∗∇u)2
= −(∇(A− δ − 1)u,∇u)2
= −((~A− δ − 1)∇u,∇u)2
= ~Eδ+1(∇u,∇u).

Hence, by Young’s inequality,

~Eδ+1(∇u,∇u) ≤ 1
2ε
‖(A− δ − 1)u‖22 +

ε

2
‖4u‖22.

Choose ε to be small so that
ε

2
‖4u‖22 ≤

1
4
(‖∇2u‖2 + ‖u‖22).

Then, by (3.4), we have

1
2ε
‖(A− δ − 1)u‖22 ≥ ~Eδ+1(∇u,∇u)− ε

2
‖4u‖22

≥ ~Eδ+1(∇u,∇u)− 1
4
(‖∇2u‖2 + ‖u‖22)

≥ 1
4
~Eδ+1(∇u,∇u).

Noting that C∞0 (M) is dense in Dom(A), the above relation implies
that ∇u ∈ Dom(~E) if u ∈ Dom(A). Therefore, by noting (3.4), we
have ∇2u ∈ L2(m), i.e., u ∈ Dom(4). Since bu = Au − 1

24u, we have
bu ∈ L2(m). This completes the proof. Q.E.D.

We can have a similar result for A∗ but we have to handle the
potential term div b in this case. First we will get the intertwining
property between A∗ and ∇. To do this, it is enough to use that
∇(V u) = u∇V + V∇u for V = div b. So, defining a operator ~D acting
on 1-forms by

(3.5) ~Dθ =
1
2
¤1θ −∇bθ − 〈∇·b, θ〉 − θ div b,
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we easily have the following defective intertwining property (see [11]):

∇A∗u = ~D∇u− u∇ div b.

Further, denoting the symmetrization of ∇·b by B and noting that ¤1 =
−∇∗∇− Ric,

−(~Dθ, θ)2 =
1
2
(∇θ,∇θ)2 +

∫

M

{1
2

Ric(θ, θ) +
1
2
|θ|2 div b+ (Bθ, θ)} dm.

Now we introduce the following assumption.
(A.4): Ric is bounded from below and there exists a constant
δ′ so that Ric + 1

2 div b + B ≥ −δ′. Moreover, ∇ div b
div b+2γ+2 is

bounded.
Under the above assumptions, we define a bilinear form ~E′ on 1-

forms by
(3.6)
~E′(θ, η) =

1
2
(∇θ,∇η)2 +

∫

M

{1
2

Ric(θ, η) +
1
2
(θ, η) div b+ (Bθ, η)} dm.

Then ~E′ is bounded from below and so it is closable. Taking a closure,
we may assume that ~E′ is closed. We also have the inequality for ~E′ as
follows:

1
2
‖∇θ‖22 ≤ ~E′δ′(θ, θ).

Now we can determine the domain of A∗.

Theorem 3.2. Assume (A.1), (A.2), (A.2)∗ and (A.4). Then the
necessary and sufficient condition for u ∈ Dom(A∗) is that u ∈ Dom(4)
and bu+ 1

2udiv b ∈ L2(m).

Proof. As in the proof of Theorem 3.1, the sufficiency is shown by
using the denseness of C∞0 (M) in Dom(A).

We will show the necessity. We set V = div b. From the assumption,
we take a constant M so that |∇V |

V +2γ+2 ≤ M . Take any u ∈ C∞0 (M).
Then

((A∗ − δ′ − 1)u,4u)2
= −((A∗ − δ′ − 1)u,∇∗∇u)2
= −(∇(A∗ − δ′ − 1)u,∇u)2
= −((~D− δ′ − 1)∇u,∇u)2 + (u∇V,∇u)2
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= ~E′δ′+1(∇u,∇u) + (
∇V

V + 2γ + 2

√
V + 2γ + 2u,

√
V + 2γ + 2∇u)2

≥ ~E′δ′+1(∇u,∇u)

−M

{
1
2ε

∫

M

{(V + 2γ + 2)u2 dm+
ε

2

∫

M

(V + 2γ + 2)|∇u|2} dm

≥ ~E′δ′+1(∇u,∇u)−
M

ε
Ẽγ+1(u, u)−Mε~E′γ+1(∇u,∇u).

