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1. Introduction

Loop groups have been attracting many authors recently. In this paper, we
are discussing a Kähler metric on a loop group. Let G be a d-dimensional
compact Lie group and g be its Lie algebra (≡ the space of left invariant
vector fields). Then, g admits an Ad(G)-invariant inner product (·, ·)g and
we fix it through the paper. We denote the G-valued path space on [0, 1] by

PG := {γ: [0, 1]→G ; continuous and γ(0) = e} (1.1)

e being the unit element of G.
On the other hand, our interest is in the based loop group ΩG over G:

ΩG := {γ: [0, 1]→G ; continuous and γ(0) = γ(1) = e}. (1.2)

We develop a differential geometry from an analytic point of view. In partic-
ular, we discuss several operators acting on, e.g., tensor fields. Usually, the
following Cameron-Martin space H0 is regarded as a tangent space:

H0 =
{
h : [0, 1] → g :

h is absolutely continuous, h(0) = h(1) = 0, and
the derivative ḣ satisfies that

∫ 1

0 |ḣ(t)|2gdt < ∞
}

,

where | · |g =
√

(·, ·)g. H0 is a Hilbert space with the inner product

(h,k)H0 =
∫ 1

0

(ḣ(t), k̇(t))gdt, h,k ∈ H0.

Using the left translation, this inner product defines a Riemannian metric.
Further, we can introduce an almost complex structure, denoted by J ,

(see, [11]), but under it, the above metric is not a Kähler metric. The following
Kähler form S was introduced by Pressley [11]:

S(h,k) =
∫ 1

0

(ḣ(t),k(t))gdt.
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The associated Riemannian metric is defined by B(X,Y ) = S(X,JY ). This
metric was discussed by [11, 2] in view of differential geometry. We will discuss
it from a probabilistic point of view, in which the pinned Brownian motion
measure plays an essential role.

The organization of this paper is as follows. In the section 2, we prepare
the fundamental notions of differential geometry. We define vector fields, dif-
ferential forms, exterior derivatives, etc. We also introduce an almost complex
structure. Kähler metric is discussed in the section 3. We will calculate the
Levi-Civita covariant derivative and the associated Riemannian curvature.
The section 4 is devoted to showing the closability of operators. The Ricci
curvature is computed in the section 5.

2. A based loop group and an almost complex structure

In this section, we introduce several notions in differential geometry. The
Cameron-Martin space H0 is a tangent space of ΩG. Defining a bracket by
[h,k](t) = [h(t),k(t)]g, t ∈ [0, 1], H0 becomes a Lie algebra.

Thinking of H0 as Te(ΩG), the tangent space of ΩG at e, where e(s) ≡ e,
one may regard the product space ΩG × H0 as the tangent bundle of ΩG.
One then defines spaces of tensor fields on ΩG by

FΓ∞
b (T p

q (ΩG))

=


u : ΩG→H⊗p

0 ⊗ (H∗
0 )⊗q :

u =
finite∑
j

fjej for some fj ∈ FC∞
b (ΩG)

and ej ∈ H⊗p
0 ⊗ (H∗

0 )⊗q


 ,

where

FC∞
b (ΩG)

=
{

u : ΩG → R : u(γ) = f(γ(t1), . . . , γ(tn)) for some
f ∈ C∞

b (Gn)and 0 ≤ t1 < . . . < tn ≤ 1

}
.

For X ∈ FΓ∞
b (T 1

0 (ΩG)) and u ∈ FC∞
b (ΩG), set

Xu(γ) = lim
ε↓0

1
ε

(
f
(
γeεX(γ)

)− f(γ)
)
,

where for h ∈ H0,
(
eεh

)
(t) = eεh(t), the position of the integral curve along

h(t) ∈ g at time ε. As is easily seen, one has that

Xu(γ) =
n∑
i=1

((
X(γ)

)
(ti)(i)f

)
(γ(t1), . . . , γ(tn)) (2.1)

for u(γ) = f(γ(t1), . . . , γ(tn)) ∈ FC∞
b (ΩG)
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where, for ξ ∈ g,

ξ(i)f(g1, . . . , gn) = lim
ε↓0

1
ε

(
f(g1, . . . , gi−1, gie

εξ, gi+1, . . . , gn) − f(g1, . . . , gn)
)
.

For X,Y ∈ FΓ∞
b (T 1

0 (ΩG)), the Lie bracket [X,Y ] can be defined as a unique
element of FΓ∞

b (T 1
0 (ΩG)) so that

[X,Y ]u = XY u − Y Xu, X, Y ∈ FΓ∞
b (T 1

0 (ΩG)), u ∈ FC∞(ΩG). (2.2)

Defining constant vector field Xh ∈ FΓ∞
b (T 1

0 (ΩG)), h ∈ H0, by Xh(γ) = h,
γ ∈ ΩG. Then Xh is a left invariant vector field. Due to (2.1), one has that

[Xh,Xk] = X [h,k], h,k ∈ H0.

By virtue of (2.2), the Jacobi identity can be seen;

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0, X, Y, Z ∈ FΓ∞
b (T 1

0 (ΩG)). (2.3)

Let

FΓ∞
b (

∧p
T ∗(ΩG)) = {u ∈ FΓ∞

b (T 0
p (ΩG)) : u(γ) is anti-symmetric}.

