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Abstract. We discuss the Littlewood-Paley inequality for a diffusion process associated
with a Dirichlet form of gradient type. We assume that the logarithmic Sobolev inequality
holds and the negative part of Γ2 is exponentially integrable. Under these and some
additional conditions, we showed that ‖∇u‖p ≤ C‖√1− Lu‖q for 1 < p < q. We also
discuss the Brownian motion on a Riemannian manifold with boundary.

1. Introduction

In this paper, we discuss the Littlewood-Paley inequality. Typical example is the Brow-
nian motion on the Euclidean space and it leads to the following inequality: for any p > 1
there exist a positive constant C such that

C−1‖∇u‖p ≤ ‖√−∆u‖p ≤ C‖∇u‖p. (1.1)
√−∆, the square root of the minus Laplacian, is called the Cauchy operator. (1.1) is
equivalent to the Lp-boundedness of the Riesz transformation.

This kind of inequality also holds for the Ornstein-Uhlenbeck process on an abstract
Wiener space, which was proved by P. A. Meyer [11] in a probabilistic approach.

In this paper, we attempt to extend this inequality for a diffusion process associated
with a Dirichlet form that admits a square field operator. There have been several related
works, e.g., Bakry [3, 4], Shigekawa-Yoshida [16]. In these papers, they assumed that Γ2

is positive or bounded from below. We replace this boundedness assumption with the
exponential integrability of negative part of Γ2. To handle this case, we assume that the
logarithmic Sobolev inequality holds. Moreover our square field operator is of the gradient
form, i.e., the Dirichlet form E is given as follows;

E(u, v) =

∫
M

(∇u,∇v)µ(dx). (1.2)

We adopt a probabilistic approach which was developed by Meyer and Bakry. We will
show the inequality for the Littlewood-Paley G-function. Since the square field operator
is given as a gradient, we consider another semigroup that acts on vector valued functions
and use the semigroup domination to estimate vector valued functions. Using this method,
the estimate for vector valued functions can be reduced to the scalar case. But the
unboundedness of Γ2 causes some troubles and so we could not prove the exact inequality.
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We only show that the Lp-norm is dominated by Lq-norm for 1 < p < q (see the precise
statement in §2 ).

We also discuss the Brownian motion on a Riemannian manifold with boundary. We
impose the Neumann boundary condition on the Brownian motion. In this case, the
quantity corresponding to Γ2 is singular (i.e., it is not a function but a smooth measure).
We deal with it by way of an associated additive functional. The additive functional
belongs to the Kato class and we can show the exact inequality (i.e., no loss of exponent).

The organization of the paper is as follows. We give a formulation and a main result in §2
. We define Γ2 in our formulation. It is a generalization of Ricci curvature and is based on
a square field operator for vector valued functions. In §3 , the maximal ergodic inequality
for a semigroup with a potential is given. Here the logarithmic Sobolev inequality is
essential. We give a proof of the main theorem in §5 . To do this, we prepare fundamental
inequalities for the Littlewood-Paley G-function in §4 . A proof for the Littlewood-Paley
inequality is given in §5 . Combining this with the intertwining property of semigroups, we
can get the main result. The Brownian motion on a Riemannian manifold with boundary
is dealt with in §6 .

2. Symmetric diffusion

Let us introduce a diffusion process that we use in the paper. Let M be a topological
space. We assume M to be Souslinian. Suppose we are given a Borel probability measure
µ on M and a Dirichlet form E in L2(µ). We assume that there exists a Hunt diffusion
process (Xt, Px)x∈M associated with E . We denotes the generator and the semigroup by
L and {Tt}, respectively. We assume that

√−1 ∈ Dom(L) and L
√−1 = 0 where

√−1
denotes the function that is identically equal to 1. Hence the diffusion (Xt) is conservative.
We also assume that the Dirichlet form satisfies the following defective logarithmic Sobolev
inequality: there exist α > 0 and β ≥ 0 such that∫

M

u2 log u/‖u‖2µ(dx) ≤ αE(u, u) + β(u, u). (2.1)

Here ( , ) denotes the inner product in L2.
Further we assume that the square field operator Γ is well-defined. Here Γ : Dom(E)×

Dom(E) → L1(µ) is a continuous bilinear map which is characterized as follows:

2(Γ(v, w), u) = E(vw, u) − E(v, wu) − E(vu,w), ∀u, v,w ∈ E ∩ L∞. (2.2)

A crucial assumption is as follows; there exists a ‘gradient operator’ ∇ such that ∇ is
a closed operator from L2(µ) to L2(µ;K) and it satisfies Γ(u, v) = (∇u,∇v). Here K
is a (separable) Hilbert space. L2(µ;K) may be possibly the set of all square integrable
section of a vector bundle over M . But we use L2(µ;K) for notational convention. We

need another semigroup {T̂t} in L2(µ;K). Let {T̂t} be a contraction symmetric semigroup

associated with a bilinear form Ê . We also need a square field operator for {T̂t} and so
we assume that

(A.1) For θ ∈ Dom(L̂), it holds that |θ|2K ∈ Dom(L1).

Here L1 is the generator in L1(µ). Under this condition, we define a square field operator

Γ̂ as

2Γ̂(θ, η) = L(θ, η)K − (L̂θ, η)K − (θ, L̂η)K . (2.3)

We assume the following two properties: the positivity and the derivation property.
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(A.2) Γ̂(θ, θ) ≥ 0 for θ ∈ Dom(Ê).

(A.3) For θ, η ∈ Dom(Ê) ∩ L∞ and u ∈ Dom(E) ∩ L∞, it holds that

2uΓ̂(θ, η) = −(∇u,∇(θ, η)) + Γ̂(θ, uη) + Γ̂(uθ, η). (2.4)

Then, by the semigroup domination theorem (see [14]), we have

|T̂tθ| ≤ Tt|θ|. (2.5)

Let Sb(K) be the space of all self-adjoint operator on K that is bounded from below.

Let R be a function on M taking values in Sb(K). Define a bilinear form ÊR by

ÊR(θ, η) = Ê(θ, η) +

∫
M

(R(x)θ(x), η(x))Kµ(dx). (2.6)

The associated semigroup will be denoted by T̂R
t . We assume the following intertwining

property, which is crucial in the paper.

∇Ttu = T̂R
t ∇u, for u ∈ Dom(∇). (2.7)

R plays the role of so called Γ2.
We take a scalar function V such that

(R(x)k, k)K ≥ V (x)(k, k)K . (2.8)

The semigroup generated by L − V is denoted by {T V
t }. The generator of T̂R

t is L̂ − R.
Again by the domination theorem, it holds that

|T̂R
t θ| ≤ T V

t |θ|. (2.9)

V can be decomposed as V = V+ − V− where V+ = V ∨ 0 and V− = (−V ) ∨ 0. The last
assumption is that

(A.4) eV− ∈ L∞− =
⋂

p≥1 L
p.

For scalar functions, we can define two kinds of norms: ‖∇u‖p and ‖√1 − Lu‖p. It is
a fundamental question whether these norms are equivalent or not. For example, if the
generator L is the Ornstein-Uhlenbeck operator on an abstract Wiener space, then the
equivalence of two norms are known as the Meyer equivalence.

Under our conditions, we can get the following result.

Theorem 2.1. For any 1 < p < q < ∞, we have

‖∇u‖p � ‖√1 − Lu‖q, (2.10)

‖√1 − Lu‖p � ‖∇u‖q + ‖u‖q. (2.11)

In the above theorem, the notation A � B stands for A ≤ kB for a positive constant
k. Further, in (2.10) for example, the constant depends only on p but is independent of
u. We use this convention in the sequel without mentioning.

To prove the theorem, we use the Littlewood-Paley G-function. We introduce it in §4
and give a proof of the theorem in §5 .
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3. Maximal ergodic inequality

In this section, we discuss the maximal ergodic inequality. This inequality is known for
a symmetric Markov semigroup (see e.g., Stein [17]). Here we consider a semigroup with
a potential. To show the inequality, we adopt a probabilistic method due to Rota [13].

We consider an additive functional At associated to a smooth signed measure ρ under
the Revuz correspondence. We define a Dirichlet form by

Eρ(u, v) = E(u, v) +

∫
M

ũṽρ(dx) (3.1)

where ũ denotes the quasi-continuous modification of u. The associated semigroup is
denoted by {T ρ

t }, which is expressed as

T ρ
t u(x) = Ex[u(Xt)e

−At] (3.2)

where Ex denote the expectation under the measure Px.

Theorem 3.1. Assume that for any q ≥ 1, there exist constants cq, βq such that

Ex[e−qAt]1/q ≤ cqe
βqt ∀t ≥ 0, q.e.-x. (3.3)

Here “q.e.” means that it holds except for a set of capacity 0. Then for any p > 1 there
exist constants λ, c such that∥∥∥∥sup

t≥0
|e−λtT ρ

t u|
∥∥∥∥

p

≤ c‖u‖p, ∀u ∈ Lp. (3.4)

In particular, if ρ is non-negative (i.e., At is non-negative), we can take λ = 0.