Choose ε > 0 to be small so that ε
2‖4u‖2 ≤ 1

2
~E′δ′+1(∇u,∇u) + ‖u‖22.

Then

(1−Mε)~E′δ′+1(∇u,∇u)

≤ ((A∗ − δ′ − 1)u,4u)2 +
M

ε
Ẽγ+1(u, u)

= ((A∗ − δ′ − 1)u,4u)2 − M

ε
((A∗ − γ − 1)u, u)2

≤ 1
2ε
‖(A∗ − δ′ − 1)u‖2 +

ε

2
‖4u‖2 +

M

2ε
‖(A∗ − γ − 1)u‖22 +

M

2ε
‖u‖22

≤ 1
2ε
‖(A∗ − δ′ − 1)u‖2 +

1
2
~E′δ′+1(∇u,∇u)

+ ‖u‖22 +
M

2ε
‖(A∗ − γ − 1)u‖22 +

M

2ε
‖u‖22.

Eventually we have

(
1
2
−Mε)~E′δ′+1(∇u,∇u)

≤ 1
2ε
‖(A∗ − δ′ − 1)u‖2 +

M

2ε
‖(A∗ − γ − 1)u‖2 + (

M

2ε
+ 1)‖u‖22.

Here we take again ε to be small so that the coefficient of the left hand
side becomes positive. This inequality holds for u ∈ C∞0 (M) but, us-
ing the denseness, we can see that the above inequality holds for u ∈
Dom(A∗). It brings ∇u ∈ Dom(~E′). Therefore we have ∇2u ∈ L2(m)
and hence u ∈ Dom(4). Now bu+ 1

2udiv b ∈ L2(m) follows easily. The
proof is completed. Q.E.D.

§4. Construction of Lp semigroup

So far we considered the L2 case. In this section, we will construct
a semigroup in Lp setting where 1 < p < ∞. We can show it along
the same line as before but the discussion becomes complicated. We
consider two cases separately: p ≤ 2 and p ≥ 2. In the case p ≤ 2, we
have the following.
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Theorem 4.1. Assume conditions (A.1) and (A.2). Then, in
Lp(m) (1 < p ≤ 2), the closure of (A, C∞0 (M)) generates a C0 semi-
group.

Proof. Set γp = p
2γ. Then, from (A.1), we have

(4.1)
1
p

div b ≥ −γp.

We first show that A − γp is dissipative. To do this, we take any u ∈
C∞0 (M) and show that

(4.2)
∫

M

4u sgn(u)|u|p−1 dm ≤ 0.

For ε > 0, define ϕε by

(4.3) ϕε(t) = t(t2 + ε)(p/2)−1.

Then

ϕ′ε(t) = (t2 + ε)(p/2)−1 + t(
p

2
− 1)(t2 + ε)(p/2)−22t

= (t2 + ε)(p/2)−2(t2 + ε+ (p− 2)t2)

= (t2 + ε)(p/2)−2((p− 1)t2 + ε) ≥ 0.

Therefore, we have
∫

M

4uϕε(u) dm = −
∫

M

∇uϕ′ε(u)∇u dm = −
∫

M

ϕ′ε(u)|∇u|2 dm ≤ 0.

Letting ε→ 0, we can get (4.2).
Let us deal with bu. This time, we set ϕ(t) = |t|p. Then, ϕ is a C1

function and ϕ′(t) = p sgn(t)|t|p−1. Hence

b(|u|p) = bϕ(u) = p sgn(u)|u|p−1bu

and
∫

M

bu sgn(u)|u|p−1 dm =
1
p

∫

M

b(|u|p) dm = −1
p

∫

M

|u|p div b dm.