The exterior derivative du can be defined, as in the finite dimensional case,
for u ∈ FΓ∞

b (
∧p

T ∗(ΩG))

du(X1, . . . ,Xp+1)

=
p+1∑
a=1

(−1)a−1Xa

(
u(X1, . . . , X̂a, . . . ,Xp+1)

)
+

∑
1≤a<b≤p+1

(−1)a+bu([Xa,Xb], X1, . . . , X̂a, . . . , X̂b, . . . ,Xp+1), (2.4)

for X1, . . . ,Xp+1 ∈ FΓ∞
b (T 1

0 (ΩG)), where X̂a means that Xa is omitted. As
in the finite dimensional case, one has that

d2 = 0. (2.5)

Indeed, define LX and ι(X) by

LXu(X1, . . . ,Xp) = X
(
u(X1, . . . ,Xp)

)
−

p∑
a=1

u(X1, . . . ,Xa−1, [X,Xa], Xa+1, . . . ,Xp),

ι(X)u(X1, . . . ,Xp−1) = u(X,X1, . . . ,Xp−1),

for X,X1 , . . . ,Xp ∈ FΓ∞
b (T 1

0 (ΩG)), u ∈ FΓ∞
b (

∧p
T ∗(ΩG)).

An elementary algebraic computation leads one to the identities
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{
d ◦ ι(X) + ι(X) ◦ d = LX ,
d ◦ LX = LX ◦ d, X ∈ FΓ∞

b (T 1
0 (ΩG)).

These yield that d2 ◦ ι(X) = ι(X) ◦ d2 from which (2.5) follows by induction
on p.

We now introduce an almost complex structure on ΩG following [11]. To
do this, put

en(t) =
1

2π
√−1n

(
e2π

√−1nt − 1
)
, n ∈ Z \ {0}

and we take an orthonormal basis {ξ}i=1,...,d in g. We fix it through the paper.
We use the following convention. For α = (n, i), n ∈ {1, 2, . . .}, i = 1, 2, . . . , d,
we define ᾱ = (−n, i), and

eα = en(t)ξi, eᾱ = e−n(t)ξi. (2.6)

Every h ∈ H0 can be expanded as

h =
d∑
i=1

∑
n �=0

(h, e−n,i)H0en,i in H0,

where (h,k1 +
√−1k2)H0 = (h,k1)H0 +

√−1(h,k2)H0 , h,k1,k2 ∈ H0. An
almost complex structure J : H0 → H0 on ΩG is defined by

Jh =
√−1

d∑
i=1

∑
n>0

(h, e−n,i)H0en,i −
√−1

d∑
i=1

∑
n>0

(h, en,i)H0e−n,i.

See [11]. As is easily seen, it holds that

J2h = −h and (Jh, Jk)H0 = (h,k)H0 , h,k ∈ H0.

Put HC
0 = H0 ⊕

√−1H0 and

H
(1,0)
0 = {η ∈ HC

0 : Jη =
√−1η}, H

(0,1)
0 = {η ∈ HC

0 : Jη = −√−1η}.

Here we extend J to HC
0 by complex linearity. Obviously HC

0 = H
(1,0)
0 ⊕H

(0,1)
0 .

J∗: H∗
0 → H∗

0 satisfies the same property and therefore H
∗(1,0)
0 , H

∗(0,1)
0 can

be defined similarly. For h ∈ H0, define

π+h = h(1,0) = 1
2 (h−√−1Jh), (2.7)

π−h = h(0,1) = 1
2 (h +

√−1Jh). (2.8)

Then h(1,0) ∈ H
(1,0)
0 , h(0,1) ∈ H

(0,1)
0 , and h = h(1,0) + h(0,1). By a straight-

forward computation one sees that
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h(1,0) =
d∑
i=1

∑
n>0

(h, e−n,i)H0en,i, h(0,1) =
d∑
i=1

∑
n>0

(h, en,i)H0e−n,i. (2.9)

Since

[en,i, em,j ](t) =
1

2π
√−1mn

{
(m + n)em+n(t) − nen(t) − mem(t)

}
[ξi, ξj ],

one can conclude from (2.9) that

[h(1,0),k(1,0)] ∈ H
(1,0)
0 and [h(0,1),k(0,1)] ∈ H

(0,1)
0 h,k ∈ H0. (2.10)

Let us define the Newlander-Nirenberg tensor N as follows:

N(X,Y ) = J [X,Y ] − [JX,Y ] − [X,JY ] − J [JX, JY ].

By (2.10), we can easily see N = 0 and in this sense, J is “integrable.” Put∧p,q = H
∗(1,0)
0 ∧ · · · ∧ H

∗(1,0)
0︸ ︷︷ ︸

p-times

∧H
∗(0,1)
0 ∧ · · · ∧ H

∗(0,1)
0︸ ︷︷ ︸

q-times

and define

FΓ∞
b (

∧p,q
T ∗(ΩG)) =


u : ΩG→∧p,q : u =

finite∑
i

(fi +
√−1gi)ei

fi, gi ∈ FC∞
b (ΩG), ei ∈

∧p,q


 .

Observing that

FΓ∞
b (

∧p,q
T ∗(ΩG)) ⊂ FΓ∞

b (T 0
p+q(ΩG)) ⊕√−1FΓ∞

b (T 0
p+q(ΩG)),

we can extend the exterior derivative d in (2.1) to FΓ∞
b (

∧p,q(T ∗(ΩG))), and
due to (2.4), obtain that

du(γ) ∈ ∧p+1,q ⊕ ∧p,q+1
, γ ∈ ΩG, for u ∈ FΓ∞

b (
∧p,q

T ∗(ΩG)).

Thus, operators

∂ : FΓ∞
b (

∧p,q
T ∗(ΩG)) → FΓ∞

b (
∧p+1,q

T ∗(ΩG))

∂ : FΓ∞
b (

∧p,q
T ∗(ΩG)) → FΓ∞

b (
∧p,q+1

T ∗(ΩG))

can be defined so that for u ∈ FΓ∞
b (

∧p,q
T ∗(ΩG)), ∂u(γ) (resp. ∂u(γ)) is the

projection of du(γ) onto
∧p+1,q (resp.

