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1. Introduction

Loop groups have been attracting many authors recently. In this paper, we
are discussing a Ké&hler metric on a loop group. Let G be a d-dimensional
compact Lie group and g be its Lie algebra (= the space of left invariant
vector fields). Then, g admits an Ad(G)-invariant inner product (-,-)g and
we fix it through the paper. We denote the G-valued path space on [0, 1] by

PG := {7:[0,1]—G ; continuous and y(0) = e} (1.1)

e being the unit element of G.
On the other hand, our interest is in the based loop group 2G over G:

NG = {7:]0,1]—G ; continuous and v(0) = v(1) = e}. (1.2)

We develop a differential geometry from an analytic point of view. In partic-
ular, we discuss several operators acting on, e.g., tensor fields. Usually, the
following Cameron-Martin space Hj is regarded as a tangent space:

Hy = {h 01 =g h is absolutely continuous, h(0) = h(1) =0, and } 7

" the derivative h satisfies that fol |f1(t)\§dt < oo

where |- | = +/(-,")g. Ho is a Hilbert space with the inner product

(h, k) g, = /Ol(h(t),k(t))gdt, h,k € Hy.

Using the left translation, this inner product defines a Riemannian metric.

Further, we can introduce an almost complex structure, denoted by J,
(see, [11]), but under it, the above metric is not a Kéhler metric. The following
Kéhler form S was introduced by Pressley [11]:

S(h, k) = /0 (h(t), k(£))gdt.
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The associated Riemannian metric is defined by B(X,Y) = S(X,JY). This
metric was discussed by [11, 2] in view of differential geometry. We will discuss
it from a probabilistic point of view, in which the pinned Brownian motion
measure plays an essential role.

The organization of this paper is as follows. In the section 2, we prepare
the fundamental notions of differential geometry. We define vector fields, dif-
ferential forms, exterior derivatives, etc. We also introduce an almost complex
structure. Kdhler metric is discussed in the section 3. We will calculate the
Levi-Civita covariant derivative and the associated Riemannian curvature.
The section 4 is devoted to showing the closability of operators. The Ricci
curvature is computed in the section 5.

2. A based loop group and an almost complex structure

In this section, we introduce several notions in differential geometry. The
Cameron-Martin space Hj is a tangent space of 2G. Defining a bracket by
[h,k](¢) = [h(t),k(t)]g, t € [0,1], Ho becomes a Lie algebra.

Thinking of Hy as Te(2G), the tangent space of {2G at e, where e(s) = e,
one may regard the product space 2G x Hjy as the tangent bundle of 2G.
One then defines spaces of tensor fields on 2G by

FIye (TP (02G))
finite

Y S QGHHSM’ & (HZ)®9 - u= Z fjej for some f; € FCL°(12G)

)

j
and e; € HYP @ (Hg)®1

where
FCr(£2G)

o oc o w. u() = f(y(t), -,y (tn)) for some

For X € FI°(T3 (2G)) and u € FC(2G), set

Xu(y) = lim L (£(re¥0) — 5(),

€l0 €

where for h € Hy, (eEh)(t) = ¢P(®) | the position of the integral curve along
h(t) € g at time e. As is easily seen, one has that

n

Xu(r) = (X)) (0, - A ta) (2.1)

=1

for u(y) = f(y(t1), ..., v(tn)) € FCF°(22G)
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where, for £ € g,

g(Z)f(gh 7977,) :lsllrgg(f(glw--agiflagieaéagi%*la"' 7gn) - f(glaagn))

For X, Y € FI$°(T3(£2@G)), the Lie bracket [X, Y] can be defined as a unique
element of FI'P°(T) (£2G)) so that

[X,Y)u=XYu—-YXu, X,YcFIXTy(NRG)), ucFC®NG). (2.2)

Defining constant vector field X® € FI'?>°(T}(£2G)), h € Hy, by X®(y) = h,
v € 2G. Then X" is a left invariant vector field. Due to (2.1), one has that

(xB, x¥ = XK h ke H,.
By virtue of (2.2), the Jacobi identity can be seen;
(X,[V,Z)] + [Y,[Z,X]] + [Z,[X,Y]] =0, X,Y,Z e FI3°(Ty (2G)). (2.3)
Let
FI(N'T*(02G)) = {u e fFfO(TI?(QG)) :u(y) is anti-symmetric}.