Combining them, we have
∫

M

(A− γp)u sgn(u)|u|p−1 dm

=
∫

M

4u sgn(u)|u|p−1 −
∫

M

(
1
p

div b+ γp)|u|p dm ≤ 0,
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which shows that A− γp is dissipative.
Next we show that its closure generates a C0 semigroup. To do this,

it suffices to show that the image of C∞0 (M) by A−α is dense in Lp(m)
for sufficiently large α. So let q be the conjugate exponent of p and
assume that u ∈ Lq(m) satisfies

∫

M

u(A− α)φdm = 0, ∀φ ∈ C∞0 .

Our aim is to deduce u = 0 from this condition. By using the hypoel-
lipticity of the elliptic operator, we have u ∈ C∞(M). Therefore, the
above identity can be rewritten as

−1
2

∫

M

∇u∇φdm+
∫

M

ubφ = α

∫

M

φu dm, ∀φ ∈ C∞0 .

It is easy to see that the above identity holds for any φ ∈ H1(M) with
compact support. We now set

ψ(t) = sgn(t)|t|q−1.

ψ is a C1-function and ψ′(t) = (q−1)|t|q−2. We take φ = χq
nψ(u) where

χn is a function defined by (2.7) in Section 2. Then we have

α

∫

M

χq
nψ(u)u dm = −1

2

∫

M

∇(χq
nψ(u)) · ∇u dm+

∫

M

ub(χq
nψ(u)) dm

=: I1 + I2.

We compute I1, I2 respectively. As for I1,

I1 = −1
2

∫

M

∇(χq
nψ(u)) · ∇u dm

= −1
2

∫

M

{qχq−1
n sgn(u)|u|q−1∇χn · ∇u+ (q − 1)χq

n|u|q−2|∇u|2} dm

= −q
2

∫

M

qχq−1
n sgn(u)|u|q−1∇χn · ∇u dm

+ (q − 1)
∫

M

χq
n|u|q−2|∇u|2 dm.

The first term of the left hand side is estimated as follows.

q

2

∣∣∣∣
∫

M

χq−1
n sgn(u)|u|q−1∇χn · ∇u dm

∣∣∣∣

≤ q

2

∫

M

χq−1
n |u|q−1|∇χn| |∇u| dm



16 I. Shigekawa

≤ q

2n

∫

M

χ
q
2−1
n |u| q

2 |u| q−2
2 |∇u|χ

q
2
n dm (∵ |∇χn| ≤ 1

n
)

≤ q

4n

∫

M

{χq−2
n |u|qnq|u|q−2|∇u|2} dm

≤ q

4n

∫

M

χq−2
n |u|q dm+

q

4n

∫

M

χq
n|u|q−2|∇u|2 dm.

Thus we have

I1 ≤ q

4n

∫

M

χq−2
n |u|q dm− {(q − 1)− q

4n
}

∫

M

χq
n|u|q−2|∇u|2 dm.

If we take n to be large so that (q − 1)− q
4n > 0, then we can get

I1 ≤ q

4n

∫

M

χq−2
n |u|q dm.

As for I2,

I2 =
∫

M

{ubχnχ
q−1
n ψ(u) + uχnb(χq−1

n ψ(u))} dm

=
∫

M

{(bχn)χq−1
n |u|q − b(uχn)χq−1

n ψ(u)− (div b)uχnχ
q−1
n ψ(u)} dm

=
∫

M

{(bχn)χq−1
n |u|q − 1

q
b(χq

n|u|q)− (div b)χq
n|u|q} dm

=
∫

M

{(bχn)χq−1
n |u|q +

1
q

div b(χq
n|u|q)− div bχq

n|u|q} dm

=
∫

M

{(bχn)χq−1
n |u|q − (1− 1

q
)(div b)χq

n|u|q} dm.

