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Summary. We discuss the L? multiplier theorem for a semigroup acting on vector
valued functions. A typical example is the Hodge-Kodaira operator on a Rieman-
nian manifold. We give a probabilistic proof. Our main tools are the semigroup
domination and the Littlewood—Paley inequality.

1 Introduction

We discuss the LP multiplier theorem. In L? setting, it is well known that
©(—L) is bounded if and only if ¢ is bounded where L is a non-positive self-
adjoint operator. In L? setting, the criterion above is no more true in general.

E. M. Stein [9] gave a sufficient condition when L is a generator of a
symmetric Markov process. It reads as follows: define a function ¢ on [0, c0) by

o(\) = A/OOO e 2 m(t) dt. (1.1)

Here we assume that m is a bounded function. A typical example is p()\) = \*@
(v € R). Then Stein proved that ¢(—L) is a bounded operator in L? for
1 < p < co. He also proved that the operator norm of ¢(—L) depends only
on p and the bound of m.

In the meanwhile we consider the Hodge-Kodaira operator on a compact
Riemannian manifold M. It is of the form L = —(dd* + d*d) where d is
the exterior differentiation. A typical feature is that L acts on vector valued
functions, to be precise, differential forms on M. In this case, we can get the
following theorem:
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Theorem 1.1. For sufficiently large k, p(k —L) is a bounded operator in LP.
Further the operator norm is estimated in terms of m and p only.

To show this theorem, we use the following facts.

1. The semigroup domination.
2. The Littlewood—Paley inequality.

As for the first, we can show that
lefL=m)g| < et |0). (1.2)

Here L is the Laplace-Beltrami operator on M and the inequality holds point-
wisely. This inequality can be shown by means of Ouhabaz criterion ([3]). To
use the criterion, the following inequality is essential.

L|6)*> — 2(L6,0) + |6]> > 0.

As for the second, we need the Littlewood—Paley function. This is somehow
different from usual one. We may call it the Littlewood—Paley function of
parabolic type. It is defined as follows:

Po(x) = {/OOO |VT:0(x)? dt}l/z.

Here T; denotes the semigroup e!(*=%). We can show the following inequality:

there exists positive constant C' independent of 6 such that
PO, < Cll6llp

where ||. ||, stands for the LP-norm. This inequality is called the Littlewood—
Paley inequality.
Combining these two inequality we can show that

[(e(k = L)0,n) | < C1l[POl, [ Prlly < C2l10llp lInllq-

Here ¢ is the conjugate exponent of p. Now the desired result follows easily.

The organization of the paper is as follows. We discuss this problem in
the general framework of symmetric diffusion process. We give this formu-
lation in §2. We introduce the square field operator not only in the scalar
valued case but also in the vector valued case. We give conditions to assure
the semigroup domination which plays an important role in the paper. In
§3, we discuss the Littlewood—Paley inequality. We use the Littlewood—Paley
function of parabolic type. After preparing those, we give a proof of the mul-
tiplier theorem. In §4, we give an example of the Hodge-Kodaira operator.
The crucial issue is the intertwining property of these operators.
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2 Symmetric Markov processes and the semigroup
domination

In the introduction, we stated the theorem for the Hodge-Kodaira operator
but it can be discussed under more general setting. We give it in the framework
of symmetric Markov diffusion process.

Let (M, 1) be a measure space and suppose that we are given a conservative
diffusion process (X, P;) on M. Here P, denotes a measure on C([0,00) —
M) that stands for the law of the diffusion process starting at z € M. We
assume that (X;) is symmetric with respect to p and hence the semigroup
{T}} defined by

Tif(x) = Eq[f(X)], (2.1)

is a strongly continuous symmetric semigroup in L?(m). Here E, stands for
the expectation with respect to P,. We denote the associated Dirichlet form
by £ and the generator by L. We assume further that there exists a continuous
bilinear map I': Dom(&) x Dom(€) — L'(m) such that

2 /M T(f,9)hdp = E(fg,h) — E(f, gh) — E(g, [h),
for f, g, h € Dom(E) N L>®. (2.2)

I" is called the square field operator (“opérateur carré du champ” in French
literature) and we impose on I" the following derivation property:

I'(fg,h) = fI'(g,h) +gI'(f,h), for f, g, h € Dom(&) N L. (2.3)

We are dealing with a semigroup acting on vector valued functions (to be
precise, sections of a vector bundle) and so we are given another semigroup
{T,}. The semigroup acts on L?-sections of a vector bundle E. Here F is
equipped with a metric (., .)g and L2-sections are measurable sections § with

16]|5 = /M 10(2)[% p(dz) < oo.