∧p,q+1). Obviously d = ∂ + ∂. Then,
by virtue of (2.2), one obtains that

∂2 = 0, ∂
2

= 0, and ∂∂ + ∂∂ = 0 (2.11)

on FΓ∞
b (

∧p,q
T ∗(ΩG)) for p, q ≥ 0.
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3. A Kähler metric

We now introduce a Kähler metric on ΩG following [11]. Define S ∈
FΓ∞

b (
∧2

T ∗(ΩG)) by

S(Xh,Xk) =
∫ 1

0

(ḣ(t),k(t))gdt, = −
∫ 1

0

(h(t), k̇(t))gdt, h,k ∈ H0.

Note that
|S(Xh,Xk)| ≤ |h|H0 |k|H0,

and hence that S is well-defined. By the integration by parts and the Ad(G)-
invariance of (·, ·)g, we obtain the following cyclic formula:

S([Xh,Xk], Xl) + S([Xk,Xl], Xh) + S([Xl,Xh], Xk) = 0.

Combine this with (2.1), we can show that dS = 0. Define

B(X,Y ) = S(X,JY ), X, Y ∈ FΓ∞
b (T 1

0 (ΩG)).

We note that S(X,Y ) = B(JX,Y ). Let T : HC
0 → HC

0 be a continuous linear
operator so that Ten,i = 1

2|n|πen,i. Observe then that

S(Xen,i ,Xem,j ) =
1

2πm
√−1

δn,−mδi,j ,

and hence that
B(Xh,Xk) = (Th,k)H0 . (3.1)

In particular, for X,Y ∈ H0,

B(X,X) ≥ 0 and “= 0” if and only if X = 0 (3.2)
B(X,Y ) = B(Y,X) ∈ R. (3.3)

Thus one have obtained the Kähler metric B on ΩG. We denote the comple-
tion of H0 with respect to B by H1. From now on, we regard H0 as a tangent
space. Moreover, by noting JT = TJ , J also defines an almost complex
structure in H1.

We now turn to the Levi-Civita covariant derivative. As in the finite
dimensional case, the Levi-Civita covariant derivative is characterized by the
following identity:

2B(∇XY,Z) = XB(Y,Z) + Y B(X,Z) − ZB(X,Y )
+B([X,Y ], Z) + B([Z,X], Y ) + B(X, [Z, Y ]).

In particular, taking left invariant vector fields, we have

2B(∇XhXk,Xl) = B([Xh,Xk], Xl) + B([Xl,Xh], Xk) + B(Xh, [X l,Xk]).

Furthermore, due to the identity (see, e.g., [8, Proposition IX.4.2])
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4B((∇XJ)Y,Z) = 6dS((X,JY, JY ) − 6dS(X,Y,Z) + B(N(Y,Z), JX),

we have ∇J = 0, i.e., the almost complex structure is parallel.
We easily see that

B(∇XY,Z) = 0 if Y,Z ∈ H(1,0) or Y,Z ∈ H(0,1). (3.4)

To see this, we note that the almost complex structure J is parallel. For
example, if Y,Z ∈ H(1,0), then

B(∇XY,Z) = −√−1B(∇XJY,Z)
= −√−1B(J∇XY,Z)
=

√−1B(∇XY, JZ)
= −B(∇XY,Z).

Thus we have (3.4).
Let us calculate the covariant derivative. From the definition,

B(∇XhXk,Xl)
= B([Xh,Xk], Xl) + B([Xl,Xh], Xk) + B(Xh, [X l,Xk])
= S(Xl, J [Xh,Xk]) + S([Xl,Xh], JXk) + S([Xl,Xk], JXh, )

=
∫ 1

0

(l̇(t), J [h,k](t))gdt +
∫ 1

0

(
d

dt
[l(t),h(t)], Jk(t))gdt

+
∫ 1

0

(
d

dt
[l(t),k(t)], Jh(t))gdt

=
∫ 1

0

(l̇(t), J [h,k](t))gdt +
∫ 1

0

([l̇(t),h(t)], Jk(t))gdt

+
∫ 1

0

([l(t), ḣ(t)], Jk(t))gdt +
∫ 1

0

([l̇(t),k(t)], Jh(t))gdt

+
∫ 1

0

([l(t), k̇(t)], Jh(t))gdt

=
∫ 1

0

(l̇(t), J [h,k](t))gdt +
∫ 1

0

(l̇(t), [h(t), Jk(t)])gdt

+
∫ 1

0

(l(t), [ḣ(t), Jk(t)])gdt +
∫ 1

0

(l̇(t), [k(t), Jh(t)])gdt

+
∫ 1

0

(l(t), [k̇(t), Jh(t)])gdt

=
∫ 1

0

(l̇(t), J [h,k](t) + [h(t), Jk(t)] + [k(t), Jh(t)])gdt

+
∫ 1

0

(l(t), [ḣ(t), Jk(t)] + [k̇(t), Jh(t)])gdt.
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First we consider the case Xh,Xk ∈ H(1,0) or Xh,Xk ∈ H(0,1). We set
JXk = ε

√−1Xk.

2B(∇XhXk,Xl)

=
∫ 1

0

(l̇(t), ε
√−1[h,k](t) + ε

√−1[h(t),k(t)] + ε
√−1[k(t),h(t)])gdt

+
∫ 1

0

(l(t), ε
√−1[ḣ(t),k(t)] + ε

√−1[k̇(t),h(t)])gdt

=
∫ 1

0

(l̇(t), ε
√−1[h,k](t))gdt

+
∫ 1

0

(l(t), ε
√−1

d

dt
[h(t),k(t)] − 2ε

√−1[h(t), k̇(t)])gdt

= 2
∫ 1

0

(l̇(t), ε
√−1

∫ t

0

[h(s), k̇(s)]ds)gdt

= 2S(l, ε
√−1

∫ ·

0

[h(s), k̇(s)]ds)g

= −2B(l, ε
√−1J

∫ ·

0

[h(s), k̇(s)]ds)

= 2B(l,
∫ ·

0

[h(s), k̇(s)]ds).