From the assumption, bχn ≤ 1
n and hence

∫

M

(bχn)χq−1
n |u|q dm ≤ 1

n

∫

M

χq−1
n |u|q dm

and therefore

I2 ≤ 1
n

∫

M

χq−1
n |u|q dm− (1− 1

q
)
∫

M

(div b)χq
n|u|q dm.

Summing up both of them, we have

α

∫

M

χq
n|u|q dm ≤ q

4n

∫

M

χq−2
n |u|q dm+

1
n

∫

M

χq−1
n |u|q dm

− (1− 1
q
)
∫

M

(div b)χq
n|u|q dm.
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Now we take α large enough so that α− (1− 1
q ) div b ≥ 1. Then

∫

M

χq
n|u|q dm ≤ q

4n

∫

M

χq−2
n |u|q dm+

1
n

∫

M

χq−1
n |u|q dm.

Since u ∈ Lq(m), by letting n→∞, we get
∫

M

|u|q dm ≤ 0,

which implies u = 0 and the proof is completed. Q.E.D.

We can treat the case p ≥ 2 similarly but we have to adopt a different
approximation method.

Theorem 4.2. Assume (A.1) and (A.2). Then, the closure of
(A, C∞0 (M)) generates a C0 semigroup in Lp(m) (p ≥ 2).

Proof. Setting γp = p
2γ, we have

(4.4)
1
p

div b ≥ −γp.

Let us first show that A−γp is dissipative. We note that for u ∈ C∞0 (M),
∫

M

4u sgn(u)|u|p−1 dm = −
∫

M

∇u · ∇(sgn(u)|u|p−1) dm

= −
∫

M

∇u · ((p− 1)|u|p−2∇u) dm

= −
∫

M

(p− 1)|u|p−2|∇u|2 dm ≤ 0.

To deal with bu, we note

b(|u|p) = bϕ(u) = p sgn(u)|u|p−1bu,

and hence we have
∫

M

∇u sgn(u)|u|p−1 dm =
1
p

∫

M

b(|u|p) dm = −1
p

∫

M

(div b)|u|p dm.

Therefore
∫

M

(A− γp)u sgn(u)|u|p−1 dm

=
∫

M

4u sgn(u)|u|p−1 dm−
∫

M

(
1
p

div b+ γp)|u|p dm ≤ 0,
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which shows that A− γp is dissipative.
Next we show that its closure generates a C0 semigroup. To do this,

we need to show that it is maximal dissipative, i.e., for large enough α,
the image of C∞0 (M) by A−α is dense in Lp(m). Let q be the conjugate
exponent of p and suppose that u ∈ Lq(m) satisfies

∫

M

u(A− α)φdm = 0, ∀φ ∈ C∞0 .

We need to show that u = 0. We note that, by the hypoellipticity of the
elliptic operator, u ∈ C∞(M). So the above identity can be rewritten
as

−1
2

∫

M

∇u∇φdm+
∫

M

ubφ = α

∫

M

φu dm, ∀φ ∈ C∞0 .

Further the above identity holds for φ ∈ H1(M) with a compact support.
For ε > 0, we set, as in (4.3), ϕε(t) = t(t2 + ε)

q
2−1. Then ϕε is a C1

function and satisfies ϕ′ε(t) = (t2 + ε)
q
2−2((q − 1)t2 + ε). We again use

χn defined by (2.7). Taking φ = χp
nϕε(u),

α

∫

M

χpϕε(u) dm = −1
2

∫

M

∇(χp
nϕε(u)) · ∇u dm+

∫

M

ub(χp
nϕε(u)) dm

=: I1 + I2.

We estimate I1 and I2 respectively. As for I1,

I1 = −1
2

∫

M

∇(χp
nϕε(u)) · ∇u dm

= −1
2

∫

M

{pχp−1
n ϕε(u)∇χn · ∇u+ χp

nϕ
′
ε(u)∇u · ∇u} dm

= −p
2

∫

M

χp−1
n ϕε(u)∇χn · ∇u dm

− 1
2

∫

M

χp
n(u2 + ε)

q
2−2((q − 1)u2 + ε)|∇u|2 dm.