The norm |.|g is defined by |0|r = /(6,0)r. We denote the set of all L%
sections by L?I'(E). The typical example of E is a exterior bundle of T* M
over a Riemannian manifold M and in this case L?I'(E) is the set of all square
integrable differential forms. L denotes the generator of {T:} and € denotes
the associated bilinear form. We assume that L is decomposed as

L=L-x—R (2.4)

Here R is a symmetric section of Hom(E; F') and « is a positive constant.
Later we take r to be large enough. L is self-adjoint and non-negative def-
inite. It generates a contraction semigroup which we denote by {T;}. L
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and L satisfy the following relation: there exists a square field operator
I': Dom(&) x Dom(€) — L (i) such that

2/ O, mhdu=E((0,m)p,h) — E0,hn) — E(hO,n),
M

for 6, n € Dom(€) N L, h € Dom(£) NL>®. (2.5)
We assume that I" enjoys the positivity f’(ﬁ, 6) > 0 and

for 6, n € Dom(€) N L>®, h € Dom(E) N L. These properties lead to the
semigroup domination (see e.g., [5]):

‘Tt9|E < Ty|0]e- (2.7)

Since R is bounded, we may assume that x+ R is non-negative definite at any
point of M by taking x large enough. We assume further that there exists a
positive constant § > 0 such that

Ii(e, Q)E + (RQ,H)E > (5(9,9)]9 (2.8)
Then the semigroup domination for {T;} also holds as follows:
|T0|p < e °'T}|0| 5. (2.9)

We give a correspondence to the Hodge-Kodaira operator when M is a
Riemannian manifold. L = A (i.e., the Laplace-Beltrami operator), E =
NI T*M (the exterior product of the cotangent bundle) and L?I'(E) is the
set of all square integrable g-forms. L = —V*V is the covariant Laplacian
(Bochner Laplacian), L = —(dd* +d*d) — & = L — k — R(,). The explicit form
of R, is given by the Weitzenbock formula and can be written in terms of the
curvature tensor. We do not give the explicit form because we do not need it.
We only need the boundedness of R(g). I is given by

A 1
I'0,n) = B {AO,n)e +(V'VO,n)e+ (0, V'Vn)e} = (VO, V1) por-um-

The positivity of I" clearly holds and (2.6) follows from the derivation property
of V. .
We now return to the general framework. We assume that I is expressed as

I'(6,n) = (DY, Dn) (2.10)

for some operator D. For instance, the covariant Laplacian satisfies this condi-
tion. In this case, D is the covariant derivation V. Later we need this condition
when the exponent p is greater than 2.
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D is an operator from L2I'(E) to L2I'(E), E being another vector bundle
over M. The domain of D is not necessarily the whole space L2I'(E) but
we do assume that D is a closed operator. Last assumption is the following
intertwining property: there exists a self-adjoint operator A satisfying

DL =AD+K (2.11)

where K is a bounded section of Hom(E; E’). For A, we assume the same

conditions as L. In particular, we need the semigroup domination for S; = e*4:

Si€|z < e Tle|5, €€ LAT(E). (2.12)

Due to the boundedness of K, this is possible by taking x large enough.
Moreover the intertwining property (2.11) implies

t
DT,0 = S,D0 + / S,_.KT,0ds, V6 Dom(D), (2.13)
0

(see [8]).

3 Littlewood—Paley inequality

We introduce the Littlewood—Paley function of parabolic type. They are given
as follows:
o 1/2
Po(z) = {/ F(TtH,TtG)(x)dt} , (3.1)
0
o 1/2
0
We fix a time N and set
u(z,t) = Tn—10(x), 0<t<N.
Then we have
(0 + L)lu(z, )| %
= (0 + L)(Tn_:0, Tn_.0)
= —2(LTx_40, Tn_0) + 2(LTxN_10, Tn_40) + 21 (Tn_0, Tn_,0)
=—2((L —k— R)Tn_40, Tn_0)
+2(LT N0, Tn—40) + 2 (T n—_:0, Tr—_:6)
= 2((k + R)TN—40, Tn_s0) + 21 (Tn_0, T n_:0)