The exterior derivative du can be defined, as in the finite dimensional case,
for u € FI(N'T*(02G))

du(Xl, N 7Xp+1)

p+1 .
= > (D) Xa(w(X1,. ., Xay o, Xpia)
a=1
+ Z (_1)a+bu’([XaaXb]7Xl7"'7Xaa"'7Xb7"'7Xp+1)? (24)
1<a<b<p+1

for X1,..., X1 € FIP(T)(£2G)), where X, means that X, is omitted. As
in the finite dimensional case, one has that

d?=0. (2.5)
Indeed, define Lx and ¢(X) by
EX’U,(Xl,...,Xp) = X(U(Xl,,Xp))

p
= u(X1, . Xao 1, (X, X, Xags 5 Xp),
a=1
L(X)U(Xl, RN ,prl) = U(X,Xl, N ,prl),

for X, X1,...,X, € FI°(T5(2G)), u e FI(N'T*(2G)).
An elementary algebraic computation leads one to the identities
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dou(X)+1(X)od=Lx,
doLx =Lxod, X eFI(THOG)).
These yield that d? o 1(X) = +(X) o d? from which (2.5) follows by induction

on p.

We now introduce an almost complex structure on 2G following [11]. To
do this, put

en(t) = ﬁ(e%ﬁ"t ~1),  nez\{0)

and we take an orthonormal basis {£},=1,... 4 in g. We fix it through the paper.
We use the following convention. For a = (n,i), n € {1,2,...},i=1,2,...,d,
we define @ = (—n, 1), and

eq =en(t)&, ea=-e_n(t)&. (2.6)
Every h € Hy can be expanded as
d
h = Z Z(h7 e_n,i)Hoenyi in Ho,
i=1 n#0

where (h, ki + \/—1k2)H0 = (h, kl)Ho + \/—1(}1,1{2)[-[07 h, ki, ks € Hy. An
almost complex structure J : Hy — Hy on 2G is defined by

d d
Jh=vV=13 "> (heni)upeni —V-1>_ > (heni)ne ni
i=1n>0 i=17n>0
See [11]. As is easily seen, it holds that
J?h=—h and (Jh,Jk)g, = (h,k)y,, h,ke Hp.
Put Hé)c = Hy ® /—1Hy and
H" = {n € H - Jn=V=Tn}, H"V ={neHj : Jn=—V=In},

Here we extend .J to HS by complex linearity. Obviously HS = Hél’o)@Héo’l).
J*: Hi — H; satisfies the same property and therefore Hy " H: " can
be defined similarly. For h € Hy, define
mih=h"0 =
7-h=h"" =

(h — v/~1Jh), (2.7)
(h+ /—1Jh). (2.8)

1
2
1
2

Then h®™Y ¢ A" WY ¢ B™Y and h = h®&Y 4 h®D. By a straight-
forward computation one sees that
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d d
ht0) = Z Z(h, e—n,i)Hoen,ia hO = Z Z(ha en,i)Hoe—nﬂ" (2'9)

i=1n>0 i=1n>0

Since

[enis em.;](t) = m{(m +n)emin(t) — nen(t) — men(t) & &1,

one can conclude from (2.9) that
h* k09 e MY and 0OV kY] e H™Y hke Hp.  (2.10)
Let us define the Newlander-Nirenberg tensor IV as follows:
NX,)Y)=JX,Y]-[JX,Y] - [X,JY] - J[JX,JY].
By (2.10), we can easily see N = 0 and in this sense, J is “integrable.” Put

/\pvq — Hg(lvo) Ao A Hg(l’o) /\Hg(ovl) Ao A Hg(ovl)

p-times g-times

and define

finite
FIEN T (0) =L u: 0 pra 4= 2 itV Tge
fi,gi S ]—"C{,’O(QG),@ S /\p’q
Observing that
FIye (AT (02G)) C FFZ;)O(TI?H(QG)) @ \/—1]~'F§°(T£+q(QG)),

we can extend the exterior derivative d in (2.1) to FI}° (AP (T*(£2G))), and
due to (2.4), obtain that

du(y) e N"TH @ \PTT 4 € G, for u € FI(NVIT*(02G)).