The first term is estimated as
∣∣∣∣
p

2

∫

M

χp−1
n ϕε(u)∇χn · ∇u dm

∣∣∣∣

≤ p

2

∫

M

χp−1
n |ϕε(u)| |∇χn| |∇u| dm

≤ Mp

2n

∫

M

χp−1
n |ϕε(u)| |∇u| dm
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=
Mp

2n

∫

M

χp−1
n |u|(u2 + ε)

q
2−1|∇u| dm

=
Mp

2n

∫

M

χ
p
2−1
n |u|(u2 + ε)

q
4 ((q − 1)u2 + ε)−

1
2

× χ
p
2
n (u2 + ε)

q
4−1((q − 1)u2 + ε)

1
2 |∇u| dm

≤ Mp

4n

∫

M

{χp−2
n |u|2(u2 + ε)

q
2 ((q − 1)u2 + ε)−1

+ χp
n(u2 + ε)

q
2−2((q − 1)u2 + ε)|∇u|2} dm.

In the first term of the above integrand,

|u|2(u2 + ε)
q
2

(q − 1)u2 + ε
=

|u|2(u2 + ε)
q
2

((q − 1)u2 + ε)
q
2 ((q − 1)u2 + ε)1−

q
2

≤ |u|2(u2 + ε)
q
2

((q − 1)u2 + (q − 1)ε)
q
2 ((q − 1)u2)1−

q
2

=
|u|2(u2 + ε)

q
2

(q − 1)(u2 + ε)
q
2 |u|2−q

=
|u|q
q − 1

.

Therefore, we have

I1 ≤ Mp

4n(q − 1)

∫

M

χp−1
n |u|q dm

−
(

1
2
− Mp

4n

) ∫

M

χp
n(u2 + ε)

q
2−2((q − 1)u2 + ε)|∇u|2 dm.

Taking n to be large enough so that 1
2 − Mp

4n > 0,

I1 ≤ Mp

4n(q − 1)

∫

M

χp−2
n |u|q dm.

As for I2,

I2 =
∫

M

ub(χp
nϕε(u)) dm

=
∫

M

ub(χ
p
q
nχ

p− p
q

n ϕε(u)) dm

=
∫

M

{up
q
χ

p
q−1
n bχn χ

p− p
q

n ϕε(u) + uχ
p
q
n b(χ

p− p
q

n ϕε(u))} dm
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=
p

q

∫

M

χp−1
n bχnu

2(u2 + ε)
q
2−1 dm−

∫

M

b(uχ
p
q
n )χ

p
q (q−1)
n ϕε(u) dm

−
∫

M

χp
nuϕε(u) div b dm.

In the third line, we have used the Leibniz rule which requires the dif-
ferentiability of χ

p− p
q

n . But this is clear since p− p
q = 1. Now,

p

q

∫

M

χp−1
n bχnu

2(u2 + ε)
q
2−1 dm ≤ p

nq

∫

M

χp−1
n u2(u2 + ε)

q
2−1 dm

≤ p

nq

∫

M

χp−1
n |u|q dm

and hence,

I2 ≤ p

nq

∫

M

χp−1
n |u|q dm−

∫

M

b(uχ
p
q
n )χ

p
q (q−1)
n ϕε(u) dm

−
∫

M

χp
nuϕε(u) div b dm.

Combining both estimates of I1 and I2, we have

α

∫

M

χp
nuϕε(u) dm

≤ Mp

4n(q − 1)

∫

M

χp−1
n |u|q dm+

p

nq

∫

M

χp−1
n |u|q dm

−
∫

M

b(uχ
p
q
n )χ

p
q (q−1)
n ϕε(u) dm−

∫

M

χp
nuϕε(u) div b dm.