Here we used J
∫ ·
0 [h(s), k̇(s)]ds = ε

√−1
∫ ·
0 [h(s), k̇(s)]ds due to the expression

of eα. Setting

A(h,k)(t) =
∫ t

0

[h(s), k̇(s)]ds, (3.5)

we have
∇XhXk = A(h,k).

In the case that Xh ∈ H(1,0) and Xk ∈ H(0,1), or Xh ∈ H(0,1) and
Xk ∈ H(1,0), we set JXk = ε

√−1Xk. Then

2B(∇XhXk,Xl)

=
∫ 1

0

(l̇(t), J [h,k](t) + ε
√−1[h(t),k(t)] − ε

√−1[k(t),h(t)])gdt

+
∫ 1

0

(l(t), ε
√−1[ḣ(t),k(t)] − ε

√−1[k̇(t),h(t)])gdt

=
∫ 1

0

(l̇(t), J [h,k](t) + ε
√−1[h(t),k(t)] − ε

√−1[k(t),h(t)])gdt

−
∫ 1

0

(l̇(t), ε
√−1[h(t),k(t)])gdt

= S(l, J [h,k](t) + ε
√−1[h,k])
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= −B(l, J2[h,k](t) + ε
√−1J [h,k])

= B(l, [h,k] − ε
√−1J [h,k]).

Thus we have (recall the definition of π± in (2.7), (2.8))

∇XhXk =
1
2
{[h,k] − ε

√−1J [h,k]} = πε[h,k].

We sum up into a theorem.

Theorem 3.1. The covariant derivatives are given as follows:

∇XhXk =




A(h,k), if h,k ∈ H(1,0) or h,k ∈ H(0,1),
π+[h,k], if h ∈ H(0,1) and k ∈ H(1,0),

π−[h,k], if h ∈ H(1,0) and k ∈ H(0,1).

Now we are ready to compute the Riemannian curvature. The Riemannian
curvature is defined by

R(X,Y ) := [∇X ,∇Y ] −∇[X,Y ].

From the definition, it is easy to see that R satisfies

B(R(X,Y )Z,W ) = −B(R(Y,X)Z,W ) = B(R(Z,W )X,Y ).

Accordingly, the non-trivial term is B(R(Xα,Xβ̄)Xγ ,Xδ̄) where Xα = Xeα ,
Xβ̄ = Xeβ̄ . The Riemannian curvature is given as follows:

Theorem 3.2. It holds that

B(R(Xα,Xβ̄)Xγ ,Xδ̄)

= −√−1
∫ 1

0

(π+[eβ̄, eγ], [ėα, eδ̄])dt −√−1
∫ 1

0

(π+[eβ̄ , eγ ], [eα, ėδ̄])dt

+
√−1

∫ 1

0

(A(eα, eγ), [eβ̄ , ėδ̄])dt

+
√−1

∫ 1

0

(π+[eα, eβ̄], [ėγ , eδ̄])dt −√−1
∫ 1

0

(π−[eα, eβ̄ ], [eγ , ėδ̄])dt.

Proof. By the definition,

B(R(Xα,Xβ̄)Xγ ,Xδ̄)
= B(∇Xα∇Xβ̄

Xγ −∇Xβ̄
∇XαXγ −∇[Xα,Xβ̄]Xγ ,Xδ̄)

= B(∇Xαπ+[Xβ̄ ,Xγ ] −∇Xβ̄
A(Xα,Xγ) −∇π+[Xα,Xβ̄]Xγ

−∇π−[Xα,Xβ̄]Xγ,Xδ̄)

= B(A(Xα, π+[Xβ̄ ,Xγ ]) − π+[Xβ̄ , A(Xα,Xγ)] −A(π+ [Xα,Xβ̄ ], Xγ)
− π+[π−[Xα,Xβ̄ ], Xγ ], Xδ̄)

= −√−1S(A(Xα, π+[Xβ̄ ,Xγ ]) − [Xβ̄ , A(Xα,Xγ)]
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− A(π+ [Xα,Xβ̄ ], Xγ) − [π−[Xα,Xβ̄ ], Xγ ], Xδ̄)

=
√−1

∫ 1

0

(A(eα, π+[eβ̄, eγ]), ėδ̄)dt −√−1
∫ 1

0

([eβ̄ , A(eα, eγ)], ėδ̄)dt

−√−1
∫ 1

0

(A(π+[eα, eβ̄ ], eγ), ėδ̄)dt−√−1
∫ 1

0

([π−[eα, eβ̄ ], eγ ], ėδ̄)dt

= −√−1
∫ 1

0

([eα,
d

dt
π+[eβ̄ , eγ]], eδ̄)dt +

√−1
∫ 1

0

(A(eα, eγ), [eβ̄ , ėδ̄])dt

+
√−1

∫ 1

0

([π+[eα, eβ̄], ėγ], eδ̄)dt −√−1
∫ 1

0

(π−[eα, eβ̄ ], [eγ , ėδ̄])dt

=
√−1

∫ 1

0

(
d

dt
π+[eβ̄ , eγ ], [eα, eδ̄])dt +

√−1
∫ 1

0

(A(eα, eγ), [eβ̄ , ėδ̄])dt

+
√−1

∫ 1

0

(π+[eα, eβ̄ ], [ėγ, eδ̄])dt −√−1
∫ 1

0

(π−[eα, eβ̄ ], [eγ , ėδ̄])dt

= −√−1
∫ 1

0

(π+[eβ̄ , eγ ], [ėα, eδ̄])dt −√−1
∫ 1

0

(π+[eβ̄ , eγ ], [eα, ėδ̄])dt

+
√−1

∫ 1

0

(A(eα, eγ), [eβ̄ , ėδ̄])dt

+
√−1

∫ 1

0

(π+[eα, eβ̄ ], [ėγ, eδ̄])dt −√−1
∫ 1

0

(π−[eα, eβ̄ ], [eγ , ėδ̄])dt

which completes the proof. �

4. Closability

We will show the closability of operators that were introduced in the previous
sections. Operators were considered in the framework of L2 theory. To define
an L2 space, we need a measure. So we begin with introducing a measure on
the path space PG. To do this, let us consider the following stochastic dif-
ferential equation. We consider the following stochastic differential equation
on G: {

dγt =
d∑
i=1

ξi(γt)◦dbit,

γ0 = e

(4.1)

where (b1t , . . . , bdt )t∈[0,T ] is a d-dimensional Brownian motion, and ◦ stands for
the Stratonovich symmetric stochastic integral. Setting bt =