Proof. We note that |T ρ
t u| ≤ T

−ρ−
t |u|, where ρ = ρ+ − ρ− is the Hahn decomposition of

ρ. Without loss of generality, we may assume that ρ is non-positive.
Set

Mt = T ρ
T−tu(Xt)e

−At. (3.5)

We show first that {Mt} is a martingale under Pµ :=
∫

M
Pxµ(dx). In fact,

Eµ[u(XT )e−AT |Ft] = Eµ[u(XT−t ◦ θt)e
−AT−t◦θt−At|Ft]

= e−AtEµ[u(XT−t ◦ θt)e
−AT−t◦θt|Ft]

= e−AtEXt [u(XT−t)e
−AT−t] (Markov property)

= e−AtT ρ
T−tu(Xt).

We note, by the Markov property,

T ρ
T−tu(XT ) = EXT

[u(XT−t)e
−AT−t ]

= Eµ[u(XT−t ◦ θT )e−AT−t◦θT |XT ]

= Eµ[u(X2T−t)e
−A2T−t+AT |XT ].

Now, using the reversibility of (Xt), i.e., (X2T−t)0≤t≤2T has the same law as (Xt)0≤t≤2T ,
we have

T ρ
T−tu(XT ) = Eµ[u(Xt)e

−AT +At|XT ].

Hence

T ρ
2(T−t)u(XT ) = T ρ

T−tT
ρ
T−tu(XT )
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= Eµ[T ρ
T−tu(Xt)e

−AT +At|XT ]

= Eµ[Mte
−AT +2At|XT ].

Noting that we have taken A to be non-positive, we have

sup
0≤t≤T

|T ρ
2(T−t)u(XT )| ≤ Eµ

[
sup

0≤t≤T
|Mt|e−AT

∣∣∣∣XT

]

≤ Eµ

[
sup

0≤t≤T
|Mt|p

∣∣∣∣XT

]1/p

Eµ[e−qAT |XT ]1/q (1/p + 1/q = 1)

≤ cqe
βqTEµ

[
sup

0≤t≤T
|Mt|p

∣∣∣∣XT

]1/p

(∵ (3.3) .)

Hence, by the Doob inequality

‖ sup
0≤t≤T

|T ρ
2(T−t)u|‖p

≤ cqe
βqTEµ

[
Eµ

[
sup

0≤t≤T
|Mt|p

∣∣∣∣XT

]]1/p

= cqe
βqTEµ

[
sup

0≤t≤T
|Mt|p

]1/p

≤ C ′cqe
βqTEµ[|MT |p]1/p (Doob’s inequality)

= C ′cqe
βqTEµ[|u(XT )|pe−pAT ]1/p

= C ′cqe
βqTEµ[Eµ[|u(XT )|pe−pAT |XT ]]1/p

= C ′cqe
βqTEµ[|u(XT )|pEµ[e−pAT |XT ]]1/p

= C ′cqe
βqTEµ[|u(XT )|pEµ[e−p(A2T −AT )|XT ]]1/p (reversibility)

= C ′cqe
βqTEµ[|u(XT )|pEµ[e−pAT ◦θT )|XT ]]1/p (additivity)

= C ′cqe
βqTEµ[|u(XT )|pEXT

[e−pAT ]]1/p

≤ C ′cqe
βqT cpe

βpTEµ[|u(XT )|p]1/p

= C ′cpcqe
(βp+βq)T‖u‖p.

Thus we can find constants k > 0 and C > 0 which are independent of T and u such that∥∥∥∥ sup
0≤t≤2T

|T ρ
t u|

∥∥∥∥
p

≤ Ce2kT‖u‖p

We take λ > k. Note that for any integer n,∥∥∥∥ sup
n≤t≤n+1

e−λt|T ρ
t u|

∥∥∥∥
p

≤ e−λn

∥∥∥∥ sup
0≤t≤n+1

|T ρ
t u|

∥∥∥∥
p

≤ Ce−λnek(n+1)‖u‖r.

Summing up in n,
∞∑

n=0

∥∥∥∥ sup
n≤t≤n+1

e−λt|T ρ
t u|

∥∥∥∥
p

≤ Cek

∞∑
n=0

e−(λ−k)n‖u‖p
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≤ C

e−k − e−λ
‖u‖p.

Clearly this leads us to∥∥∥∥ sup
0≤t<∞

e−λt|T ρ
t u|

∥∥∥∥
p

≤
∥∥∥∥

∞∑
n=0

sup
n≤t≤n+1

e−λt|T ρ
t u|

∥∥∥∥
p

≤
∞∑

n=0

∥∥∥∥ sup
n≤t≤n+1

e−λt|T ρ
t u|

∥∥∥∥
p

≤ C

e−k − e−λ
‖u‖p.

This completes the proof.

The assumption (3.3) is rather strong. We replace it with the assumption (A.4). In
this case, we set ρ = V m. Hence, the associated additive functional is given by

At =

∫ t

0

V (Xs)ds. (3.6)

Here we denote the semigroup {T ρ
t } by {T V

t }. Since E satisfies the logarithmic Sobolev
inequality (2.1) , we have (see, e.g., [14]),

‖T V
t u‖p ≤ ‖e−V ‖t

αp2/4(p−1)e
4βt/α‖u‖p. (3.7)

This means that there exists a constant γp such that

‖T V
t ‖p→p ≤ eγpt. (3.8)

E.g., set γp = (4β/α) log ‖e−V ‖αp2/4(p−1).
In particular, when p = 2,

‖T V
t u‖2 ≤ ‖e−V ‖t

αe
4βt/α‖u‖2 (3.9)

In this case, taking u = 1, we have

Eµ[e−At ] =

∫
X

Ex[1e−At]µ(dx)

= ‖T V
t 1‖1

≤ ‖T V
t 1‖2

≤ ‖e−V ‖t
αe

4βt/α‖1‖2

≤ ‖e−V ‖t
αe

4βt/α.

Hence, for any γ > 0, it holds that

Eµ[e−γAt] ≤ ‖e−γV ‖t
αe

4βt/α (3.10)

Noticing this inequality, we can get the following maximal ergodic inequality.

Theorem 3.2. Take any 1 < p < r < ∞. If we take λ > 0 to be sufficiently large, then
there exists a constant c > 0 such that∥∥∥∥sup

t≥0
|e−λtT V

t u|
∥∥∥∥

p

≤ c‖u‖r. (3.11)
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Proof. By the same proof as in Theorem 3.1 , we have

sup
0≤t≤T

|T V
2(T−t)u(XT )| ≤ Eµ

[
sup

0≤t≤T
|Mt|e−AT

∣∣∣∣XT

]
.

Hence,∥∥∥∥ sup
0≤t≤T

|T V
2(T−t)u|

∥∥∥∥
p

≤ Eµ

[
Eµ

[
sup

0≤t≤T
|Mt|e−AT

∣∣∣∣XT

]p]1/p

≤ Eµ

[
sup

0≤t≤T
|Mt|pe−pAT

]1/p

≤ Eµ

[
sup

0≤t≤T
|Mt|pq/p

](p/q)·(1/p)

Eµ[e−puAT ](q−p)/pq

(
1

q/p
+

1

u
= 1

)
≤ CEµ[|MT |q]1/qEµ[e−puAT ](q−p)/pq (Doob’s inequality)

= CEµ[|u(XT )e−AT |q]1/qEµ[e−puAT ](q−p)/pq

≤ CEµ[|u(XT )|rq/q](q/r)·(1/q)Eµ[e−qvAT ](r−q)/rqEµ[e−puAT ](q−p)/pq

(
1

r/q
+

1

v
= 1

)
≤ C‖u‖r‖e−qvV ‖(r−q)T/rq

α e4β(r−q)T/αrq‖e−puV ‖(q−p)T/pq
α e4β(q−p)T/αpq.

Thus we can find a constant k > 0 which is independent of T and u such that∥∥∥∥ sup
0≤t≤2T

|T V
t u|

∥∥∥∥
p

≤ Ce2kT ‖u‖r.

The rest is the same as Theorem 3.1 . This completes the proof.

4. Littlewood-Paley G-functions

Let us introduce the Littlewood-Paley G-functions. To do this, we recall the subordi-
nation of a semigroup. Set T λ

t = e−λtTt (λ ≥ 0). We take λ to be large enough. For any
t ≥ 0, define a measure µt on [0,∞) by

µt(ds) =
t

2
√
π
e−t2/4ss−3/2ds. (4.1)

In terms of the Laplace transform, this measure is characterized as∫ ∞

0

e−αsµt(ds) = e−
√

αt for α > 0.