Thus, operators

0 : FI(NPIT*(2G)) — J—'Flfc(/\p“’qT*(QG))
0: FIP(N™'T*(2G)) — FI(N™H'17(26))

can be defined so that for u € FI°(APIT*(2G)), du(y) (vesp. du(7)) is the
projection of du(y) onto AT (resp. A”**!). Obviously d = & + 8. Then,
by virtue of (2.2), one obtains that

9?=0, 9 =0, and 90+099=0 (2.11)
on FI*(ANPT*(02G)) for p,q > 0.
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3. A Kahler metric

We now introduce a Kéhler metric on 2G following [11]. Define S €
FIye(N*T*(2G)) by

S(XP x¥) = /1(fl(t),k(t))gdt,: —/1(h(t),k(t))gdt, h.k € H,.
0 0

Note that
|S(Xthk)| < ‘h‘H0|k|Hoﬂ

and hence that S is well-defined. By the integration by parts and the Ad(G)-
invariance of (-,-)g, we obtain the following cyclic formula:

S(x®, X%, X + 5(1x*, X1, x®) + (X!, xb), x¥) = 0.
Combine this with (2.1), we can show that dS = 0. Define
B(X,Y)=S(X,JY), X,YeFI[PITLHG)).
We note that S(X,Y) = B(JX,Y). Let T : HS — HS be a continuous linear

operator so that Te, ; = ﬁem. Observe then that
S(Xeni Xemi) = 71 ) Oii
I - Qﬂm\/—_l n,—mve,j»
and hence that
B(X"™ X¥%) = (Th,k)y,. (3.1)
In particular, for XY € Hy,
B(X,X)>0 and “=0” if and only if X =0 (3.2)

B(X,Y)=B(Y,X) €R.

Thus one have obtained the Kéhler metric B on {2G. We denote the comple-
tion of Hy with respect to B by H;. From now on, we regard Hy as a tangent
space. Moreover, by noting JT = TJ, J also defines an almost complex
structure in H;.

We now turn to the Levi-Civita covariant derivative. As in the finite
dimensional case, the Levi-Civita covariant derivative is characterized by the
following identity:

2B(VxY,Z) = XB(Y,Z)+YB(X,Z) - ZB(X,Y)
+B([X,Y],Z) + B(|Z,X),Y) + B(X,[Z,Y)).

In particular, taking left invariant vector fields, we have
2B(Vxn XX XY = B(X?, XX, X1 + B([X!, XP], X*) + B(X®, [X!, X¥]).

Furthermore, due to the identity (see, e.g., [8, Proposition IX.4.2])
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AB((VxJ)Y,Z) = 6dS((X,JY,JY) — 6dS(X,Y,Z) + B(N(Y, Z), JX),

we have V.J = 0, i.e., the almost complex structure is parallel.
We easily see that

B(VxY,Z)=0 ifY,Ze HW9 orY,Z € HOD, (3.4)

To see this, we note that the almost complex structure J is parallel. For
example, if Y, Z € H19  then
B(VxY,Z) = —/—1B(VxJY,Z)
= —V/-1B(JVxY,Z)
= V-1B(VxY,JZ)
= —B(VxY,2).

Thus we have (3.4).
Let us calculate the covariant derivative. From the definition,

B(VxnX* X1
= B([X" X%, X"+ B(X', X", X¥) + B(X", [ X!, X¥])

= S(XLJ[XP XK]) 4+ S([x1, XP), Tx%) + S([xY, XK], JXP)

1 d
= [ 0. Tt + [ (G0 BTt
+ G0, )
= [ )Tk @ede + [ (i), n0), Tk(o)gds
0 0
+ [ @)L+ [0 o). )t
+ [ ()KL i)

/0 (i), J [, K] () gt + / (i), (1), Jk(t)])dt
+ / (1(8), [ (t), T (D)) )gdlt + / (1), [k(2), Jh(t)])gdlt
" / (1), [k(t), Jh(1)] g lt

/0 (), T, K](t) + (1), Jk(t)] + [k(2), Th(t)])qdt

+ /0 (1), (1), Jk(t)] + [k(t), Jh(t)])gdt.
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First we consider the case XP, X¥ ¢ H1.0O) or Xb Xk ¢ HOD We set
JXK = ey/—1Xk