For notational simplicity, we use the following convention. We write
1A0], < |10]lp if there exists a constant C such that ||A0|, < C|0],. C is

~

independent of # but may depend on p and A. We use this convention without
mention. Now we have the following.
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Proposition 3.1. For 1 < p < 2, it holds that
PO, < 116]]p-

Proof. Define a martingale (M) by
¢
My = |u(Xe, t)|E — [u(Xo,0)|% — / (0s + L)|u(Xs, 8) [ ds
0
= |u(Xe,1)|% — [u(Xo,0)|%
t
fz/{«m+3nwﬂwxngﬂwxg)

0

+ I(TN_s0(Xs), Tn—s0(Xs)) } ds.

Then the quadratic variation of (M) is written as

(M, M), =2 / Ll ) u( -, $)[3) (X,) ds

:8/ |u(XS,5)\%F(|u(.,S)|E,|u(.,s)\E)(Xs)ds.
0

In particular, Z; = |u(Xy,t)|% is a non-negative submartingale:
Zy = |w(Xo,0)[F + M; + By

where an increasing process B is given by

By = Q/Ot{((/ﬁ + R)Tn_s0(Xs), TN—se(Xs))

+ I(TN_s0(Xs), Tn—s0(Xs)) } ds.  (3.5)

Take any ¢ > 0 and apply the Ité formula to (|u|% + £)?/2, we have

d(uff+e)"* = £ (jul}+2)"* " d(uft + <)

1 _
3 2 (B-1) g+ o) agar,an,

= 2 (jult+9)""

+ [g (|U|2E + 5)3‘7/2—12{((;‘4& + R)u,u) + I'(u, u)}

+p(p—2)(jul% + )"

Here, in the above identity, u(X¢,t) is simply denoted by u. Therefore

[ul 0 (Jul g, Jul )] dt.

t
(lu(Xe, D +2)" = (ju(Xo, 0)f% +2)™* + / D (ulh+ o) M, + 4
0
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Here Ay is defined by

Ay = /Ot [p(|u|% + z—:)p/zil{((/i + R)u,u) + I'(u,u)}
+p(p = 2)(jul} + )" B (luls, [ul )| dt.
(A;) is an increasing process. To see this, recalling the inequality
I(|ulg, Jule) < I(u,u),
we have
dA; > p(lulf + s)p/Q_l{((fﬂ + R)u,u) + I'(u,u)}
0 = 2)(fulf + )" Ju*F )
> (p+p(p = 2) (Jul} + )" D(w,u)
+p(lulf + €)p/2_1 ((k + R)u,u)
> p(p — 1)(Julfy + )" Fuw)

which implies that A is increasing. By taking expectation of (|u(Xn, N)|% +
£)P/2 we obtain

p(p - 1)E[/ON(|u|2 + o) Plu, ) dt} < E[(\U(XN,N)@ + g)”/ﬂ
<E[(10(Xx)% +2)"?]
<[leiz +9*[

We proceed to the estimation of the left hand side. By the semigroup
domination

T 8(2)| < Tv—dl6](x) < sup T, ol(x) = 6" ()
s20
The maximal ergodic theorem implies ||6*||, < ||0]|,- Now, noting p/2—1 < 0,

N N
E[/ (|u2+€)p/2_1ﬁ(u7u)dt} :H/(|U|2+E)p/2_1f(TN_t9,TN_t9)dt
0 0

1

N
> H (@ e [ P
0

1

Letting N — oo,

H(|0\2+a)”2sz H((e*)2+e)p/2‘1/ [(T40,T.0)dt
P 0

1
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o (PR e [(Cols 5)@_2)/4770”;
Therefore
P01l = ()2 + )74 (0 + ) o]

< H((e*)z _1_5)(2—19)/4 ‘((9*)2 _’_6)(1)—2)/4739"2

2p/(2—p)

. 1 2—-p 1
since — = —— + —
p 2p 2
(2-p)/2 p/2
=Y (G R R I [0 s [
P P
Finally, letting ¢ — 0, we obtain
1POll, S 16172 116[115/ < 16157 16112/% = 116l],-
The proof is complete. O

Next we show the case p > 2. First we need the following easy lemma.