Then the subordination {Qλ
t } of {T λ

t } is defined by

Qλ
t =

∫ ∞

0

T λ
s µt(ds). (4.2)

The generator of {Qλ
t } in L2(µ) is −√

λ− L.
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We recall that {T V
t } is the semigroup with the potential V . We set T λ+V

t = e−λtT V
t

and we also define the subordination of {T V
t } as

Qλ+V
t =

∫ ∞

0

T λ+V
s µt(ds). (4.3)

The operator norm of {Qλ+V
t } in Lp is estimated as

‖Qλ+V
t ‖p→p ≤

∫ ∞

0

‖T λ+V
s ‖p→p µt(ds)

≤
∫ ∞

0

e−λs+γps µt(ds)

= e−
√

λ−γp t.

Here γp is the constant in (3.8) . Moreover, by the semigroup domination |T̂ λ+R
t θ| ≤

T λ+V
t |θ|, we have

‖T̂ λ+R
t ‖p→p ≤ ‖T λ+V

t ‖p→p ≤ e−(λ−γp)t. (4.4)

Similarly we have

‖Q̂λ+R
t ‖p→p ≤ e−

√
λ−γp t. (4.5)

For any real valued function u, define

g→(x, t) = |∂tQ
λ
t u(x)|2, (4.6)

g↑(x, t) = |∇Qλ
t u(x)|2K , (4.7)

g(x, t) = g→(x, t) + g↑(x, t). (4.8)

Here ∂t = ∂
∂t

. Then, the Littlewood-Paley G-function is defined by

G→u(x) =

{∫ ∞

0

tg→(x, t)dt

}1/2

, (4.9)

G↑u(x) =

{∫ ∞

0

tg↑(x, t)dt
}1/2

, (4.10)

Gu(x) =

{∫ ∞

0

tg(x, t)dt

}1/2

. (4.11)

Moreover, we define the H-functions by

H→u(x) =

{∫ ∞

0

tQtg
→(x, t)dt

}1/2

, (4.12)

H↑u(x) =

{∫ ∞

0

tQtg
↑(x, t)dt

}1/2

, (4.13)

Hu(x) =

{∫ ∞

0

tQtg(x, t)dt

}1/2

. (4.14)

For vector valued function θ, we define G-function and H-function, similarly. That is,
e.g.,

ĝ→(x, t) = |∂tQ̂
λ+R
t θ(x)|2, (4.15)
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Ĝ→θ(x) =

{∫ ∞

0

tĝ→(x, t)dt

}1/2

(4.16)

Ĥ→θ(x) =

{∫ ∞

0

tQtĝ
→(x, t)dt

}1/2

. (4.17)

Notice that, in this case, we use the semigroup {Q̂λ+R
t } that is the subordination of

{T̂ λ+R
t }. Ĝ↑θ, Ĥ↑θ, Ĝθ, and Ĥθ are defined similarly. For example,

ĝ↑(x, t) = Γ̂(Q̂λ+R
t θ, Q̂λ+R

t θ)(x)

(see (2.3) for the definition of Γ̂).
The following proposition is easily obtained by the spectral decomposition:

Proposition 4.1. It holds that

‖G→u‖2 =
1

2
‖u‖2, (4.18)

and

‖Ĝ→θ‖2 =
1

2
‖θ‖2. (4.19)

Later we need the interrelationship between G and H functions and so we first prepare
the following.

Lemma 4.2. We have the following estimate:

|T λ+V
t u(x)|2 ≤

{
sup
s≥0

T 2(λ+V )
s 1(x)

}
Tt|u|2(x), (4.20)

|Qλ+V
t u(x)|2 ≤

{
sup
s≥0

T 2(λ+V )
s 1(x)

}
Qt|u|2(x). (4.21)

Proof. By the Feynman-Kac formula, we have

|T λ+V
t u(x)|2 =

∣∣∣∣Ex

[
exp

{
−λt−

∫ t

0

V (Xs)ds

}
u(Xt)

]∣∣∣∣
2

≤ Ex

[
exp

{
−2λ− 2

∫ t

0

V (Xs)ds

}]
Ex[|u(Xt)|2]

= T
2(λ+V )
t 1(x) · Tt|u|2(x)

≤
{

sup
s≥0

T 2(λ+V )
s 1(x)

}
· Tt|u|2(x).

Further we have,

|Qλ+V u(x)|2 =

∣∣∣∣
∫ ∞

0

T λ+V
s u(x)λt(ds)

∣∣∣∣
2

≤
∫ ∞

0

|T λ+V
s u(x)|2λt(ds)

≤
∫ ∞

0

{
sup
r≥0

T 2(λ+V )
r 1(x)

}
· Ts|u|2(x)λt(ds)
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=

{
sup
s≥0

T 2(λ+V )
s 1(x)

}
·Qt|u|2(x).

This completes the proof.

Now we can show the following estimate between G-functions and H-functions.

Proposition 4.3. We have that

Ĝ→θ ≤ 2

{
sup
s≥0

T 2(λ+V )
s 1(x)

}1/2

· Ĥ→θ. (4.22)

For scalar function, we have

G→u ≤ 2H→u, (4.23)

G↑u ≤ 2

{
sup
s≥0

T 2(λ+V )
s 1(x)

}1/2

·H↑u. (4.24)

Proof. We have,

|Q̂λ+R
t θ(x)| ≤

∫ ∞

0

|T̂ λ+R
s θ(x)|µt(ds) ≤

∫ ∞

0

T λ+V
s |θ|(x)µt(ds) = Qλ+V

t |θ|(x).

Using Proposition 4.1 , we have

|Q̂λ+R
t θ(x)|2 ≤ {Qλ+V

t |θ|(x)}2 ≤
{

sup
s≥0

T 2(λ+V )
s 1(x)

}
·Qt|θ|2(x).

Therefore

ĝ→(x, 2t) = |∂sQ̂
λ+R
s θ(x)|2

∣∣∣∣
s=2t

=
∣∣∣√λ− L̂ + R Q̂λ+R

2t θ(x)
∣∣∣2

=
∣∣∣Q̂λ+R

t

√
λ− L̂ + R Q̂λ+R

t θ(x)
∣∣∣2

≤
{

sup
s≥0

T 2(λ+V )
s 1(x)

}
Qt

∣∣∣√λ− L̂ + R Q̂λ+R
t θ

∣∣∣2(x)

=

{
sup
s≥0

T 2(λ+V )
s 1(x)

}
Qtĝ

→(x, t).

From this,

Ĝ→θ(x) =

{∫ ∞

0

tĝ→(x, t)dt

}1/2

=

{
4

∫ ∞

0

tĝ→(x, 2t)dt

}1/2

≤ 2

{∫ ∞

0

t

{
sup
s≥0

T 2(λ+V )
s 1(x)

}
Qtĝ

→(x, t)dt

}1/2

≤ 2

{
sup
s≥0

T 2(λ+V )
s 1(x)

}1/2{∫ ∞

0

tQtĝ
→(x, t)dt

}1/2

= 2

{
sup
s≥0

T 2(λ+V )
s 1(x)

}1/2

Ĥ→θ(x).
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For the scaler function, it holds that G→u ≤ 2H→u since we have |Qtu(x)|2 ≤ Qt|u|2(x).
Let us next estimate G↑u.

G↑u(x) =

{ ∫ ∞

0

t|∇Qλ
t u(x)|2dt

}1/2

=

{
4

∫ ∞

0

t|∇Qλ
2tu(x)|2dt

}1/2

= 2

{ ∫ ∞

0

t|Q̂λ+R
t ∇Qλ

t u(x)|2dt
}1/2

≤ 2

{ ∫ ∞

0

t{Qλ+V
t |∇Qλ

t u(x)|}2dt

}1/2

≤ 2

{ ∫ ∞

0

t

{
sup
s≥0

T 2(λ+V )
s 1(x)

}
Qt|∇Qλ

t u|2(x)dt

}1/2

= 2

{
sup
s≥0

T 2(λ+V )
s 1(x)

}1/2{ ∫ ∞

0

tQtg
↑(x, t)dt

}1/2

= 2

{
sup
s≥0

T 2(λ+V )
s 1(x)

}1/2

H↑u(x).

Thus we have (4.24) . This completes the proof.

In the next section, we use the diffusion process generated by L + ∂2
a. So we will do

some calculation on L + ∂2
a.

Lemma 4.4. For any θ, set f̂(x, a) = |Q̂λ+R
a θ(x)| and for ε > 0, f̂ε(x, a) =

√
f̂(x, a)2 + ε.