2B(V xn X¥ X1

- fmmw?mﬂ@+wimwum+wjmmmmﬂt
« 100, v/ TR0, k(0] + e/ =T, h(0)])ge

-/ (i(0), e/~ Tlh, ()l
| (168,231 ), K(6) 259 Th(0), k(1) it

= 2 [0V [ (o) K(s)ds)pa
= 25(,ev—1 / [h(s), k(s)]ds)g
0

_ 9B(evTTJ /0 Th(s),k(s)lds)
_ 23(1,/0‘[11(5),1;(5)](15).

Here we used J [;[h(s),k(s)]ds = ev/=1 [;[h(s), k(s)]ds due to the expression
of e,. Setting

Alh, K)(t) = /0 [h(s), k(s)]ds, (3.5)

we have
Vxn X% = A(h k).

In the case that X? ¢ H19 and X* ¢ HOD or X ¢ HOD and
Xk e HLO)  we set JX* = ey/—1X%. Then

2B(Vxu X¥ X

= [0+ oV, k)] VT, Byt
0
[ 00,0, () =y T, ) g
0
= [0, K0 + =T 0] — ey TR, DO
0

_ /O (1(£), eV =T[h(t), k(1)) dt
S(1, J[h, K|(t) + ev/—1[h, k])
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= —B(1,J%h,X|(t) + ev/—1J[h,k])
B(1, [h, k] — ev/~1J[h,K]).

Thus we have (recall the definition of 74 in (2.7), (2.8))
1
Vxn Xk = 5 bk - ev/—1J[h,k]} = 7.[h,k].

We sum up into a theorem.

Theorem 3.1. The covariant derivatives are given as follows:

A(h,k), ifh,ke HLO orh ke HOD,
VXth = m+[h k], ifhe HOD gndk e H(1,0)’
7T7[h7k], ifhEH(l’o) andkeH(Ovl),

Now we are ready to compute the Riemannian curvature. The Riemannian
curvature is defined by

R(X,Y) = [VX,V)/] - V[va].
From the definition, it is easy to see that R satisfies
B(R(X,Y)Z,W)=—-B(R(Y,X)Z,W) = B(R(Z,W)X,Y).

Accordingly, the non-trivial term is B(R(Xa, X5)X,, X5) where X, = X°®=,
Xz = X . The Riemannian curvature is given as follows:

Theorem 3.2. It holds that
B(R(Xa, X3) Xy, X5)

1 1
- —ﬁ/o (m+[e; €] [€q, €5])dl — \E/O (m+lep, 4], [ea, &5])dt
1
VT [ o) e st
1 1
+ﬁ/0 (7 +[ea, ep], [€4, €5])dt — \/jl/o (7~ [ea, €3] [ey, &5])dt.

Proof. By the definition,
B(R(Xa, X5)Xy, X5)

= B(Vx,Vx;Xy - Vx,Vx X, - V[Xa,X[;]XwXS)

= B(Vx,m+[X3, Xy] = Vx,A(Xa, X;) — Vi [Xa, X5 Xy
_Vw_[XQ,Xé]XWXS)
B(A(Xa,m+[X3, X,]) — m+[X5, A(Xa, X5)] — A7+ [Xa, X5], X5)
_7T+[7T—[XaaX6]vX"/]vX5)
_\/jls(A(XmW*—[XBa X’Y]) - [XBv A(Xa, X’Y)]
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— A(m+[Xa, X5], Xy) — [7-[Xa, X5], X, ], X;5)
= \/—_1/0 (A(ea,M[erev])’és)dt—\/—_1/0 ([eg, Alea, ey)], &5)dt
—V-1 /0 (A(7+[ea, 3], e;), €5)dt—v/=1 /O ([7-lea, egl, €], &5)dt
1 d 1
= —\/jl/o ([ea7£7+[eﬁ’e’YH’e5)dt+\/j/O (A(ea’e’Y)7[e57é5Ddt
+ﬁ/0 ([m[emeﬁ]»év]ﬁs)dt—ﬁ/o (m-[ea, eg], [ey, &5])dt
1 d 1 .
= \/—71/O (dt7r+[e57ew],[ea,e5])dt+\/jl/() (A(eas ey), [eg, €5])dt
VT [ ilearesl foresit = VT [ (- fea.ealfer. s
- _\/_—1/O (7r+[e5,e7]7[éa,eg])dt—\/—_1/0 (m+leg; €], [eq, €5])dt
+\/j1-/0 (A(eave“/)v[eﬁaég])dt
+\/—_1/0 (m[emeﬁ]a[éwes])dt—\/—_l/o (m-[ea, eg); [ey, €5])dt