Lemma 3.1. Let j be a non-negative fonction on M x [0, N]. Then it holds
that

E, U()Nj(xt,t)dt ’ X = m} - /ONTt(j(.,N—t))(x)dt. (3.6)

Here E,, stands for the integration with respect to P, = fM P, p(dx).

Proof. 1t is enough to show that

5l S i arfroon] = [ v atfwutas) (1

for any non-negative function f. To see this,
N N
s { [ icnadsxn| = [CBpceoscooa
N
- [ BB IR e

N
:/ Eu[§(Xe, )T f(Xy)] dt

(by the Markov property)

/dt/ (2, 6)TN—tf(z) p(dz)
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/ dat / T () (@) f(x) p(da)

(by symmetry)

-[{/ e G D) @) dt} ) (i)

which shows (3.7). O
Proposition 3.2. For p > 2, we have
IH6]lp < 116]],- (3.8)

Proof. We consider a submartingale Z; = |u(X;,t)|>. As was seen in (3.4), Z,
is decomposed as

Zy = [u(X0,0)|% + M + By
Then the following inequality is well-known (see, [2]): for ¢ > 1,
E[BY] 5 E[Z}]. (3.9)

Using Lemma 3.1, we have

/M (da) { /0 LT, T6) () dt}p/

_ /M u(da) B, { /ON P(Tn0, Ty_i0)(X,) dt ‘ o 4 %

< /M 1(dz) B, H /O Y (T, T )(X0) dt}p/2

by the Jensen inequality)

I(TNn-0(Xs), Tn—0(X )}dt}p/z}

2

XNZ.Z‘:|

p/2
=FE, TN 0, Tn_ tﬁ)(Xt)dt} ]

D:!

m

/ [((r + RYTn_0(X.), Ty _8(X.)

+

E[BY?]  (thanks to (3.5))
E[Z¥/?]  (thanks to (3.9))
= E[|0(Xn)I"]

= (10113

<
<

Now H6 can be estimated as follows:
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e} R p/2
ol = |{ [ mi0 o oy ar

1

N p/2
~ lim ,,L(da:){ / T, (T40, T.0)(z) dt}
N—oo Jar 0
S o115
This completes the proof. a
Let us proceed to the estimation of P4.
Proposition 3.3. For p > 2, we have
Po(r) < VaHO() + Hle< geiyy (3.10)
= 4683/2 :

Proof. We have

PoO(x) =

N

<

{ /0 h f(TtQ,TtG)(z)dt}l/Q

oo 1/2
/0 \DTtH(m)\% dt} (thanks to (2.10))

{
{2/000 |DT2,0(z)|% dt}
{
{

1/2

1/2

2/ T, DT6(x)[% dt}

2 1/2
th} (by (2.13))

t
StDTtQ(CL') + / St,SKTSTtQ(l') ds
0 E

V2 {/Ooo S¢DT () |% dt}1/2
+2 {/Om{/ot St—s KTs140(2)| 5 ds}2 dt}l/Z
V2 {/OOO T,|DT,6(x)|% dt}1/2

+V2 { /0 OO{ /0 t e OUIT, (| KTypf(2)| 5 ds}2 }1/2 (by (2.8))
V2 HO(z)

0o t 2 y1/2
+ \/5{/ {/ ||K||oce6(tS)Tt_se5(5+t)Ts+t9|E(x)ds} dt}
0 0

00 1/2
V2HO(z) + V2 {/0 1K (|26 (Tog 6] () 42 dt}
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) 1/2
= V2HO(z) + V2 |Koot9*(x){/ t2e= 40t dt}
0

= V2Ho(z) + K| oc0" ()

1
453/2 |
which is the desired result. O

Combining these two propositions and the maximal ergodic inequality, we
easily obtain the following.

Proposition 3.4. For p > 2, we have
PO, < 116l (3.11)

Before proving the theorem, we give an expression of ¢(—L). Recall that
p(\) = )\/ e 2 m(t) dt.
0

There exists the following correspondence:

—L«— A\

etL eft/\.