Then we have

(L + ∂2
a)f̂2 ≥ 2(λ + V )f̂2 + 2ĝ. (4.25)

and for 1 < p ≤ 2, it holds that

(L + ∂2
a)f̂p

ε ≥ p(λ + V )f̂2f̂p−2
ε + p(p− 1)f̂p−2

ε ĝ. (4.26)

where ĝ = ĝ(x, a) was defined by

ĝ(x, a) = |∂aQ̂
λ+R
a θ(x)|2 + Γ̂(Q̂λ+R

a θ, Q̂λ+R
a θ)(x).

For the scalar case, we define f(x, a) = |Qλ
au(x)|, fε(x, a) =

√
f(x, a)2 + ε. Then we

have

(L + ∂2
a)f 2 ≥ 2λf2 + 2g (4.27)

and for 1 < p ≤ 2,

(L + ∂2
a)fp

ε ≥ pλf2fp−2
ε + p(p− 1)fp−2

ε g. (4.28)

Proof. We first show (4.25) . To show this, we note that (L̂− λ−R + ∂2
a)Q̂λ+R

a θ(x) = 0.

Moreover, using the identity 2Γ̂(θ, θ) = L|θ|2 − 2(L̂θ, θ), it holds that

L|Q̂λ+R
a θ|2 = 2(L̂Q̂λ+R

a θ, θ) + 2Γ̂(Q̂λ+R
a θ, Q̂λ+R

a θ).

Hence

(L + ∂2
a)f̂2 = (L + ∂2

a)|Q̂λ+R
a θ|2

11



= 2(∂2
aQ̂

λ+R
a θ, Q̂λ+R

a θ) + 2(∂aQ̂
λ+R
a θ, ∂aQ̂

λ+R
a θ)

+ 2(L̂Q̂λ+R
a θ, Q̂λ+R

a θ) + 2Γ̂(Q̂λ+R
a θ, Q̂λ+R

a θ)

= −2((L̂− λ−R)Q̂λ+R
a θ, Q̂λ+R

a θ) + 2|∂aQ̂
λ+R
a θ|2

+ 2(L̂Q̂λ+R
a θ, Q̂λ+R

a θ) + 2Γ̂(Q̂λ+R
a θ, Q̂λ+R

a θ)

≥ 2(λ + V )|Q̂λ+R
a θ|2 + 2ĝ(x, a).

Secondly we show (4.12) . To show this we recall the following fundamental relationship
between L and ∇: for F (ξ1, ξ2, · · · , ξn) ∈ C∞(Rn) and f1, f2, · · · , fn ∈ Dom(L),

LF (f 1, f2, · · · , fn) =
n∑

i=1

∂F

∂ξi
Lf i +

n∑
i,j=1

∂2F

∂ξi∂ξj
(∇f i,∇f j)

(see [5] Lemma 1). Hence we have, for 1 < p ≤ 2,

(L + ∂2
a)f̂p

ε = (L + ∂2
a)(f̂2

ε )p/2

=
p

2
(f̂2

ε )p/2−1(L + ∂2
a)f̂2

ε

+
p

2

(
p

2
− 1

)
(f̂2

ε )p/2−2
{

(∂af̂
2
ε )2 + |∇f̂2

ε |2
}

=
p

2
f̂p−2

ε (L + ∂2
a)f̂2

ε +
p

4
(p− 2)f̂p−4

ε

{
(∂af̂

2)2 + |∇f̂2|2}.
Let us recall that (see, e.g., [14, (3.11)])

|∇f̂2|2 = |∇(Q̂λ+R
a θ, Q̂λ+R

a θ)|2 ≤ 4Γ̂(Q̂λ+R
a θ, Q̂λ+R

a θ)|Q̂λ+R
a θ|2.

Taking this into account, we have

(L + ∂2
a)f̂p

ε ≥ p

2
f̂p−2

ε {2(λ + V )|Q̂λ+R
a θ|2 + 2ĝ}

+
p

4
(p− 2)f̂p−4

ε

{
4(∂aQ̂

λ+R
a θ, Q̂λ+R

a θ)2 + 4Γ̂(Q̂λ+R
a θ, Q̂λ+R

a θ)|Q̂λ+R
a θ|2}

≥ p

2
f̂p−2

ε {2(λ + V )|Q̂λ+R
a θ|2 + 2ĝ} + p(p− 2)f̂p−4

ε f̂2ĝ

≥ pf̂p−2
ε (λ + V )|Q̂λ+R

a θ|2 + pf̂p−2
ε ĝ + p(p− 2)f̂p−2

ε ĝ

≥ p(λ + V )f̂p−2
ε f̂2 + p(p− 1)f̂p−2

ε ĝ.

This completes the proof.

5. Equivalence of Lp-norms

In this section, we give estimates of G and H functions by a probabilistic method and
then show the domination of norms. The original idea is due to P. A. Meyer [9] but we
mainly follow Bakry [4].

Let (Xt, Px) be the diffusion process on M associated with E as before. We need an
additional 1-dimensional Brownian motion (Bt)t≥0 and we regard M as a vertical space.
We write P ↑

x in place of Px. Let (Bt, P
→
a ) be a 1-dimensional Brownian motion starting

at a ∈ R with the generator d2

da2 . Note that this Brownian motion is different from the
standard one up to constant. Let τ be the hitting time of (Bt) to 0, i.e.,

τ = inf{t ≥ 0 ; Bt = 0}.
12



We consider the following diffusion (Yt,P(x,a)) on the state space M × R;

Yt := (Xt, Bt), P(x,a) := P ↑
x ⊗ P→

a . (5.1)

So the generator of (Yt) is L + ∂2
a. We denote the integration with respect to P(x,a) and∫

M
P(x,a)µ(dx) by E(x,a) and Eµ×δa , respectively.

We use the following identities (see Meyer [9] for the proof): Let η : M × R+ → [0,∞)
be measurable. Then

Eµ×δa

[∫ τ

0

η(Xt, Bt)dt

]
=

∫
M

µ(dx)

∫ ∞

0

(a ∧ t)η(x, t) dt (5.2)

and

Eµ×δa

[∫ τ

0

η(Xt, Bt)dt

∣∣∣∣Xτ = x

]
=

∫ ∞

0

(a ∧ t)Qtη(x, t) dt. (5.3)

We need an inequality for submartingales. Let (Zt) be a non-negative continuous sub-
martingale with the following Doob-Meyer decomposition;

Zt = Mt + At

where (Mt) is a continuous martingale and (At) is a continuous increasing process with
A0 = 0. Then, for p ≥ 1, it holds that

E[Ap
∞] ≤ CpE[Zp

∞]. (5.4)

For the proof, see Lenglart-Lépingle-Pratelli [8].
Before going to estimate G-function we prepare the following;

Proposition 5.1. For any p ≥ 1, we have

sup
α≥0
N≥0

Eµ×δN

[{∫ τ

0

αe−
√

αBsds

}p]
< ∞. (5.5)

Proof. By the Itô formula, we have

e−
√

αBt = e−
√

αB0 −√
α

∫ t

0

e−
√

αBsdBs +

∫ t

0

αe−
√

αBsds.

Hence ∫ t∧τ

0

αe−
√

αBsds = e−
√

αBt∧τ − e−
√

αB0 + Mt

where (Mt) is a martingale defined by

Mt =
√
α

∫ t∧τ

0

e−
√

αBsdBs,

which satisfies

〈M〉t = 2α

∫ t∧τ

0

e−2
√

αBsds.

Now, by the Burkholder inequality

Eµ×δN

[{∫ τ

0

αe−
√

αBsds

}p]
≤ CpEµ×δN

[(
e−

√
αBτ − e−

√
αB0

)p]
+ CpEµ×δN

[〈M〉p/2
τ ]

13



≤ Cp + CpEµ×δN

[{∫ τ

0

4αe−
√

4αBsds

}p/2]
.

Thus it is enough to show (5.5) when p = 1.

Eµ×δN

[∫ τ

0

αe−
√

αBsds

]
=

∫ ∞

0

(N ∧ a)αe−
√

αada ≤
∫ ∞

0

aαe−
√

αada = 1.

This completes the proof.

G-functions are now estimated as follows.

Proposition 5.2. For any 1 < p < q < 2, we have

‖Ĝθ‖p � ‖θ‖q (5.6)

and

‖θ‖q′ � ‖G→θ‖p′ (5.7)

where p′ and q′ are the conjugate exponent of p and q, respectively.
For scalar functions, we have

‖Gu‖p � ‖u‖p. (5.8)

Proof. Set f̂(x, a) = |Q̂λ+R
a θ(x)| and for ε > 0, f̂ε(x, a) =

√
f̂(x, a)2 + ε. Define

Z
(ε)
t = f̂ε(Xt∧τ , Bt∧τ )p

and

Zt = f̂(Xt∧τ , Bt∧τ )p.