Letting ε→ 0,

α

∫

M

χp
n|u|q dm

≤ Mp

4n(q − 1)

∫

M

χp−2
n |u|q dm+

p

nq

∫

M

χp−1
n |u|q dm

−
∫

M

b(uχ
p
q
n )χ

p
q (q−1)
n sgn(u)|u|q−1 dm−

∫

M

χp
n|u|q div b dm.

Recalling

b(|u|qχp
n) = b(|u|χ

p
q
n )q = q sgn(u)|u|q−1χ

p
q (q−1)
n b(uχ

p
q
n ),

we have

−
∫

M

b(|u|χ
p
q
n )χ

p
q (q−1)
n sgn(u)|u|q−1 dm = −1

q

∫

M

b(|u|qχp
n) dm
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=
1
q

∫

M

(div b)|u|qχp
n dm.

Thus, eventually we have

α

∫

M

χp
n|u|q dm ≤ Mp

4n(q − 1)

∫

M

χp−2
n |u|q dm+

p

nq

∫

M

χp−1
n |u|q dm

− (1− 1
q
)
∫

M

(div b)χp
n|u|q dm.

Taking α to be large enough so that α + (1 − 1
q ) div b ≥ 1 and letting

n→∞, we get
∫

M

|u|q dm ≤ 0,

which deduces u = 0 as desired. Q.E.D.

We can also show the Markovian property and the L1 contraction
property of the semigroup in Lp setting as follows.

Theorem 4.3. Assume (A.1) and (A.2). Then the semigroups
{Tt} obtained in Theorem 4.1 and Theorem 4.2 satisfy the Markovian
property. Moreover {e−2γtTt} satisfies the L1 contraction property.

Proof. Let us prove the Markovian property, which follows if we
show the following (see Jacob [5, Lemma 4.6.6] when γ = 0 and [12] for
general γ):

(4.5)
∫

M

Au (u− 1)p−1
+ dm ≤ 2γ

p
‖(u− 1)+‖p

p.

We show this inequality for u ∈ C∞0 . We treat 4 and b separately. Take
any ε > 0 and define ϕε ∈ C∞(R) as follows. ϕε = ε for t ≤ 1 and
ϕ(t) = t− 1 for t ≥ 1 + 2ε. Then

∫

M

4uϕε(u)p−1 dm = −
∫

M

∇u · ∇(ϕε(u)p−1) dm

= −
∫

M

∇u · ((p− 1)ϕε(u)p−2ϕ′ε(u)∇u) dm

= −(p− 1)
∫

M

ϕε(u)p−2ϕ′ε(u)|∇u|2 dm ≤ 0.

Letting ε→ 0, we have
∫

M

4u (u− 1)p−1
+ dm ≤ 0.
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As for b part, set Φ(t) = 1
p (t− 1)p

+. Then Φ′(t) = (t− 1)p−1
+ and

hence
∫

M

buϕε(u)p−1 dm =
∫

M

buΦ′(u) dm

=
∫

M

bΦ(u) dm

= −
∫

M

(div b)Φ(u) dm

= −1
p

∫

M

div b(u− 1)p
+ dm

≤ 2γ
p

∫

M

(u− 1)p
+ dm

=
2γ
p
‖(u− 1)+‖p

p.

Combining both of them, we can see that (4.5) holds for u ∈ C∞0 . The
rest is easy if we notice that C∞0 is dense in Dom(A).

Next we show the L1 contraction property. It suffices to show the
following (see [12]):

(4.6)
∫

M

(A− 2γ)u (u+ ∧ 1)p−1 dm ≤ 2γ(
1
p
− 1)‖u+ ∧ 1‖p

p.

To show this, for any ε > 0, define ϕε by (2.13) in Section 2. Then
∫

M

4uϕε(u)p−1 dm = −
∫

M

∇u · ∇(ϕε(u)p−1) dm

= −
∫

M

∇u · ((p− 1)ϕε(u)p−2ϕ′ε(u)∇u) dm

= −(p− 1)
∫

M

ϕε(u)p−2ϕ′ε(u)|∇u|2 dm ≤ 0.