∑
i b
i
tξi, (bt) is

a Brownian motion on g. (bt) induces a measure on the space Pg where Pg
is the g-valued path space. The measure is called the Wiener measure and is
denoted by PW . There exists the unique strong solution to (4.1), i.e., there
exists a measurable function I: Pg → PG such that γ = I(b) is the unique
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solution to (4.1). We call this map I the Itô map. We denote the image
measure of PW under I by µ. Then (Pg, PW ) ∼= (PG,µ) as measure spaces.
We sometimes regard a function on (PG,µ) as a function on (Pg, PW ). We
can restrict the measure to ΩG by taking a conditional probability. We set
m = E[ · |γ(1) = e]. m is called a pinned measure or a bridge measure.

For function u ∈ FC∞
b (ΩG), du is characterized by

〈du,X〉 = Xu, for X ∈ FΓ∞
b (T 1

0 (ΩG)).

In the section 2, X was an H0-valued function. But we have replaced H0 by
H1. Since H0 ⊆ H1, we have H∗

1 ⊆ H∗
0 and du must be in H∗

1 . Let us give an
example of such a function. Set

u(γ) =
∫ 1

0

ϕ(t)f(γ(t))dt

where ϕ ∈ C∞([0, 1]) and f ∈ C∞(M). Then clearly

〈du(γ),h〉 =
∫ 1

0

ϕ(t)〈df(γ(t)),h(t)〉dt.

It is now easy to see that du(γ) ∈ H∗
1 . Since those functions are dense in

L2(ΩG), we can define the following pre-Dirichlet form:

E(u, v) :=
∫
ΩG

(du, dv)H∗
1
m(dγ). (4.2)

The closability of the pre-Dirichlet form is a fundamental problem. It is equiv-
alent to the closability of the operator d. To show the closability, we are
enough to show the existence of the dual operator.

Since |h|H1 = |√Th|H0, we easily show that θ ∈ H∗
1 if and only if θ ∈

Dom(
√

T ∗−1) and
|θ|H∗

1
= |

√
T ∗−1θ|H∗

0
,

where T ∗: H∗
0 → H∗

0 is the dual operator of T . We also notice that

(h,k)H1 = (Th,k)H0 for h,k ∈ H1

and similarly

(θ,η)H∗
1

= (T ∗−1θ,η)H∗
0

for θ ∈ Ran(T ∗), η ∈ H∗
1 .

Now we have∫
ΩG

(du,θ)H∗
1
dm =

∫
ΩG

(du, T ∗−1θ)H∗
0
dm =

∫
ΩG

ud′(T ∗−1θ)dm

where d′ is the dual operator with respect to the inner product ( , )H0 . This
implies that d∗ = d′T ∗−1.
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We shall give a rather explicit expression of d∗. We recall the notion of
divergence. For X ∈ FΓ∞

b (T 1
0 (ΩG)), div X is characterized by the following

identity: ∫
ΩG

Xudm = −
∫
ΩG

(div X)udm

If X is left invariant, we can give an explicit formula of div X:

div Xh = −
∫ 1

0

(ḣ(s), db(s))g .

Notice that this is valid only for h ∈ H0. Because we are given a Riemannian
metric, a 1-form can be identified with a vector field, i.e., for any 1-form ω,
there exists a unique vector field, which we denote by ω�, such that

〈ω,X〉 = B(ω�,X).

We take θ ∈ H∗
1 (a constant 1-form). Then,∫

ΩG

(du,θ)H∗
1
dm =

∫
ΩG

〈du,θ�〉dm =
∫
ΩG

θ�udm = −
∫
ΩG

(div θ�)udm

which implies d∗θ = −div θ�. Of course, we have to assume that θ� ∈ H0.
Notice that θ� ∈ H0 if and only if θ ∈ T ∗(H∗

0 ) and in this case |θ�|H0 =
|T ∗−1θ|H∗

0
.

It is now easy to see that ϕ = uθ ∈ Dom(d∗) if u ∈ FC∞
b (ΩG) and

θ ∈ Dom(T ∗−1). Here and after, we identify an element of H∗
1 with a constant

1-form (i.e., a left invariant 1-form) for notational simplicity. Hence Dom(d∗)
is dense and thereby E is closable. It is easy to see that the closure of E is a
Dirichlet form.

The closability of the exterior differentiation is valid for general p-forms.
Of course, we have replaced H0 by H1 in the argument in the section 2.
Hence p-form is a function on ΩG taking values in

∧p = H∗
1 ∧ · · · ∧H∗

1 . Now
we notice that T ∗ can be naturally extended to the tensor product of H∗

1 as
follows:

Γk(T ∗)(θ1 ⊗ · · · ⊗ θk) = (T ∗θ1) ⊗ · · · ⊗ (T ∗θk).

We also have

(θ1 ⊗ · · · ⊗ θk,η1 ⊗ · · · ⊗ ηk)H∗⊗k
1

= (Γk(T ∗−1)θ1 ⊗ · · · ⊗ θk,η1 ⊗ · · · ⊗ ηk)H∗⊗k
0

for θi ∈ Ran(T ∗), ηi ∈ H∗
1 .

Proposition 4.1. The dual operator of d in
∧k is given by

d∗ = Γk−1(T ∗)d′Γk(T ∗−1).
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Proof. It is easy to see that∫
ΩG

1
k!