which completes the proof. [

4. Closability

We will show the closability of operators that were introduced in the previous
sections. Operators were considered in the framework of L? theory. To define
an L? space, we need a measure. So we begin with introducing a measure on
the path space PG. To do this, let us consider the following stochastic dif-
ferential equation. We consider the following stochastic differential equation
on G:

d
{ dryt = Zﬁl(vt)odbia (41)
i=1
Yo =€
where (b, ..., bf)ic[0,7 is a d-dimensional Brownian motion, and o stands for

the Stratonovich symmetric stochastic integral. Setting by = >, bi&;, (by) is
a Brownian motion on g. (b;) induces a measure on the space Pg where Pg
is the g-valued path space. The measure is called the Wiener measure and is
denoted by P". There exists the unique strong solution to (4.1), i.e., there
exists a measurable function I: Pg — PG such that v = I(b) is the unique
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solution to (4.1). We call this map I the It6 map. We denote the image
measure of P" under I by pu. Then (Pg, P"') = (PG, 1) as measure spaces.
We sometimes regard a function on (PG, ) as a function on (Pg, PV'). We
can restrict the measure to £2G by taking a conditional probability. We set
m = E[-|y(1l) = e]. m is called a pinned measure or a bridge measure.

For function v € FCp°(2G), du is characterized by

(du,X) = Xu, for X € FI}°(Ty (£2G)).

In the section 2, X was an Hy-valued function. But we have replaced Hy by
H;. Since Hy C Hy, we have Hf C Hj and du must be in H{. Let us give an
example of such a function. Set

uww=é o0 (1))t

where ¢ € C*°(]0,1]) and f € C*°(M). Then clearly

<MM@=A¢@WMWMWﬁ

It is now easy to see that du(y) € Hj. Since those functions are dense in
L?(02@G), we can define the following pre-Dirichlet form:

E(u,v) = /QG(du,dv)Hfm(d'y). (4.2)

The closability of the pre-Dirichlet form is a fundamental problem. It is equiv-
alent to the closability of the operator d. To show the closability, we are
enough to show the existence of the dual operator.

Since |h|g, = [vTh|g,, we easily show that @ € Hj if and only if 8 €

Dom(vT*~1) and
101y = [VT*~10|u;,
where T™: Hj — Hj is the dual operator of 7. We also notice that
(b, k), = (Th,k)g, for h,k € Hy
and similarly
@,mu: = (T*710,77)H3 for 8 € Ran(T*), n € Hy.
Now we have

/ (du,8)p+dm = (du, T*'0) gz dm = ud (T*~10)dm
oG 0G G

where d’ is the dual operator with respect to the inner product ( , )g,. This
implies that d* = d'T* 1.
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We shall give a rather explicit expression of d*. We recall the notion of
divergence. For X € FI°(T3(£2G)), div X is characterized by the following
identity:

Xudm = f/ (div X)udm
G G

If X is left invariant, we can give an explicit formula of div X:

div X? = —/0 (h(s),db(s))g.

Notice that this is valid only for h € Hy. Because we are given a Riemannian
metric, a 1-form can be identified with a vector field, i.e., for any 1-form w,
there exists a unique vector field, which we denote by w¥, such that

(w, X) = B(w*, X).

We take @ € H{ (a constant 1-form). Then,

/ (du,0)g:dm = <du,0ﬁ>dm:/ 0% udm = 7/ (div 8*)udm
NG G NG

foZe] Q
which implies d*0 = —div 6. Of course, we have to assume that 8* € Hy.
Notice that 8* € Hy if and only if @ € T*(Hg) and in this case |*|g, =
|T*719|H6"~

It is now easy to see that ¢ = u@ € Dom(d*) if v € FCy°(2G) and
0 € Dom(T*~1). Here and after, we identify an element of H} with a constant
1-form (i.e., a left invariant 1-form) for notational simplicity. Hence Dom(d*)
is dense and thereby &£ is closable. It is easy to see that the closure of £ is a
Dirichlet form.