Then

M
(ε)
t = Z

(ε)
t −

∫ t∧τ

0

(L + ∂2
a)f̂ε(Xs, Bs)

pds

is a martingale. Therefore,

Eµ×δN
[Z(ε)

∞ − Z
(ε)
0 ] = Eµ×δN

[∫ τ

0

(L + ∂2
a)f̂ε(Xs, Bs)

pds

]
. (5.9)

According to Lemma 4.4 , we have

(L + ∂2
a)f̂p

ε ≥ p(λ + V )f̂2f̂p−2
ε + p(p− 1)ĝf̂p−2

ε

≥ −pV−f̂2f̂p−2
ε + p(p− 1)ĝf̂p−2

ε . (5.10)

By letting ε → 0, we have

lim inf
ε→0

(L + ∂2
a)f̂p

ε ≥ −pV−f̂p + p(p− 1)ĝf̂p−2.

Now, taking limit in (5.9) , we have

Eµ×δN
[Z∞ − Z0] ≥ Eµ×δN

[∫ τ

0

lim inf
ε→0

(L + ∂2
a)f̂ε(Xs, Bs)

pds

]

≥ Eµ×δN

[∫ τ

0

−pV−(Xs)f̂(Xs, Bs)
p + p(p− 1)ĝ(Xs, Bs)f̂

p−2ds

]
.(5.11)

14



This limit is justified because Eµ×δN
[
∫ τ

0
pV−(Xs)f̂(Xs, Bs)

pds] < ∞. From (5.10) , we
have,

ĝ ≤ 1

p(p− 1)
lim inf

ε→0
(L + ∂2

a)f̂p
ε · f̂2−p +

1

p− 1
V−f̂2. (5.12)

Now we can estimate Ĝθ.

‖Ĝθ‖p
p =

∥∥∥∥
{∫ ∞

0

aĝ(x, a)da

}p/2∥∥∥∥
1

�
∥∥∥∥
{∫ ∞

0

a lim inf
ε→0

(L + ∂2
a)f̂p

ε · f̂2−p + aV−f̂2da

}p/2∥∥∥∥
1

≤
∥∥∥∥
{∫ ∞

0

a lim inf
ε→0

(L + ∂2
a)f̂p

ε · f̂2−pda

}p/2∥∥∥∥
1

+

∥∥∥∥
{ ∫ ∞

0

aV−f̂2da

}p/2∥∥∥∥
1

=: I1 + I2.

We recall that

f̂(x, a) = |Q̂λ+R
a θ(x)| ≤ sup

t≥0
T λ+V

t |θ|(x). (5.13)

I1 is estimated as

I1 ≤
∥∥∥∥
{

sup
t≥0

T λ+V
t |θ|

}p(2−p)/2{∫ ∞

0

a lim inf
ε→0

(L + ∂2
a)f̂p

ε da

}p/2∥∥∥∥
1

�
∥∥∥∥
{

sup
t≥0

T λ+V
t |θ|

}p∥∥∥∥
(2−p)/2

1

∥∥∥∥
∫ ∞

0

a lim inf
ε→0

(L + ∂2
a)f̂p

ε da

∥∥∥∥
p/2

1

.

(∵ the Hölder inequality for the exponents 2/(2 − p) and 2/p)

Further we have∥∥∥∥
∫ ∞

0

a lim inf
ε→0

(L + ∂2
a)f̂p

ε da

∥∥∥∥
1

= lim
N→∞

∫
M

µ(dx)

∫ ∞

0

(N ∧ a) lim inf
ε→0

(L + ∂2
a)f̂p

ε da

= lim
N→∞

Eµ×δN

[∫ τ

0

lim inf
ε→0

(L + ∂2
a)f̂p

ε (Xt, Bt)dt

]
(∵ (5.2) )

≤ lim
N→∞

Eµ×δN
[Z∞ − Z0] (∵ (5.11) )

≤ lim
N→∞

Eµ×δN
[|θ(Xτ)|p]

= ‖θ‖p
p.

On the other hand, by virtue of Theorem 3.2 , we have∥∥∥∥
{

sup
t≥0

T λ+V
t |θ|

}p∥∥∥∥
(2−p)/2

1

≤
∥∥∥∥ sup

t≥0
T λ+V

t |θ|
∥∥∥∥

p(2−p)/2

p

� ‖θ‖p(2−p)/2
q . (5.14)

Thus we have I1 � ‖θ‖p
q.
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As for I2,∥∥∥∥
{∫ ∞

0

aV−f̂2da

}p/2∥∥∥∥
1

≤
∥∥∥∥
{ ∫ ∞

0

f̂2−paV−f̂pda

}p/2∥∥∥∥
1

≤
∥∥∥∥
{

sup
t≥0

T λ+V
t |θ|

}p(2−p)/2{ ∫ ∞

0

aV−f̂pda

}p/2∥∥∥∥
1

≤
∥∥∥∥
{

sup
t≥0

T λ+V
t |θ|

}p∥∥∥∥
(2−p)/2

1

∥∥∥∥
∫ ∞

0

aV−f̂pda

∥∥∥∥
p/2

1

(∵ the Hölder inequality for the exponents 2/(2 − p) and 2/p)

Further we have∥∥∥∥
∫ ∞

0

aV−f̂pda

∥∥∥∥
1

≤
∫ ∞

0

a‖V−f̂p‖1da

≤
∫ ∞

0

a‖V−‖r‖f̂p‖q/pda

(
1

q/p
+

1

r
= 1

)

≤ ‖V−‖r

∫ ∞

0

a‖Q̂λ+R
a θ‖p

qda

≤ ‖V−‖r

∫ ∞

0

a‖Q̂λ+R
a ‖p

q→q‖θ‖p
qda

≤ ‖V−‖r

∫ ∞

0

ae−
√

λ−γqap‖θ‖p
qda (∵ (4.5) )

=
‖V−‖r‖θ‖p

q

(λ− γq)p2
.

This combined with (5.14) implies I2 � ‖θ‖p
q and we have proved (5.6) .

(5.7) is obtained by the duality argument. In fact, using Proposition 4.1 , we have∫
M

(θ(x), η(x))Kµ(dx) = 4

∫
M

µ(dx)

∫ ∞

0

a
(
∂aQ̂

λ+R
a θ(x), ∂aQ̂

λ+R
a η(x)

)
K
da

≤ 4

∫
M

Ĝ→θ(x)Ĝ→η(x)µ(dx)

≤ 4‖Ĝ→θ‖p‖Ĝ→η‖p′

� ‖θ‖q‖Ĝ→η‖p′ .

Now (5.7) follows easily.
(5.8) for scalar functions can be shown much easily.

When p ≥ 2, we estimate Ĥu and Hu.

Proposition 5.3. For any 2 < p < r, we have

‖Ĥθ‖p � ‖θ‖r. (5.15)

For scalar functions, we have

‖Hu‖p � ‖u‖p. (5.16)
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Proof. We set f(x, a) = |Q̂λ+R
a θ(x)| and define

Zt = f̂(Xt∧τ , Bt∧τ )2.

Then,

Mt = Zt −
∫ t∧τ

0

(L + ∂2
a)f̂2(Xs, Bs)ds

is a martingale. By Lemma 4.4 , we have

2ĝ ≤ (L + ∂2
a)f̂2 + 2V−f̂2. (5.17)

Then, setting

At =

∫ t∧τ

0

{
(L + ∂2

a)f̂2(Xs, Bs) + 2V−f̂2(Xs, Bs)
}
ds, (5.18)

we can see that (At) is an increasing process and have that

Zt +

∫ t∧τ

0

2V−f̂2(Xs, Bs)ds = Mt + At. (5.19)

Hence Zt +
∫ t∧τ

0
2V−f2ds is a non-negative submartingale and its increasing part (At)

satisfies

At ≥
∫ t∧τ

0

2ĝ(Xs, Bs)ds. (5.20)

Therefore, by (5.4) , the following inequality hold.

Eµ×δN

[{∫ τ

0

2ĝ(Xs, Bs)ds

}p/2]
≤ Eµ×δN

[Ap/2
∞ ]

� Eµ×δN

[{
Z∞ +

∫ τ

0

2V−f̂2ds

}p/2]

� Eµ×δN
[Zp/2

∞ ] + Eµ×δN

[{∫ τ

0

V−f̂2ds

}p/2]

= ‖θ‖p
p + Eµ×δN

[{∫ τ

0

V−f̂2ds

}p/2]
.

The second term can be estimated as follows. We take any p < q < r.