(ω, dϕ)H∗⊗k
1

dm =
∫
ΩG

1
k!

(Γk(T ∗−1)ω, dϕ)H∗⊗k
0

dm

=
∫
ΩG

1
(k − 1)!

(d′Γk(T ∗−1)ω,ϕ)H∗⊗k
0

dm

=
∫
ΩG

1
(k − 1)!

(Γk−1(T ∗)d′Γk(T ∗−1)ω,ϕ)H∗⊗k
1

dm.

This implies the assertion. �

The closability of ∂, ∂̄ can be shown in a similar manner.
Lastly we consider the covariant differentiation. We show the closability

of covariant differentiation for 1-forms. Let ω be a 1-form, i.e., H∗
1 -valued

function on ΩG. Recall that the cotangent bundle T ∗(ΩG) is identified with
ΩG × H∗

1 . Hence a section of T ∗(ΩG) is nothing but a H∗
1 -valued function.

We define the covariant derivative of 1-form ω by

〈∇Xω, Y 〉 = X〈ω, Y 〉 − 〈ω,∇XY 〉.
Setting ∇ω(X,Y ) = 〈∇Xω, Y 〉, ∇ is a differential operator from Γ (T 0

1 (ΩG))
to Γ (T 0

2 (ΩG)). Let (eα, eᾱ) be a basis in H0 defined by (2.6). If θ ∈ H
∗(1,0)
1 ,

then, by Theorem 3.1, we have ∇θ(·, eβ̄) = 0. Further, we have

∇θ(eα, eβ) = −θ(A(eα, eβ))
∇θ(eᾱ, eβ) = −θ([eᾱ, eβ ]).

Similar formula holds for θ ∈ H
∗(0,1)
1 (just take a complex conjugate).

We will obtain the dual operator of ∇ acting on 1-forms. To do this,
we recall the definition of the divergence operator, which is essentially same
as the dual operator of d. Now, taking 1-forms θ, η and ξ ∈ H∗

1 (constant
1-forms), we have∫

ΩG

(θ ⊗ η,∇ξ)H∗
1⊗H∗

1
dm =

∫
ΩG

(η,∇θ	ξ)H∗
1
dm

=
∫
ΩG

{
θ�(η, ξ)H∗

1
− (∇θ	η, ξ)H∗

1

}
dm

=
∫
ΩG

(−(div θ�)η −∇θ	η, ξ)H∗
1
dm.

Thus we have
∇∗(θ ⊗ η) = −(div θ�)η −∇θ	η.

Now we can see that the domain of ∇∗ is dense.
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5. The Ricci curvature

We have obtained the Riemannian curvature. In this section we will get the
Ricci curvature. We adopt the following definition of Ricci curvature.

dd∗ + d∗d = ∇∗∇ + Ric (5.1)

To compute the Ricci curvature, we recall the following fact. For h ∈ H0,
set

u =
∫ 1

0

(ḣ(t), db(t))g.

Then we have (see, e.g., Gross [5, Lemma 3.5])

〈du,k〉 =
∫ 1

0

(ḣ(t), k̇(t))gdt +
∫ 1

0

([ḣ(t),k(t)], db(t))g

= (T−1h,k)H1 +
∫ 1

0

([ḣ(t),k(t)], db(t))g . (5.2)

We prepare a proposition for later use.

Proposition 5.1. Set Define Q and Q̃ as follows.

Q(h,k) :=
√−1

∑
β

∫ 1

0

([h, ėβ ], π+[k, T−1eβ̄ ])gdt

for h ∈ H
(0,1)
0 and k ∈ H

(1,0)
0 , and

Q̃(h,k) =
√−1

∑
β

∫ 1

0

([eβ , ḣ], A(T−1eβ̄ ,k))gdt

for h,k ∈ H
(0,1)
0 . Then it holds that

Q(h,k) =
1
2π

∫ 1

0

K(Jh, k̇)dt, for h ∈ H
(0,1)
0 and k ∈ H

(1,0)
0 , (5.3)

Q̃(h,k) = 0, for h,k ∈ H
(0,1)
0 (5.4)

where K is the Killing form: K(ξ, η) = trN(S)(adξadη).

Proof. We compute Q by using a basis (eα, eᾱ).
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Q(e−m,j , el,k)

=
√−1

d∑
i=1

∑
n

∫ 1

0

([e−m,j , , ėn,i], π+[el,k, T−1e−n,i])gdt

=
√−1

d∑
i=1

∑
n

∫ 1

0

(e−mėn[ξj , ξi], (2πn)π+{ele−n[ξk, ξi]})gdt

=
√−1

d∑
i=1

∑
n

∫ 1

0

(
1

−2πm
√−1

(e−2π
√−1mt − 1)e2π

√−1nt[ξj , ξi],

× (2πn)
1

(2π
√−1l)(−2π

√−1n)

× π+{(e2π
√−1(l−n)t−1) − (e2π

√−1l−1) − (e−2π
√−1n−1)}[ξk, ξi])gdt

=
∑
n

1
4π2ml

∫ 1

0

(e−2π
√−1mt − 1)e2π

√−1nt

× {1{l>n}(e2π
√−1(l−n)t − 1) − (e2π

√−1l − 1)}K(ξj , ξk)dt

=
∑
n

1
4π2ml

∫ 1

0

{
1{l>n}(e2π

√−1(l−m)t − e2π
√−1(n−m)t)

− (e2π
√−1(n−m+l) − e2π

√−1(n−m)t)
}
K(ξj , ξk)dt

=
{

1
4π2ml

(l − 1)δl,m − 1
4π2ml

1{l>m}

− 1
4π2ml

1{m>l} +
1

4π2ml

}
K(ξi, ξj)

=
{

1
4π2ml

(l − 1)δl,m +
1

4π2ml
δl,m

}
K(ξi, ξj)

=
1

4π2m
δl,mK(ξi, ξj).