The closability of the exterior differentiation is valid for general p-forms.
Of course, we have replaced Hy by Hj in the argument in the section 2.
Hence p-form is a function on 2G taking values in A” = Hf A--- A Hf. Now
we notice that 7 can be naturally extended to the tensor product of Hy as
follows:

I (T) 01 @ -®0;)=(T"01)® - (T*0).

We also have

(010 ® 6k - © 1) oo
= (Fk(T*71)91®®0k7771®®nk)H5‘®k

for 6, € Ran(T*), n, € H.
Proposition 4.1. The dual operator of d in /\k is given by
d* = Ty (T*)d' Tu(T*71).
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Proof. 1t is easy to see that

1'(w do)y *®kdm = / E (Le(T* Nw, dy) 5, *®kdm
ac k! k!

d’Fk(T* D, gp)H*mdm

= * I *1(,4) *®k- m.
- /Qc(k_l)wk AT T o, ) o

This implies the assertion. [J

The closability of 9, O can be shown in a similar manner.

Lastly we consider the covariant differentiation. We show the closability
of covariant differentiation for 1-forms. Let w be a 1-form, i.e., H{-valued
function on 2G. Recall that the cotangent bundle T*(2G) is identified with
2G x Hy. Hence a section of T*({2G) is nothing but a Hj-valued function.
We define the covariant derivative of 1-form w by

(Vxw,Y)=X{(w,Y) — (w,VxY).

Setting Vw(X,Y) = (Vxw,Y), V is a differential operator from I' (T} (2G))
to I'(TY(2G)). Let (eq,es) be a basis in Hy defined by (2.6). If 8 € Hf(1’0)7
then, by Theorem 3.1, we have VO(-,e3) = 0. Further, we have

VO(en,e3) = —0(A(eqs,ep))
VO(es,es) = —0([eaep)).

Similar formula holds for 8 € Hy 0.1) (just take a complex conjugate).

We will obtain the dual operator of V acting on 1-forms. To do this,
we recall the definition of the divergence operator, which is essentially same
as the dual operator of d. Now, taking 1-forms 0, n and & € H; (constant
1-forms), we have

/(0®777V€)Hf®Hfdm = / (1, Vg:&) rrdm
NG NG

/ {0u(n7£)Hf - (anvg)Hf}dm
G

/ (—(div 6%) — Vi1, €)1 dm.
NG

Thus we have
V(6 ®@n) = —(div6*)n — V.

Now we can see that the domain of V* is dense.
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5. The Ricci curvature

We have obtained the Riemannian curvature. In this section we will get the
Ricci curvature. We adopt the following definition of Ricci curvature.

dd* + d*d = V*V + Ric (5.1)

To compute the Ricci curvature, we recall the following fact. For h € Hy,
set

"= /0 (B(t), db(t)),.

Then we have (see, e.g., Gross [5, Lemma 3.5])

(du, k)

/(ﬁ(t),k(t))gdH/ ([h(t), k(t)], db(t))g
0 0

— Tk, + / (1), K(£)], db() ). (5.2)

We prepare a proposition for later use.

Proposition 5.1. Set Define @ and Q as follows.
1
Q) = VIS [ (o salmo kT e gt
5 Jo
forh e H(go’l) and k € H(gl’o), and
1
Q(h,k) = \/—12/0 ([eﬁ,h],A(T_leB,k))gdt
B

forh k € Héo’l). Then it holds that

1! .
QK = o / K(JhKk)di, for he H®Y and k € HMY, (5.3)
0
Q(h,k) = 0, for hke H" (5.4)
where K is the Killing form: K(&,1) = try(s)(adfadn).