Eµ×δN

[{∫ τ

0

V−f̂2ds

}p/2]

= Eµ×δn

[{∫ τ

0

e−ηBseηBsV−f̂2ds

}p/2]

≤ Eµ×δN

[{∫ τ

0

e−ηBsq/(q−2)ds

}(q−2)p/2q{∫ τ

0

eηBsq/2V
q/2
− f̂ qds

}2p/2q]
(∵ the Hölder inequality for the exponents q/(q − 2) and q/2)

≤ Eµ×δN

[{∫ τ

0

e−ηBsq/(q−2)ds

}u(q−2)p/2q]1/u

Eµ×δN

[∫ τ

0

eηBsq/2V
q/2
− f̂ qds

]p/q
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(∵ the Hölder inequality for the exponents u and q/p where 1
u

+ 1
q/p

= 1)

� Eµ×δN

[∫ τ

0

eηqBs/2V
q/2
− f̂ qds

]p/q

=

{∫
M

µ(dx)

∫ ∞

0

(N ∧ a)eηqa/2V
q/2
− (x)|Q̂λ+R

a θ(x)|qda
}p/q

.

To estimate the integral above, we recall that ‖Q̂λ+R
t θ‖r ≤ e−

√
λ−γrt‖θ‖r. Therefore,∫

M

µ(dx)

∫ ∞

0

(N ∧ a)eηqa/2V
q/2
− (x)|Q̂λ+R

a θ(x)|qda

≤
∫ ∞

0

aeηqa/2da

∫
M

V
q/2
− (x)|Q̂λ+R

a θ(x)|qµ(dx)

≤
∫ ∞

0

aeηqa/2da

{∫
M

V
vq/2
− (x)µ(dx)

}1/v{∫
M

|Q̂λ+R
a θ(x)|qr/qµ(dx)

}q/r

(
1

v
+

1

r/q
= 1

)

�
∫ ∞

0

aeηqa/2‖Q̂λ+R
a θ(x)‖q

rda

�
∫ ∞

0

aeηqa/2e−
√

λ−γrqa‖θ‖q
rda

� ‖θ‖q
r (∵

√
λ− γrq > ηq/2).

Thus we have obtained

Eµ×δN

[{∫ τ

0

ĝ(Xs, Bs)ds

}p/2]
� ‖θ‖p

r. (5.21)

Now we can estimate Ĥθ.

‖Ĥθ‖p
p =

∥∥∥∥
{ ∫ ∞

0

aQaĝ(x, a)da

}p/2∥∥∥∥
1

= lim
N→∞

∫
M

µ(dx)

{ ∫ ∞

0

(a ∧ N)Qaĝ(x, a)da

}p/2

= lim
N→∞

∫
M

µ(dx)Eµ×δN

[∫ τ

0

ĝ(Xs, Bs)ds

∣∣∣∣Xτ = x

]p/2

≤ lim
N→∞

∫
M

µ(dx)Eµ×δN

[{∫ τ

0

ĝ(Xs, Bs)ds

}p/2∣∣∣∣Xτ = x

]

= lim
N→∞

Eµ×δN

[{∫ τ

0

ĝ(Xs, Bs)ds

}p/2]
� ‖θ‖p

r. (∵ (5.21) )

The scalar case is easier.

Combining Propositions 4.3 5.3, we can get
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Proposition 5.4. For any 2 ≤ p < q < ∞, we have

‖Ĝ→θ‖p � ‖θ‖q (5.22)

and

‖θ‖q′ � ‖Ĝ→θ‖p′ (5.23)

where p′ and q′ are the conjugate exponents of p and q, respectively.
For scalar functions, we have

‖Gu‖p � ‖u‖p. (5.24)

We are now ready to prove Theorem 2.1 .

Proof of Theorem 2.1
We take λ to be large enough. Recall that {Qλ

t } is the subordination of {T λ
t }. Then,

by the intertwining property (2.7) , we have

∇Qλ
t = Q̂λ+R

t ∇.

Now take any 1 < p < q < ∞. Then we have

‖∇u‖p � ‖Ĝ→∇u‖q =

∥∥∥∥
{∫ ∞

0

a
∣∣∂aQ̂

λ+R
a ∇u(x)

∣∣2da}1/2∥∥∥∥
q

=

∥∥∥∥
{∫ ∞

0

a
∣∣∇Qλ

a

√
λ− Lu

∣∣2da}1/2∥∥∥∥
q

= ‖G↑√λ− Lu‖q

� ‖√λ− Lu‖q

which proves (2.10) .
The reversed inequality (2.11) is obtained by the duality argument. This completes the

proof.

6. Riemannian manifold with boundary

In this section, we discuss the reflected Brownian motion on a Riemannian manifold
with boundary. Let M be a compact Riemannian manifold with boundary ∂M . Let
(Xt, Px)x∈M be the Brownian motion on M with the Neumann boundary condition. We
denote the Riemannian volume by m. In this section, the semigroup {Tt} is generated
by L = ∆ with the Neumann boundary condition. {Tt} is a symmetric and strongly

continuous contraction semigroup in L2(m). Further {T̂t} is the semigroup generated by

the Hodge-Kodaira Laplacian L̂ = −dd∗ − d∗d with absolute boundary condition. The
associated bilinear forms with L and L̂ are denoted by E and Ê. Moreover {Tt} and {T̂t}
satisfy the following intertwining property:

∇Tt = T̂t∇. (6.1)

As in §5 , we use an additional 1-dimensional Brownian motion (Bt, P
→
a ) generated by

d2

da2 . Let τ be the hitting time of (Bt) to 0, and (Yt,P(x,a)) be the product diffusion process
on the state space M × R.

Yt := (Xt, Bt), P(x,a) := Px ⊗ P→
a . (6.2)
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So the generator of (Yt) is L + ∂2
a.

We use the notation Em×δa =
∫

M
P(x,a)m(dx) in the same way as in §5 . For any

f ∈ C∞(M), we have

f(Xt, Bt) − f(X0, B0) = a martingale +

∫ t

0

(L + ∂2
a)f(Xs, Bs)ds +

∫ t

0

∇Nf(Xs, Bs)dls.

Here {lt} is an additive functional corresponding to the smooth measure σ (σ is the
surface measure of ∂M), N is the inner normal vector and ∇ denotes the covariant
differentiation. In particular we take 1-form θ with absolute boundary condition and set
f(x, a) = |Qaθ(x)|2. Then,

f(Xt∧τ , Bt∧τ ) − f(X0, B0)

= Mt +

∫ t∧τ

0

(L + ∂2
a)f(Xs, Bs)ds +

∫ t∧τ

0

∂f

∂N
(Xs, Bs)dls

= Mt +

∫ t∧τ

0

(L + ∂2
a)f(Xs, Bs)ds +

∫ t∧τ

0

α(QBsθ(Xs), QBsθ(Xs))dls.

Here α is the second fundamental form of ∂M (see [15] for this identity.) The quadratic
variation of (Mt) is given by

〈M〉t = 2

∫ t∧τ

0

|∇QBsθ(Xs)|2 + |∂aQBsθ(Xs)|2ds.
Hence we can do the same argument as in the previous section. But we have to tackle
the additional term

∫ t∧τ

0
α(QBsθ(Xs), QBsθ(Xs))dls.

Next we see the semigroup domination. We note that for 1-forms θ, η and f ∈ C∞(M),

−E((θ, η), f) + Ê(fθ, η) + Ê(θ, fη)

= 2

∫
M

(∇θ,∇η)fm(dx) + 2

∫
M

Ric(θ, η)fm(dx) + 2

∫
∂M

α(θ, η)fσ(dx) (6.3)

where Ric is the Ricci curvature (refer to [15] for this identity.)
We take γ ≥ 0 and β ≥ 0 so that Ric(θ, θ) ≥ −γ|θ|2 and α(θ, θ) ≥ −β|θ|2. Then

α(θ, θ)σ ≥ −β|θ|2σ as measures. It is easy to see that σ is a smooth measure. We also
note that

L(θ, η) − (L̂θ, η) − (θ, L̂η) = 2(∇θ,∇η) − 2 Ric(θ, η). (6.4)

By (6.3) and (6.4) , the semigroup domination theorem implies (see [14, 15])

|T̂tθ| ≤ T−γ−βσ
t |θ|. (6.5)

Here T−γ−βσ
t is the semigroup which has −γ−βσ as a potential. It can be represented as

T−γ−βσ
t u(x) = Ex[u(Xt)e

γt+βlt] (6.6)

We can also show that (−lt) satisfies the assumption of Theorem 3.1 . In fact, it is
enough to see that there exists a function h ∈ C∞(M) such that ∇Nh = 1 on ∂M . Then

h(Xt) − h(X0) = Mt +

∫ t

0

∆h(Xs)ds + lt
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where (Mt) is a martingale with d〈M〉t ≤ Cdt for a constant C > 0. Hence

Ex[eqlt ] = Ex

[
exp

{
qh(Xt) − qh(X0) − qMt − q

∫ t

0

∆h(Xs)ds

}]
.