Therefore p(—L) is expressed as

o(—L) = —L /0 Ty m(t) dt

Proof of Theorem 1.1. Using the expression above, we have
(t-L)0n) = (L [ Taum(t .
— [ [ cLTatm)s o)
:/ dt/ {(—LT:6, Tn)E + ((k+ R)T0,Tyn) .} p(dx)
0
0 M
—|—/ m(t) dt((x + R)TtG,Ttn)Eu(dx).
0

We estimate two terms on the right hand side respectively.
For the first term,

/ Oom(t) dt / I(T0,Tn) p(dz)
0 M
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<||m||m/ dt/ (T4, T.0)Y21 (T, Tin)*/? p(da)
0 M

(thanks to the Schwarz inequality for I7)

<l /M{ /0 (.0, T46) dt}m{ /0 T (T, Ton) dt}l/Q u(de)

= Jmlloo /M PO()P(z) u(de)

< lmlloo POl 1P1llq
S llmlloo 1611 [17llq-

For the second term,

/000 m(t) dt((x + R)T:0, Tyn) , p(da)

< Imlloo / at / 5+ Rlloo T4l | Ton] i ()
0 M
< e / at /M 15+ Rlloo e 2T |6] 5 Tyl u(dlz)

1
< lImllso Nl + Rlloo 55 161l lI7llq-
Thus we have shown that

[(p(=L)8, )| S 116l [I7llq

which implies that ¢(—L) is bounded in LP. |

4 Hodge—Kodaira operator

In this section we consider the the Hodge—Kodaira operator —(dd* + d*d)
acting on differential forms. What remains to show is the defective intertwining
property. We have to seek for operators A and K that satisfy

—V(dd* + d*d)f = AV + K9.

Even if 0 is a differential form, V6 is no more a differential form. So we discuss
the issue in the framework of tensor fields. Let M be a Riemannian manifold
and V be the Levi-Civita connection. The Riemannian curvature tensor is
defined by

R(X.Y)Z =VxVyZ -VyVxZ - Vxyv|Z

where X, Y, Z € I'(TM). Here I" denotes the set of all smooth sections
of a vector bundle. In this case, I'(TM) is the set of vector fields. Let
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T.M=T*M®---®T*M be a tensor bundle of type (0,n). Exterior bundle

is denoted by AP T*M = T*M A --- ANT*M. We define an operator AHK on

I'(T,, M) as follows. u1 ®- - - Qup, u; € I'(T*M) is a typical form of an element
of I'(T,,M). Any element of I'(T;,M) can be written as a linear combination
of them. We are given a Riemmanian metric g and there exists a natural
isomophism f: T*M — TM e.g.,

(W, X)=gw" X), weT*M,XecTM.

In the sequel, we omit g and denote the inner product ¢(X,Y) by (X,Y).
The inner product in T*M is also denoted by (w,n). The natural pairing
between T*M and TM is denoted by (w, X). We take a local orthonormal
basis {e1,... ,e,} and let {w?,... ,w"} be its dual basis. We introduce linear

opetators Sz(,flq) 1< p,g<nonl(T,) as follows; for p # g,

S (ur @ -+ @ uy)
P ‘
= (R, er)ub,e)u1 @ QWb @ @wl @ @u,.  (4.1)

Here we used the Einstein rule: we omit the summation sign for repeated
indices. For example, in the equation above 2271:1 is omitted. For p = ¢, we
define

p
Si(ur @ -+ @ up) = (Ricub, ex)ur ® - @k @+ @ uy
p

= (R(ulj ei)eiaek)ul ® - QuF®--® Up,. (4.2)

p’
Ric denotes the Ricci tensor.
We now define the operator AHK by
ARy = —V*Vo — Z Sl(fq)v. (4.3)
p,q=1

Here the superscript HK stands for Hodge-Kodaira. This notation is justified
by the following proposition.

Proposition 4.1. For § € I'(\" T*M), it holds that
ARG = —(dd* + d*d)6. (4.4)
Proof. We first note the following identity: for us,... ,u, € I'(T*M),

AN WARREAN 17% ::ngnaua(n)®~~®uo(n)
g
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a

Z ® (ur A+ Auy).