Letting ε→ 0, we have
∫

M

4u (u+ ∧ 1)p−1 dm ≤ 0.

This shows the 4 part.
Let us treat b part. Define Φ by

Φ(t) =





∫ t

0

(v ∧ 1)p−1 dv, t ≥ 0

0, t ≤ 0.
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This means that Φ(t) = 1
p t

p for 0 ≤ t ≤ 1 and Φ(t) = t−1+ 1
p for t ≥ 1.

Then, Φ′(t) = (t+ ∧ 1)p−1 and hence
∫

M

{bu(u+ ∧ 1)p−1 − 2γu(u+ ∧ 1)p−1} dm

=
∫

M

{buΦ′(u)− 2γu(u+ ∧ 1)p−1} dm

=
∫

M

{bΦ(u)− 2γu(u+ ∧ 1)p−1} dm

= −
∫

M

{(div b)Φ(u) + 2γu(u+ ∧ 1)p−1} dm.

From the definition of Φ, we have

−(div b)Φ(u) ≤ 2γΦ(u) = 2γu(u+ ∧ 1)p−1 + 2γ(
1
p
− 1)(u+ ∧ 1)p

and therefore∫

M

{bu(u+ ∧ 1)p−1 − 2γu(u+ ∧ 1)p−1} dm ≤ 2γ(
1
p
− 1)

∫

M

(u+ ∧ 1)p dm

= 2γ(
1
p
− 1)‖u+ ∧ 1‖p

p.

Combining both of them, (4.6) holds for u ∈ C∞0 (M). Now, by the
fact that C∞0 (M) is dense in Dom(A), (4.6) holds for u ∈ Dom(A) and
the proof is completed. Q.E.D.

To determine the domain of the generator in Lp setting is also an
interesting problem. But it seems that we need a technique different
from the L2 case. It is left as a future problem.

§5. Examples of non-symmetric diffusions

We give some examples. Suppose that M = R2 eqipped with the
Euclidean metric. We denote the coordinates in R2 by (x1, x2). Define
a vector field b = b1 ∂

∂x1 + b2 ∂
∂x2 as

b1 = c1 + x1b11 + x2b12

b2 = c2 + x1b21 + x2b22

and consider the operator A = 1
24 + b. Then ∇b may be represented

with respect to the canonical coordinate as

∇b =
(
b11 b12
b21 b22

)
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and therefore div b = b11 + b22 and the symmetrization of ∇b is

B =
(

b11
1
2 (b12 + b21)

1
2 (b12 + b21) b22

)
.

We easily see that all conditions (A.1), (A.2), (A.2)∗ (A.3), (A.4) in
Section 2 and Section 3 are satisfied. Hence the operator A generates
a Markovian semigroup in Lp(R2, dx1 dx2). To be precise, the closure
of it with the domain C∞0 (R2) generates a semigroup. In L2, we have
moreover that the domain is the set of all u so that u ∈ Dom(4) and
bu ∈ L2. The corresponding SDE is linear so that it can be solved
explicitly, but, to his knowledge, the author chould not find the literature
which gives the characterization of the generator domain.

We can also treat the perturbation of the Ornstein-Uhlenbeck oper-
ator. Here the Ornstein-Uhlenbeck operator L is defined by

L = 4− x1 ∂

∂x1
− x2 ∂

∂x2
.

In this case, we need to change the measure from the Lebesgue measure
to the Gaussian measure µ = 1

2π exp{−((x1)2 + (x2)2)/2}dx1dx2. If
we take a vector field b as above, we can show that L + b generates a
Markovian semigroup. This is not exactly within the framework of the
previous sections, but we can show it with a minor change.

Acknowledgement : The author would like to thank the referee for
his careful reading. The referee pointed out mathematical mistakes and
inappropriate expressions so that the paper was quite improved.
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