The right hand side is bounded in x because h, ∆h and 〈M〉 is bounded (this implies that
σ is a Kato class potential; for Kato class potentials, see Albeverio-Ma [2]). Therefore,
there exist constant cq > 0 and βq > 0 such that, for q.e.-x,

Ex[eqlt]1/q ≤ cqe
βqt, ∀t ≥ 0. (6.7)

Now we can apply Theorem 3.1 to T λ−γ−βσ
t . For simplicity, we introduce the following

notation:

Mλ−γ−βσu(x) = sup
t≥0

∣∣T λ−γ−βσ
t u(x)

∣∣.
When λ − γ = 0 and β = 0, we simply denote Mu in place of Mλ−γ−βσu. Then, if λ is
large enough, we have for any p > 1,

‖Mλ−γ−βσu‖p � ‖u‖p. (6.8)

We can also obtain an estimate for the subordination. Let {Qλ−γ−βσ
t } be the subordination

of {T λ−γ−βσ
t }. Then∣∣Qλ−γ−βσ

t u
∣∣ =

∣∣∣∣
∫ ∞

0

T λ−γ−βσ
s uµt(ds)

∣∣∣∣
≤

∫ ∞

0

e−α2s sup
r≥0

∣∣T λ−α2−γ−βσ
r u

∣∣µt(ds)

= e−αtMλ−α2−γ−βσu.

Thus we have

sup
t≥0

{
eαt|Qλ−γ−βσ

t u|} ≤ Mλ−α2−γ−βσu. (6.9)

We also note that {T̂t} is a bounded operator in Lp by virtue of (6.5) and there exist
constants cp > 0 and γp > 0 so that

‖T̂t‖p→p ≤ cpe
γpt. (6.10)

Let {Q̂λ
t } be the subordination of {T̂ λ

t = e−λtT̂t}. (6.5) implies |Q̂λ
t θ| ≤ Qλ−γ−βσ

t |θ|. We

define Ĝ and Ĥ in terms of {Q̂λ
t }. Now we can easily see that Proposition 4.3 holds in

this case. We have more. In fact, by virtue of (6.7) , we can and do take λ large enough

so that supt≥0 T
λ−γ−βσ
t 1(x) is bounded in q.e.-x and thereby we have

Ĝ→θ � Ĥ→θ. (6.11)

Similar estimate holds for G↑u and H↑u.
Lastly we note that, by combining the domination and (6.9) ,

sup
t≥0

{
eαt|Q̂λ

t θ|
} ≤ Mλ−α2−γ−βσ|θ|. (6.12)

Next we extend (5.2) to additive functionals. Take any smooth measure ρ and let At

be the additive functional associated with ρ. Then we have the following identity.
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Proposition 6.1. For any non-negative function f on M × [0,∞) and k on M , the
following identity holds:

Em×δa

[∫ τ

0

f(Xt, Bt)dAt

]
=

∫
M

ρ(dx)

∫ ∞

0

(a ∧ t)f(x, t) dt (6.13)

Em×δa

[
k(Xτ)

∫ τ

0

f(Xt, Bt)dAt

]
=

∫
M

ρ(dx)

∫ ∞

0

(a ∧ t)Qtk(x)f(x, t) dt (6.14)

Proof. Let us first recall the resolvent kernel for the absorbing Brownian motion on (0,∞).

Here, the generator is d2

da2 . For α > 0, set

gα(x, y) =

{
1

2
√

α
(e

√
αa − e−

√
αa)e−

√
αb, a ≤ b,

1
2
√

α
e−

√
αa(e

√
αb − e−

√
αb), a ≥ b.

(6.15)

Then the resolvent Gα = (α − d
da2 )−1 is given by

Gαh(a) =

∫ ∞

0

gα(a, b)h(b)db. (6.16)

Moreover we note that limα→0 gα(a, b) = a ∧ b.
By the Revuz correspondence, (see [6, the equation (5.1.14)]) we have∫ ∞

0

h(a)daEm×δa

[∫ τ

0

e−αsf(Xs, Bs)dAs

]

=

∫ ∞

0

Gαh(a)da

∫
M

f(x, a)ρ(dx)

=

∫ ∞

0

h(a)da

∫
M

ρ(dx)

∫ ∞

0

gα(a, b)f(x, b)db (∵ gα is symmetric)

Hence we have, for a.e.-a,

Em×δa

[∫ τ

0

e−αsf(Xs, Bs)dAs

]
=

∫
M

ρ(dx)

∫ ∞

0

gα(a, b)f(x, b)db.

But both hands are quasi-continuous in a and one point has positive capacity, the above
identity holds for all a ≥ 0. By letting α → 0, we can get (6.13) .

To show (6.14) , set

Ht =

∫ t∧τ

0

f(Xs, Bs)dAs.

Then Ht is a process of bounded variation. Hence, by the Itô formula,

QBt∧τk(Xt∧τ )Ht = a martingale +

∫ t∧τ

0

(L + ∂2
a)QBsk(Xs)Hsds +

∫ t∧τ

0

QBsk(Xs)dHs

= a martingale +

∫ t∧τ

0

QBsk(Xs)f(Xs, Bs)dAs.

Here we used that ∇NQak = 0 on ∂M because Qak belongs to the domain of the Neumann
Laplacian. By taking expectation and letting t → ∞, we have

Em×δa

[
QBτk(Xτ)

∫ τ

0

f(Xs, Bs)dAs

]
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= Em×δa

[∫ τ

0

QBsk(Xs)f(Xs, Bs)dAs

]

=

∫
M

ρ(dx)

∫ ∞

0

(a ∧ t)Qtk(x)f(x, t) dt. (∵ (6.13) )

This completes the proof.

Recall that {Qλ
t }, {Q̂λ

t } are subordinations of {T λ
t }, {T̂ λ

t }, respectively and G and H

functions are defined in terms of {Q̂λ
t }. Then we have the following estimate.

Proposition 6.2. For 1 < p ≤ 2, we have

‖Ĝθ‖p � ‖θ‖p (6.17)

and

‖θ‖p′ � ‖G→θ‖p′ (6.18)

where p′ is the conjugate exponent of p.
For scalar functions, we have

‖Gu‖p � ‖u‖p. (6.19)

Proof. We only show the 1-form case. We set f̂ (x, a) = |Q̂λ
aθ(x)| and f̂ε =

√
f̂2 + ε

(ε > 0). Define

Z
(ε)
t = f̂ε(Xt∧τ , Bt∧τ )p

and

Zt = f̂(Xt∧τ , Bt∧τ )p.

Then,

M
(ε)
t = Z

(ε)
t −

∫ t∧τ

0

(L + ∂2
a)f̂ε(Xs, Bs)

pds −
∫ t∧τ

0

∇N f̂ε(Xs, Bs)
pdls.

is a martingale. Note that

∇N f̂
p
ε = ∇N(f̂2 + ε)p/2 =

p

2
(f̂2 + ε)(p−2)/2α(Q̂λ

aθ, Q̂
λ
aθ).

Therefore,

Em×δN

[ ∫ τ

0

(L + ∂2
a)f̂ε(Xs, Bs)

pds

]

= Em×δN
[Z(ε)

∞ − Z
(ε)
0 ] − p

2
Em×δN

[∫ τ

0

f̂p−2
ε α(Q̂λ

Bs
θ, Q̂λ

Bs
θ)dls

]

≤ Em×δN
[Z(ε)

∞ − Z
(ε)
0 ] +

pβ

2
Em×δN

[∫ τ

0

f̂p−2
ε |Q̂λ

Bs
θ|2dls

]
.

By taking limit, we have

Em×δN

[
lim inf

ε→0

∫ τ

0

(L + ∂2
a)f̂ε(Xs, Bs)

pds

]

≤ lim inf
ε→0

Em×δN
[Z(ε)

∞ − Z
(ε)
0 ] +

pβ

2
lim inf

ε→0
Em×δN

[∫ τ

0

f̂p−2
ε |Q̂λ

Bs
θ(Xs)|2dls

]
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≤ ‖u‖p
p +

pβ

2
lim inf

ε→0

∫ ∞

0

(N ∧ a)da

∫
M

f̂p−2
ε |Q̂λ

aθ|2σ(dx)

≤ ‖u‖p
p +

pβ

2
lim inf

ε→0

∫ ∞

0

(N ∧ a)da

∫
M

f̂p
ε σ(dx).

We estimate the second term. We use the interpolation space. Taking ξ = 1 − (1/p), we
introduce the interpolation norm ‖ · ‖ξ,p of ‖ · ‖0,p and ‖ · ‖1,p. Here ‖ · ‖0,p is the Lp norm
in Lp(M, dx) and ‖ · ‖1,p is the Sobolev norm:

‖u‖p
1,p =

∫
M

|u|pm(dx) +

∫
M

|∇u|pm(dx).

Then the following inequality holds (see e.g., [1, Chapter VII]):∫
∂M

|u|pdσ(x) � ‖u‖p
ξ,p.