[0

Here o runs over the set of all permutations of order n, sgn o is the sign of o
«@ . . .
and v means that u, is deleted. Similarly we have

a B
UL AU A AUy = Z(—l)aJrﬂ_l(ua ®@ug —ug @ uq)(ur A - Y A Up).
a<f
Next let us compute 3 S](,f;). First, for >° S](;f;)
ZS;ZI)(LM /\UQ/\"‘/\’LLn)
p#q
= 5D S0 us() ® -+ @ Ug(n)
P#q o
P g
= Z ngna (R(U‘Er(p)’ek)ug(q)a el)ua(l) R QwkF®R - QW - ® Ug(n)-
pF£q O

Here p-th u, ;) is replaced by w* and ¢-th Ug(q) is Teplaced by w!. By exchang-
ing the order of summation, we have

ZS ”) (ug Aug A -+ Aup)

P#q U_lv(a) U_lu(ﬁ)

= ZZSgHU )ugaael)ua(l) .®wk®.-.®wl®.-.®uo(n)
arf o U_t(a) 0_1(6)
= Z(R(ug,ek)u%,el) ngnguo_(l) R Quwk - Qu®--- ®uo'(n)

a#3 o 8
:Z(R(ua,ek)ug,el)ulA--~/\LJ’“/\-~-/\u;l/\--~/\un
a#3 e
—Z a,ek uﬁ,el)w Aw! /\ul/\ N Uy,
a<p
aﬁ
+Z a,ek uﬂ,el)w AWk /\ul/\ /\un
>
a>0 e
—Z a,ek uﬁ,el)w Aw! /\ul/\ N Uy,
a<p
aﬁ
+Z ug,el ek)w AWk /\ul/\ /\un
a>p0
a B
—22 s €k uﬁ,el)w AWt Aui A A Uy,
a<f

Similarly we have
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Z S(") (ur Aug A - = ZS(" ngnoua(l @ Ug(n)

_Zngna Rlcu (p),ek)u(,( DN RWER @ Ug(n)-

Here p-th us(;,) is replaced by w”. Exchanging the order of summation, we
have

ZS”) (ur Aug A -+ Aup)
o (@)
= Zngna(Ricuﬁa,ek)ug(l) R - QWF® - ® g

[e3

= S (Ricud en)us A AGEA - A
(0%

e

—Z Rlcu ek)wk/\ulA-Y-/\un

Using this identity, we can calculate —(dd* + d*d). Before that we have to
recall the Weitzenbock formula:

— (dd*+d*d) = -V*V
+ (R(e, ej)e;g,ei)wl AwP Ailej)i(e;) — (Ricer, e)w® Ad(e;).

Here i(.) denotes the interior product, i.e., ¢(X)8 = (X, ., .). Now we
have

—(dd* + d*d)(ug A+ Auy)
= —V*V(ur A Aup) + (Rler, e5)er, e;)w' Aw® Ai(e;)i(e;)
a B
XZ D uy @ ug — ug @ ua)(ur A Y- Auy)

a<p
@

— (Ric eg, e;)w® Ai(e;) Z(—l)a_lua @ (ur A7 Auy)

«
— —V*V(Ul A=A Un)
+ ) (D) P (g, e3) (ug, €5) — (ug, ei) (ua, e5)}
a<pfB a B
X (R(el,ej)ekaei)wl AF R A A,

(03

— Z RIC ek, €;) (Uq, ei>i(ei)wk Aui A2 A

= —V*V(ul ARERIAN un) + Z(_l)ow%ﬂfl

a<f
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a
X {( el,uﬁ ek, U g) — (R(el,u?l)ek, )}w AFAur ALY Ay,

a

—Z Rlcek7ua)w ANug A=+ N up

_ V(g A Aty)

a B
VoV

—I—QZ ‘”ﬂ 1 (el,u%)ek, Lt)cu AP Aur ALY Ay,
a<lf
a
—Z Rlcek,ua)w ANur A+ Aup
= —V Vi(ug A+ Aup)
a B
_22 “+5 1 (uﬁ ek)uﬁﬁ,el)w At Aur A VY Ay,
a<pf
a
—Z Rlcek,ua)w AUl A+ Aup
=—V*V(ur A+ Auy) —ZSI(JZ)(ul/\--J\un)
p.q
= AIK(yy A Awy)
which is the required identity. O

We are interested in the intertwining property for the Hodge-Kodaira
operator —(dd* + d*d). By the above proposition, it is enough to calculate
AHK We first show the intertwining property for V*V.