On the other hand,

1
2π

∫ 1

0

K(Je−m,j , ėl,k)dt

=
−√−1

2π

∫ 1

0

1
−2π

√−1m
(e−2π

√−1mt − 1)e2π
√−1ltK(ξj , ξk)dt

=
1

4π2m
δl,mK(ξi, ξj).

Now we have (5.3). Next we show (5.4)

Q̃(e−m,j , e−l,k)

=
√−1

∑
n,i

∫ 1

0

(
[en(t)ξi, ė−m(t)ξj ],

∫ t

0

2πn[e−n(s)ξi, ė−l(s)ξk ]ds
)
g
dt
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=
√−1

∑
n,i

∫ 1

0

( 1
2π

√−1n
(e2π

√−1nt − 1)e−2π
√−1mt[ξi, ξj ],

{∫ t

0

(2πn)
1

−2π
√−1n

(e−2π
√−1ns − 1)e−2π

√−1ls[ξi, ξk]ds
})

g
dt

= −√−1
∑
n

K(ξj , ξk)
∫ 1

0

1
2πn

(e2π
√−1nt − 1)e−2π

√−1mt

× { −1
2π

√−1(n + l)
(e−2π

√−1(n+l)t − 1) +
1

2π
√−1l

(e−2π
√−1lt − 1)

}
dt

= −√−1
∑
n

K(ξj , ξk)

×
∫ 1

0

{ −1
(2πn)(2π

√−1(n + l)
(e2π

√−1(n−m−n−l)t − e2π
√−1(n−m)t)

+
1

(2πn)(2π
√−1l)

(e2π
√−1(n−m−l)t − e2π

√−1(n−m)t)
}
dt

=
∑
n

K(ξj , ξk)
{ −δn,m

4π2n(n + l)
− δn,m+l

4π2nl
+

δn,m
4π2nl

}

= K(ξj , ξk)
{ −1

4π2m(m + l)
− 1

4π2(m + l)l
+

1
4π2ml

}
= 0.

This completes the proof. �

The Ricci curvature is given by the following theorem.

Theorem 5.1. Set

Ric(h,k) = (T−1h,k)H1 +
1
2π

∫ 1

0

K(Jh, k̇)dt + (
∫ 1

0

[ḣ(u),k(u)]du, b(1))g

+
∫ 1

0

(ρ+[ḣ,k], db(t))g −
∫ 1

0

(ρ−[h, k̇], db(t))g (5.5)

for h ∈ H
(0,1)
0 and k ∈ H

(1,0)
0 , and

Ric(h,k) = 0 (5.6)

for h,k ∈ H
(0,1)
0 . If h ∈ H

(1,0)
0 , we define Ric by complex conjugation. Then

identity (5.1) holds. Here ρ± in (5.5) is defined by

ρ+l =
∑
β

{∫ 1

0

l(t)ėβ̄(s)ds
}
ėβ (5.7)

ρ−l =
∑
β

{∫ 1

0

l(t)ėβ(s)ds
}
ėβ̄ . (5.8)
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Proof. We first note that dη(X,Y ) = ∇η(X,Y ) − ∇η(Y,X). So we set
∇̌η(X,Y ) = ∇η(Y,X). Since d∗ = ∇∗, we have

dd∗η + d∗dη −∇∗∇η = dd∗η + ∇∗(∇η − ∇̌η) −∇∗∇η

= dd∗η −∇∗∇̌η.

Set η� = h, u =
∫ 1

0
(ḣ(s), db(s))g . Note that h ∈ H

(0,1)
0 since η ∈ H

∗(1,0)
1 (we

have assumed h ∈ HC
0 ). As we saw in the previous section, d∗η is given by

d∗η = −div η� = u

and hence
dd∗η = du.

Let (θα,θᾱ) be a dual basis of (eα, eᾱ), i.e., 〈θα, eβ〉 = δαβ , 〈θα, eβ̄〉 = 0,
etc. By noting ∇η(·, eβ̄) = 0, we can expand ∇η as

∇η =
∑
α,β

{∇η(eα, eβ)θα ⊗ θβ + ∇η(eᾱ, eβ)θᾱ ⊗ θβ}.

Reversing the order, we have

∇̌η =
∑
α,β

{−〈η, A(eα, eβ)〉θβ ⊗ θα − 〈η, π+[eᾱ, eβ ]〉θβ ⊗ θᾱ}.

Since (θα)� = T−1eᾱ, we have

∇∗(θβ ⊗ θα) = −(div T−1eβ̄)θα −∇T−1eβ̄
θα.

Therefore

∇∗∇̌η =
∑
α,β

{(div T−1eβ̄)θα + ∇T−1eβ̄
θα}〈η, A(eα, eβ)〉

+
∑
α,β

{(div T−1eβ̄)θᾱ + ∇T−1eβ̄
θᾱ}〈η, π+[eᾱ, eβ ]〉.

Hence, if k ∈ H
(1,0)
0 ,

〈dd∗η −∇∗∇̌η,k〉
= 〈du −∇∗∇̌η,k〉

= (h,k)H0 +
∫ 1

0

([ḣ,k], db(t))g −
∑
α,β

{(div T−1eβ̄)〈θα,k〉〈η, A(eα, eβ)〉

−
∑
α,β

〈∇T−1eβ̄
θα,k〉〈η, A(eα, eβ)〉}

= (T−1(η�),k)H1 +
∫ 1

0

([ḣ,k], db(t))g −
∑
β

(div T−1eβ̄)〈η, A(k, eβ)〉
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+
∑
α,β

〈θα, π+[T−1eβ̄ ,k]〉〈η, A(eα, eβ)〉

= 〈T ∗−1η,k〉 +
∫ 1

0

([ḣ,k], db(t))g

−
∑
β

(div T−1eβ̄)〈η, A(k, eβ)〉 +
∑
β

〈η, A(π+ [T−1eβ̄,k], eβ)〉}.