Moreover, the general theory of interpolation implies (see [1, LEMMA 7.16])

‖u‖p
ξ,p � ‖u‖(1−ξ)p

0,p ‖u‖ξp
1,p.

Thus we have ∫
∂M

|u|pσ(dx) � ‖u‖(1−ξ)p
0,p ‖u‖ξp

1,p. (6.20)

On the other hand

|∇f̂ε| =
∣∣∇√

f̂2 + ε
∣∣ =

1

2
(f̂2 + ε)−1/2|∇f̂2| ≤ 1

2
(f̂2 + ε)−1/22f̂ |∇Q̂λ

aθ| ≤ |∇Q̂λ
aθ|.

Using these inequalities, we have∫ ∞

0

(N ∧ a)da

∫
M

f̂p
ε σ(dx) �

∫ ∞

0

(N ∧ a)‖f̂ε‖(1−ξ)p
0,p ‖f̂ε‖ξp

1,pda

�
∫ ∞

0

(N ∧ a){‖f̂ε‖p
p + ‖f̂ε‖(1−ξ)p

p ‖∇f̂ε‖ξp
p }da

�
∫ ∞

0

(N ∧ a){‖f̂ε‖p
p + ‖f̂ε‖(1−ξ)p

p ‖∇Q̂λ
aθ‖ξp

p }da.
By taking limit, we have

lim
ε→0

∫ ∞

0

(N ∧ a)da

∫
M

f̂p
ε σ(dx)

�
∫ ∞

0

(N ∧ a){‖f̂‖p
p + ‖f̂‖(1−ξ)p

p ‖∇Q̂λ
aθ‖ξp

p }da

�
∫ ∞

0

ae−
√

λ−γppa‖θ‖p
pda +

∫ ∞

0

ae−
√

λ−γp(1−ξ)pa‖θ‖(1−ξ)p
p ‖∇Q̂λ

aθ‖ξp
p da

� ‖θ‖p
p + ‖θ‖(1−ξ)p

p

∫ ∞

0

ae−
√

λ−γp(1−ξ)pada

{∫
M

|∇Q̂λ
aθ(x)|pm(dx)

}ξ

≤ ‖θ‖p
p + ‖θ‖(1−ξ)p

p

{∫ ∞

0

ae−
√

λ−γp(1−ξ)pa11/(1−ξ)da

}1−ξ

×
{∫ ∞

0

ae−
√

λ−γp(1−ξ)pada

∫
M

|∇Q̂λ
aθ(x)|pm(dx)

}ξ (
1

1/(1 − ξ)
+

1

1/ξ
= 1

)
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� ‖θ‖p
p + ‖θ‖(1−ξ)p

p

{∫
M

m(dx)

∫ ∞

0

ae−
√

λ−γp(1−ξ)pa|∇Q̂λ
aθ(x)|pda

}ξ

� ‖θ‖p
p + ‖θ‖(1−ξ)p

p

[∫
M

m(dx)

{∫ ∞

0

ae−
√

λ−γp(1−ξ)pνada

}1/ν

×
{∫ ∞

0

a|∇Q̂λ
aθ(x)|p·2/pda

}p/2]ξ (
1

ν
+

1

2/p
= 1

)

� ‖θ‖p
p + ‖θ‖(1−ξ)p

p

[∫
M

{∫ ∞

0

a|∇Q̂λ
aθ(x)|2da

}p/2

m(dx)

]ξ

� ‖θ‖p
p + ‖θ‖(1−ξ)p

p ‖Ĝ↑θ‖ξp
p .

Further, as in the proof of Proposition 5.2 , we can show that

‖Ĝθ‖p
p � ‖θ‖p(2−p)/2

p

∥∥∥∥
∫ ∞

0

a lim inf
ε→0

(L + ∂2
a)f̂p

ε da

∥∥∥∥
p/2

.

Combining these inequalities, we have

‖Ĝθ‖p
p � ‖θ‖p(2−p)/2

p

{‖θ‖p·p/2
p + ‖θ‖(1−ξ)p·p/2

p ‖Ĝ↑θ‖ξp·p/2
p

}
≤ ‖θ‖p

p + ‖θ‖(2−ξp)p/2
p ‖Ĝ↑θ‖ξp2/2

p

= ‖θ‖p
p + ‖θ‖(3−p)p/2

p ‖Ĝ↑θ‖(p−1)p/2
p (ξ = 1 − 1

p
)

≤ ‖θ‖p
p +

3 − p

2
δ−(p−1)/(3−p)‖θ‖p

p +
p− 1

2
δ‖Ĝ↑θ‖p

p

(
3 − p

2
+

p− 1

2
= 1

)
� ‖θ‖p

p + δ−(p−1)/(3−p)‖θ‖p
p + δ‖Ĝθ‖p

p.

Since δ is arbitrary, we can get

‖Ĝθ‖p
p � ‖θ‖p

p

which is (6.17) . Now the rest is easy.

When p ≥ 2, we estimate Ĥθ and Hu.

Proposition 6.3. We further assume that the second fundamental form α is non-negative
definite. Then, for any p ≥ 2, we have

‖Ĥθ‖p � ‖θ‖p. (6.21)

For scalar functions, we have

‖Hu‖p � ‖u‖p. (6.22)

Proof. Set f̂(x, a) = |Q̂λ
aθ(x)| for 1-form θ and define

Zt = f̂(Xt∧τ , Bt∧τ )2.

Then

Zt = Z0 + Mt −
∫ t∧τ

0

(L + ∂2
a)f̂2(Xs, Bs)ds−

∫ t∧τ

0

α(Q̂λ
Bs
θ(Xs), Q̂

λ
Bs
θ(Xs))dls
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where (Mt) is a martingale with the quadratic variation

〈M〉t = 2

∫ t∧τ

0

{|∇f̂2(Xs, Bs)|2 + |∂af̂
2(Xs, Bs)|2

}
ds.

By the assumption that α is non-negative definite, (Zt) is a submartingale and the in-
creasing part is given as

At :=

∫ t∧τ

0

(L + ∂2
a)f̂2(Xs, Bs)ds +

∫ t∧τ

0

α(Q̂λ
Bs
θ(Xs), Q̂

λ
Bs
θ(Xs))dls.

Now, recalling that (see Lemma 4.4 )

(L + ∂2
a)f̂2 ≥ 2ĝ,

we have

At ≥
∫ t∧τ

0

2ĝ(Xs, Bs)ds.

By virtue of the submartingale inequality (5.4) , we obtain

Em×δN

[{∫ τ

0

2ĝ(Xs, Bs)ds

}p/2]
≤ Em×δN

[Ap/2
∞ ]

� Em×δN
[Zp/2

∞ ]

= ‖θ‖p
p.

Thus we have

‖Ĥθ‖p
p =

∥∥∥∥
{ ∫ ∞

0

aQaĝ(x, a)da

}p/2∥∥∥∥
1

= lim
N→∞

∫
M

µ(dx)

{ ∫ ∞

0

(a ∧ N)Qaĝ(x, a)da

}p/2

= lim
N→∞

∫
M

µ(dx)Em×δN

[∫ τ

0

ĝ(Xs, Bs)ds

∣∣∣∣Xτ = x

]p/2

≤ lim
N→∞

∫
M

µ(dx)Em×δN

[{∫ τ

0

ĝ(Xs, Bs)ds

}p/2∣∣∣∣Xτ = x

]

= lim
N→∞

Em×δN

[{∫ τ

0

ĝ(Xs, Bs)ds

}p/2]
� ‖θ‖p

p.

Scalar case is easier.

By combining Propositions 4.3 and 6.3, we easily obtain the following estimates for
G-functions:

Proposition 6.4. Assume that α is non-negative definite. Then, for any p ≥ 2, we have

‖Ĝ→θ‖p � ‖θ‖p (6.23)

and

‖θ‖p′ � ‖Ĝ→θ‖p′ (6.24)

where p′ is the conjugate exponent of p.
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For scalar functions, we have

‖Gu‖p � ‖u‖p. (6.25)

Now the following theorem can be proved in the same way as Theorem 2.1 .

Theorem 6.5. For any 1 < p ≤ 2, it holds that

‖u‖p + ‖∇u‖p � ‖√1 − ∆u‖p, (6.26)

‖√1 − ∆u‖p′ � ‖u‖p′ + ‖∇u‖p′ . (6.27)

where p′ is the conjugate exponent of p.
If we further assume that the second fundamental form α is non-negative definite, then

the inequalities above hold for p ≥ 2.
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Notes in Math., vol. 1123, pp. 177–206, Springer-Verlag, Berlin-Heidelberg-New York 1985.

[6] M. Fukushima, T. Oshima and M. Takeda, “Dirichlet forms and Markov processes,” Walter
de Gruyter, Berlin-New York, 1994.

[7] L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math., 97 (1975), 1061–1083.
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