Proposition 4.2. It holds that
n+1
~V(V*V)u— (V'V)Vu = Y {7 Vu+ S vu}

j=2
+5; ”H)Vu +w* @ ViR™ (e;, ex )u (4.5)
Proof. Pick a point € M and fix it. We take a normal coordinate at x. Then
there exists a local frame {ey,eq,...,e,} of TM so that V, e]( ) = 0. To
avoid complexity, we simply denote V; in place of V,,. Let {w!,w? w"}
be the dual frame. Due to our choice of a local frame, at the pomt x 1t holds

that V7, = V;Vj, [ei, e;] = 0 and Viw® = 0. Moreover we have the following
identity at x:

—lei, Vjer] = ViVjex, (4.6)
v’iijek = vViVjek;
<VNiek, wl> = —<ek, Viviwl>

Here (4.7) is the identity for T,, M.
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To see (4.6) we note that the torsion is free and so we have
lei, Vier] = ViVjer — Vy,e e = ViVjer.
As for (4.7), we use the definition of the curvature R(™).

ViV,e, = R™(e;, Vjer,) + Vv,er Vit Vie, ve]
= Vv, v,e- (thanks to (4.6) )

(4.8) can be shown as

0= ViVi{er,w')
= <ViViek,wl> + 2<Viek7 Viwl> + <€k, VN%J)
= <Vivi6k7wl> + <€k, ViViwl>.

17

We use these identities freely. From now on all equations are evaluated at the

point z. Now

—(V*V)Vu + V(V*V)u
= V;Vi(w® @ Viu) — Ve, (W @ Viu) — V(ViViu — Vy,e,u)
= ViViw* @ Viu + 2Viw"* ® V;Viu + w* @ ViV, Viu
— W@ ViViViu 4+ w* ® ViVyeu
= ViViw® @ Viu+ wFf @ ViViViu — w* @ ViViViu + w* @ ViVy,e,u
=V;Viwk @ Viu+o* @ Vi{R(")(ei, er)u+ ViViu + V[ehek]u}

—w" @ {R" (ex, €:)Viu + ViV Vit + Vi e Vit } + w* @ Vi Vy,e,u

= V;Viw* @ Viu + w* @ {ViR(”)(ei, er)u + R(")(Viei, ek )U
+ R™ (5, Vier)u + R™ (e;, ex,) Viu + ViVies et}
L R(")(ek, ei)Viu + Wb @ Vi Vy,e,u

= ViViwk @ Viu + 0 @ V;R™ (e;, e)u + 20" @ R™ (e5, e) Viu
+w" @ {ViVie, entt + ViVye,u}.

On the other hand, using (4.6), (4.7) and (4.8), we have

wk®{V¢V[ei’ek]U+ Vvaieiu}
wk ® (ViVie, — ViVv,e: + ViVy,e, u
vViViek + VR(ek,ei)ei + vv[ek,ei]ei)u

k

® (
w"® (vViViek + vR(ek,ei)ei)u

Wk @ (Vi Vier, w)Viu + (R(ey, e;)eq, w') Viu)
Wk ® <V¢Viek,wl>vlu +uwfF® (Ric ek,wl)Vlu
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= —w* ® (e, ViViw ) Viu 4+ w* @ (Ricer, w!') Viu (thanks to (4.8) )
= —V;Viw' ® Viu + w® @ (Riceg, w') Viu.

Combining all of them, we have

—(V*V)Vu+ V(V*V)u
=wF® ViR(”)(ei, er)u + 2% @ R (ei,ex)Viu + Wk ® (Ricey, wl>Vlu
n+1
= WP @ ViR™ (e;, e)u + Z nH) u+ S§ﬁ+1)Vu) + SﬂH)VU.
This completes the proof. a
We are now ready to prove the intertwining property for AHK.
Proposition 4.3. Take any local orthonormal frame {e1,ea,... eq} and its
dual frame {w',w?,... ,w%. Then it holds that
VATKy = ATK Vi — Z Wt ® (VkSz(,flq))u —w* @ (ViR™ (&5, ex))u. (4.9)
p,q=1
Proof. We recall (4.3). Then