Proof. We compute @ by using a basis (eq, €s).
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Q(e—m,j:er)

_ FZZ/ ([ s énils T+ [er, T~ e p ) gt

=1 n

= \/722/ e—ménl&;, &), (2mn)mi{ee—n [k, &) gd

=1 n

= VALY [ e e g

=1 n

1

(2my/—11)(—27/—1n)
x oy {(2TVTIImME ) (2T 1) — (eI 1)} gy, &]) gt

1
_ Z 1 lel/ (6727r\/jlmt o 1)627r\/jlnt

X ALy (€27 1) (2 1)V K (g5, ) dt

]' ! ™ —1 -m TV —l(n—m
_ Zm/o {1{l>n}(€2 V=I(=m)t _ 2my/=1( )t)

N (627r\/—_1(n—m+l) B GQW\/__l(n_m)t)}K(fj, f}g)dt

X (27n)

1 1
= {2(l - 1)61,7‘“ - ml{l>m}

4m2ml

1 1
_4 mi {m>l}+ } (flagj)

1 1
= = Doim + O (K (&
{47r2ml(l o +47T2m15l’ } (§:&)
= An 2 6lm (5275,])
On the other hand,
1 1

o K(Je_md,él’k)dt

B —zaTy/ —1m ™/ —
— v / _QW\/_m( 2my/—1mt 1)62 \/TltK(fj,fk)dt
= mélﬂnK(&a gj)

Now we have (5.3). Next we show (5.4)

Qle—m j,e—1x)
= \/—_1;/0 ([en(t)&,é,m(t)éj},/o 27rn[e,n(3)£i,é,l(s)fk]ds)gdt
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1
— /_ 1 2/ —1nt =27/ —=Imt[¢. ¢
- 1;/0 (27r\/—71n(e 1)6 [517&]]5

t
{/O (27’(77,) —27T\1/jln (6_27‘-\/__1”8 — 1)6_277\/__115[52‘, fk]ds})gdt

1
1 N N
- _J1 K(E: 27r\/—1nt71 —27y/—1Imt
VIS K68 [ e e
-1 —27/—1(n+l)t 1 —2my/— 11t
——— A DL i —1)}dt
8 {27T\/—1(n+ I A v T )}
= V=) K(&,&)
» -1 27/ =1 Dt 2ny/=T(n—m)t
X/O {(zm)(gmﬁunﬂ) (e ~ )
1 27/ —1(n—m—I)t 2my/—1(n—m)t
) @ry/ =11 ¢ )}

—5n m 6n m+1 5” m
= K j : : - : ’
Z (gj’gk){lhﬂn(n + l) A72nl + 471’27’Ll}

n

_1 1 1
= K(éj,ﬁk){4ﬂzm(m+ D i (m Dl 47r2ml}
= 0.

This completes the proof. O

The Ricci curvature is given by the following theorem.

Theorem 5.1. Set

Ric(h,k) = (T—lh,k)Hl+%/0 K(Jh,k)dt+(/o (), k(w)]du, b(1))g
+ / (p+ [, K], db(t)) — / (p- [, K], db(t))q (5.5)

forhe Héo’l) and k € H(gl’o), and
Ric(h,k) =0 (5.6)

for h,k € H(go’l). Ifh e Hél’o), we define Ric by complex conjugation. Then
identity (5.1) holds. Here py in (5.5) is defined by

pil = ;{/O 1(t)eg(s)ds}eés (5.7)

p-1

Z{/ 1(t)ép(s)ds}eés. (5.8)
3 0
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Proof. We first note that dn(X,Y) = Vn(X,Y) — Vn(Y, X). So we set
Vn(X,Y) =Vn(Y, X). Since d* = V*, we have

dd*n +d*dn —V*Vn = dd*n+V*(Vn—Vn) —V*Vn
dd*n — V*Vn.
S f_ I 2 (0,1) . #(1,0)
et n* =h, u= [/ (h(s),db(s))s. Note that h € Hy ' since n € H, (we
have assumed h € HY). As we saw in the previous section, d*n is given by
d'n=—divp* =u

and hence
dd*n = du.