We first compute the last term.

〈η, A(π+ [T−1eβ̄ ,k], eβ)〉 = (h, A(π+[T−1eβ̄ ,k], eβ))H1

=
√−1(Jh, A(π+ [T−1eβ̄ ,k], eβ))H1

=
√−1S(h, A(π+ [T−1eβ̄ ,k], eβ))

= −√−1
∫ 1

0

(h,
d

dt
A(π+ [T−1eβ̄ ,k], eβ))gdt

= −√−1
∫ 1

0

(h, [π+[T−1eβ̄ ,k], ėβ ])gdt

=
√−1

∫ 1

0

([h, ėβ ], π+[k, T−1eβ̄ ])gdt.

By virtue of Proposition 5.1, we can get

∑
β

〈η, A(π+ [T−1eβ̄ ,k], eβ)〉 =
1
2π

∫ 1

0

K(Jh, k̇)dt.

Now we turn to the stochastic integral.

(div T−1eβ̄)〈η, A(k, eβ)〉 = (div T−1eβ̄)(h,A(k, eβ))H1

=
√−1(div T−1eβ̄)(Jh, A(k, eβ))H1

=
√−1(div T−1eβ̄)S(h, A(k, eβ))

= −√−1(div T−1eβ̄)
∫ 1

0

(h, [k, ėβ ])gdt

= −√−1(div T−1eβ̄)
∫ 1

0

([h,k], ėβ)gdt

= −√−1(div T−1eβ̄)S(eβ , [h,k])

= −√−1(div T−1eβ̄)(Jeβ , [h,k])H1

= (div eβ̄)(T−1eβ, [h,k])H1

= (div eβ̄)(eβ , [h,k])H0

= (div eβ̄)
∫ 1

0

([ḣ,k] + [h, k̇], ėβ)gdt

Further
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∫ 1

0

([ḣ,k], db(t))g −
∑
β

(div T−1eβ̄)〈η, A(k, eβ)〉

=
∫ 1

0

(ρ+[ḣ,k], db(t))g +
∫ 1

0

(
ρ−[ḣ,k], db(t)

)
g

+
∫ 1

0

(
∫ 1

0

[ḣ(u),k(u)]du, db(t))g −
∫ 1

0

(ρ−[ḣ,k] + ρ−[h, k̇], db(t))g

=
∫ 1

0

(ρ+[ḣ,k], db(t))g+(
∫ 1

0

[ḣ(u),k(u)]du, b(1))g−
∫ 1

0

(ρ−[h, k̇], db(t))g.

Next we consider the case k ∈ H
(0,1)
1 .

〈dd∗η −∇∗∇̌η,k〉
= 〈du−∇∗∇̌η,k〉

= 〈T ∗−1η,k〉 +
∫ 1

0

([ḣ,k], db(t))g

−
∑
α,β

{(div T−1eβ̄)〈θᾱ,k〉〈η, π+[eᾱ, eβ ]〉+〈∇T−1eβ̄
θα,k〉η(π+[eᾱ, eβ])}

=
∫ 1

0

([ḣ,k], db(t))g

−
∑
β

(div T−1eβ̄)〈η, [k, eβ ]〉 +
∑
β

〈η, [A(T−1eβ̄ ,k),eβ ]〉.

Further,

〈η, [A(T−1eβ̄,k),eβ]〉 = (h, [A(T−1eβ̄ ,k),eβ ])H1

=
√−1(Jh, [A(T−1eβ̄ ,k),eβ ])H1

=
√−1S(h, [A(T−1eβ̄ ,k),eβ ])

=
√−1

∫ 1

0

(ḣ, [A(T−1eβ̄ ,k),eβ ])gdt

=
√−1

∫ 1

0

([eβ , ḣ], A(T−1eβ̄ ,k))gdt.

The stochastic integral vanishes because, for β = (n, i),

(div T−1eβ̄)〈η, [k, eβ]〉
= (div T−1eβ̄)(h, [k, eβ ])H1

=
√−1(div T−1eβ̄)(Jh, [k, eβ ])H1

=
√−1(div T−1eβ̄)S(h, [k, eβ ])

=
√−1(div T−1eβ̄)

∫ 1

0

(ḣ, [k, eβ ])gdt
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=
√−1(div T−1eβ̄)

∫ 1

0

([ḣ,k], eβ ])gdt

=
√−1(div eβ̄)(2πn)

∫ 1

0

([ḣ,k],
1

2π
√−1n

(e2π
√−1nt − 1)ξj)gdt

= (div eβ̄)
∫ 1

0

([ḣ,k], e2π
√−1ntξj)gdt

= (div eβ̄)
∫ 1

0

([ḣ,k], ėβ)gdt.

Combining this with
∫ 1

0
([ḣ,k], ėβ̄)gdt = 0, we have

∑
β

(div T−1eβ̄)〈η, [k, eβ ]〉 =
∫ 1

0

([ḣ,k], db(t))g.

This completes the proof. �
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Walter de Gruyter, Berlin-New York, 1995.

8. S. Kobayashi and K. Nomizu, “Foundations of differential geometry,” I, II,
Interscience Publishers, New York-London, 1963, 1969.

9. S. Kusuoka and S. Taniguchi, Pseudoconvex domains in almost complex ab-
stract Wiener spaces, J. Funct. Anal., 117 (1993), 62–117.

10. M.-P. Malliavin and P. Malliavin, Integration on loop groups. I. Quasi Invariant
measures, J. Funct. Anal., 93 (1990), 207–237.

11. A. N. Pressley, The energy flow on the loop space of a compact Lie group, J.
London Math. Soc. (2) 26 (1982), 557–566.

12. A. Pressley and G. Segal, “Loop groups ,” Oxford University Press, New York,
1986.

13. I. Shigekawa, Differential calculus on a based loop group, preprint.