VA, — ATK Ty

n+1
= —v(v*v+ Z S,Sﬁ?) <v V> s<"+1>

p,q=1 p,q=1
n+1
=— Z(S (1) gy, + S§ﬁ+1)Vu) -5 nH)Vu W ® V,-R(")(ei,ek)u
j=2
n n+1
- Z ok ® VkS ”) Z w ®S§")V;§u+ Z S("Jrl
p,q=1 p,q=1 p,q=1
n+1
= - Z(S%H)Vu + Sj(ﬁH)Vu) - SﬁJrl)Vu — WP @ ViR™ (e;, e )u
j=2
n n+1 n+1
- Z Wk ® (VkSéz))u— Z SZ()ZH)Vu—i— Z Sé?j”Vu
p,q=1 p,q=2 p,q=1

= — Z Wb ® (VkSI()Z))u —v*® VZ-R(")(ei7 er)u
p,q=1

which completes the proof. a
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The above intertwining property for AMK is defective, i.e., it satisfies the
identity of the type (2.11). The defective term is removed if we replace V
with the exterior derivative d. To define the exterior derivative, we need to

introduce alternating operation A as follows. For a tensor u of type (0,n), we
define A(™) by

A(")u(Xl, e ,Xn) = ZSgHO’U(XU(l), NN 7Xa(n))~

The exterior derivative is defined by
d= ATy,

This definition is consistent with the usual definition for differential forms.
Now we have the following intertwining property.

Proposition 4.4. For u € I'(T,(M)), it holds that
ANy = AT du, (4.10)

Proof. By Proposition 4.3, we have
dATEy = AT dy

B Z A(n+1) (wk ® (WSI(;Z))U) _ A1) (wk ® (ViR(")(eiaek))u)

pq=1

We have to show that the additional terms vanish. Before proving this, we
recall the Bianchi identity for the Riemannian curvature:

—BR(X,Y)Z =0, (4.11)
SVxR(Y,Z) =0. (4.12)

Here & stands for the cyclic sum, e.g.,
SR(X,Y)Z=R(X,Y)Z+ R(Y,Z)X + R(Z,X)Y.

(4.11) is called the first Bianchi identity and (4.12) is called the second Bianchi
identity.
We may assume that u =u; ® - - - ® u,,. For p = g, we have

A0 (ot (FuS) A (55 (o)
p=1

Z ACT(F @uy @+ ® Vi Ricub ® - @ uy,

+wfF @ui ® - @ ViR(es, ex)ub @ - @ up)
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= Zn:(—np{vk Ricuf7 AWF Aug A A A up
+ ViR(e;, ek)uf7 AP Aug A ZV; A un}.
We need to compute Vi Ric uf, AwF + V;R(e;, ek)uzﬁ) Aw”. To do this,
Vi Ric uf) AwF + ViR(e;, ek)uf) A wh
= VkR(ug,, e;)e; N Wk + ViR(e;, ek)uf) AwF
= (ka(uu e;)e, el)wl AwF + (ViR(ei, 6k)ug, el)wl A WP
={-(v, uR (eiren)ei,er) — (V-R(ek,uzﬁ))ei,el)
+ (ViR(e;, ek)u el) }w AwF (by the 2nd Bianchi identity)
— (VugR(ei, k)€, el)w A wk
+ {(ViR(ei, el)ug), er) + (ViR(es, ek)ug, el)}wl A wk
=0.

Here, in the last line, we used that the coefficients are symmetric with respect
to k and .
For p # ¢, we may assume p < q.

ALY (k@ (VeS()u)

4 g
:A("H)(w ® (VkR( el)uji em)ul®-~-®wl®~--®wm®--~un>
: ’
= (VkR(uf),el)uﬁq,em)wk/\ul/\~~/\wl/\~~/\wm/\~~/\un

pq
= (VkR(uli el)uﬁq,em)wk A A Aur ALY A,

To calculate (VkR( el)uﬁq, em)wk AWt Aw™, we have
(VkR( el)ug,em)w Awh A w™
— {(VugR(el, ek)ug, em) — (VZR(ek, ug)ug, em) }wk At Aw™
(by the 2nd Bianchi identity)

= ( R(e, ex) em,uﬂ)wk Awh Aw™ — (VZR(ek,ug)ug,em)wk Awh A w™
= (ViR(uj, ex) ug, em)w” Awh A w™ (by the first Bianchi identity)
= (VkR g, em)w! AwF A W™ (by relabeling)

= (VkR( el)ug,em)w Awt Aw™

The last term is just the same as the original one with the opposite sign. Thus
we have

(VkR( el)ug,em)w AwAw™ =0

as desired. 0
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