Let (0%,0%) be a dual basis of (e,,es), i.e., (0%, eg) = 5, (6%, e) =0,

etc. By noting Vn(-,e3) = 0, we can expand Vn as
Vn = Z{Vn(ea,eﬁw”‘ ®0° + Vn(es,e3)0” ©0°}.
o,
Reversing the order, we have
vVn = Z{7<T’7 A(eaa eﬁ»eﬁ ® 0 — <n7 W*[e@a eg]>0ﬁ ® 0&}'
o,
Since (8%)* = T~ 'es, we have

V(07 ®6%) = —(divT 'e5)0" — V1,0

Therefore
V'V = ) {(divT'e)8% + V10,0 }(n, Alea, ep))
a,B
+) {(divTes)8" + V10,0 }(n, 7+ [ea, es)).
a,B

Hence, if k € H(gl’o),
(dd*n — V*Vn,k)
= (du—V*Vn,k)

= B+ [ (hKLd0) — (T es) (0%, 1) (. Aleo )
a,B

— S (Vi16,0% K (m, Alea, ep))}
B

= () 0m + [ db)y — (T ). Ak e5)
0 8
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+ Z [T e K] (m, Alea, e5)

T+ /O ([, 1], db(t))q

B

=D _(divT ez)(n, Ak, ep)) + D (n, A(m+ [T "eg. k], es))}.
B

We first compute the last term.

<17,A(7T+[T7195a k], es))

By virtue of Proposition 5.1,

Z<T]7 A(ﬂ—‘*' [T

B

= (b, A(m+[T "es,k],e5))n,
= V-1(Jh,A(m[T " eg,k],ep))u,
= V=1S(h A(r+ [T 'es, k], e5))

— _\/7/ j 7T+[T eﬁ,k],eﬁ))gdt

_ _\/—/ [+ [T eg, K], ég])gdt

\/—_1/0 ([h,eg], 7+ [k, T eg])qdt.

we can get

ek /KJhk

Now we turn to the stochastic integral.

(divT'ez)(n, A(k, ep))

Further

= (divI'es)(h, Ak, es))m,
= V-1(divT~ eﬁ)(Jh Ak, ep))m,
= V-1(divT 'e5)S(h, A(k, ep))

= —M—_l(divT_leB)/O (h, [k, &p])qdt
= f\/—_l(divT_leB)/ ([h, K], é3)qdt

= —/=1(divT~ eﬁ)S(eg [h,k])

(
= —V-1(divT'ez)(Jeg, [h,K])x,
= (divey)(T 'es, [h,K])m,
= (diveg)(es, [h,K])u,

_ (dive[;)/o ([, K] + [h, k], &g)gdt
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/0 ([, K, db(8))g — S (divTe)(m, Ak, e))

B

= [ ek o)+ [ (oK),
0 0
+ / ( / (B (), ke (ue)du, db(2))g — / (o[, K] + - [h, K], db(t)),q

1

- / (p+ [, K], db(t) g+ ( / (), (1)}, (1) )g — / (o [, K], db())g.
0 0 0

Next we consider the case k € H1(071).
(dd*n — V*Vn, k)
= ({du—V*Vn,k)
1
= @+ [ (L),
0

=D {(divTlez)(6% k) {n, 7+ [ea, es])+(Vr-10,6% k)0 (m + [ea, es])}
8

_ /O ([, K], db(t))q

— Z(div T*1e5)<n, k,eg]) + Z@?, [A(Tfleg,k%eg]).
B B
Further,
<777 [A(Tileﬁvk)veﬁb = (h’ [A(Tileﬁvk)’eﬁ})Hl
= V=1L(Jh,[A(T 'eg,k),es))u,
— VTIS(M,[AT e, k) en))

= \/jl/o (h, [A(T "eg,k), eg])qdt
_ T / (e, B, A(T e, k))gdt.

The stochastic integral vanishes because, for 8 = (n, 1),

(divT'es)(n, [k, es))
= (divaleB)(h k, es])m,
= V-1(divT'es)(Jh, [k, es))m,
= J—il(divaleE)S(h, k,es])

= J—_l(divT_leB)/O (h, [k, es])gdt
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VI(divTey) /0 (0, K], e])qdt

: _ b 1 2my/—1Int .
\/7_1(chveﬂ)(27rn)/0 ([h,k],m(e —1)&5)qdt
= (divep) /0 (I, K], 2™V =T dt

= (diveﬂ)/o ([h, K], &5)qdt.

Combining this with fol([h, k],é5)qdt = 0, we have

S (divTtey) (n, [k, e]) = / ([l K], db(t))q-

B

This completes the proof. [
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