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Abstract

We discuss a generalization of entropy function in terms of Orlicz functional.
Orlicz functional is defined by using Young function but we extend a scope of Young
function adapted to entropy function. We introduce the φ-Sobolev inequality and
discuss the relation between the spectral gap and the φ-Sobolev inequality. Taking
function φ to be {log(1 + x)}γ , we can define the fractional logarihtmic Sobolev
inequality. The connection with the Lata�la-Oleszkiewicz inequality is also discussed.

1. Introduction

In this paper, we try to generalize the notion of entropy. To do this, we use Orlicz spaces.
To define an Orlicz space, we need a Young function but our Young function belongs to
a wider class than usual one. A Young function is defied as follows:

Φ(x) =

∫ x

0

φ(t)dt.

Here φ is a non-negative right-continuous non-decreasing function with φ(0) = 0. In our
definition, we do not assume the positivity of φ. By using this Young function, we can
define an Orlicz functional and we see that the entropy function is a typical example of
Orlicz functional. To be more precise, let (M,m) be a probability space. The entropy
function is defied as follows:

Ent(f) = E[f log f ] − E[f ] logE[f ].
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Here E stands for the integration with respect to m. We will define an Orlicz functional
‖ ‖Φ (for the definition, see Section 2) so that if we take φ(x) = log x, then

‖f‖Φ = Ent(f).

Using this Orlicz functional, we define a φ-Sobolev inequality and discuss its properties.
Under suitable conditions, we can show that the φ-Sobolev inequality is in between the
Poincaré inequality and the logarithmic Sobolev inequality. Such kind of inequality was
discussed by, e.g., F.-Y. Wang [9], D. Chafäı[3], and we give a different formulation. We
also discuss the fractional logarithmic Sobolev inequality. In particular, we discuss these
inequalities in Lp setting. A typical inequality is the following:

E
[
|f |p logpβ

+ (|f |p/‖f‖p
p)

]
≤ K1‖∇f‖p

p +K2‖f‖p
p.

Further we consider the following Beckner type inequality:

E[|f |p] −E[|f |q]p/q

(p− q)δ
≤ L1‖∇f‖p

p + L2‖f‖p
p.

Lata�la-Oleszkiewicz [5] discussed this type of inequality in the case p = 2. We generalize
it to the Lp case.

The organization of the paper is as follows. In Section 2, we discuss the Orlicz functional
for a generalized Young function. We define φ-Sobolev inequality and defective φ-Sobolev
inequality and show that φ-Sobolev inequality is stronger than the Poincaré inequality.
In Section 3, we introduce the fractional logarithmic Sobolev inequality and discuss it in
Lp setting. Last, in Section 4, we discuss the relation between the fractional logarithmic
Sobolev inequality and the Beckner type inequality,

2. Generalized entropy and Poincaré inequality

Young functions play a fundamental role in the Orlicz space theory. In this section,
we treat a little wider class of functions. Usually, we are given a function φ satisfying
φ(0) = 0, φ(t) > 0 if t > 0 and φ(∞) = ∞. Φ is defined to be an integral of φ. Here, we
generalize φ so that

1. φ : [0,∞) → R ∪ {−∞} is continuous and strictly increasing.

2. φ(∞) = ∞.

3. φ is integrable on any finite interval of [0,∞).

4. φ is of class C1.

In particular, φ can be negative and unbounded from below. Therefore it may happen that
φ(0) = limt→0 φ(t) = −∞. Typical example is φ(t) = log t. We will define a functional,
which is an entropy when φ(t) = log t. Φ is defined as

Φ(x) =

∫ x

0

φ(t) dt

and satisfies the following:
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1. Φ is convex and Φ(0) = 0.

2.
Φ(x)

x
is strictly increasing, lim

x→0

Φ(x)

x
= φ(0), and lim

x→∞
Φ(x)

x
= φ(∞).

The inverse function ψ is defined by

ψ(u) = inf{t;φ(t) > u}.
Note that ψ(u) is defined for all u ∈ R and ψ(u) = 0 for u ≤ φ(0). The complementary
function Ψ is defined by

Ψ(y) =

∫ y

−∞
ψ(u) du.

Then the following holds:

xy ≤ Φ(x) + Ψ(y),(2.1)

xφ(x) = Φ(x) + Ψ(φ(x)).(2.2)

(2.1) is called the Young inequality. We also have

Ψ(y) = sup
x≥0

{xy − Φ(x)}.(2.3)

Suppose we are given a measure space (M,m). We assume that a reference measure m
is a probability measure. We denote the integration with respect to m by E[ ]. From the
Young inequality, we have the following proposition.

Proposition 2.1. Let U , V ≥ 0 be functions on the measure space and let E denote a
integration with respect to a finite measure. Suppose −∞ < E[Uφ(U)] <∞. If

E[Uφ(U)] ≤ E[V φ(U)] + C,(2.4)

then we have

E[Φ(U)] ≤ E[Φ(V )] + C.(2.5)

Here we use the convention xφ(x) = 0 for x = 0.

Proof. (2.4) means that P [V > 0, U = 0] = 0 when φ(0) = −∞. By the Young inequality,
we have

E[V φ(U)] ≤ E[Φ(V )] + E[Ψ(φ(U))],

E[Uφ(U)] = E[Φ(U)] + E[Ψ(φ(U))].

Since E[Uφ(U)] <∞, it follows that E[Ψ(φ(U))] <∞ and

E[Φ(U)] = E[Uφ(U)] − E[Ψ(φ(U))]

≤ E[V φ(U)] + C −E[Ψ(φ(U))]

≤ E[Φ(V )] + C,

which is the desired inequality.
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We introduce some functionals in connection to Φ. Usually, these functions become
norms but they do not in our case because φ is not positive.

First define NΦ by

NΦ(f) = inf{λ > 0; E[Φ(|f |/λ)] ≤ 1}.(2.6)

We denote by LΦ the set of all functions with NΦ(f) <∞ and call it an Orlicz space. For
f ∈ LΦ, F (t) = E[Φ(t|f |)] is a convex function. It is easy to see that F (T ) = 1 if and

only if T =
1

NΦ(f)
. We denote the minimum of Φ by −m. NΦ satisfies the following.

Proposition 2.2. We have

(1) NΦ(f) ≥ 0.

(2) NΦ(f) = 0 if and only if f = 0.

(3) NΦ(cf) = |c|NΦ(f).

(4) If f1, f2 ≥ 0, then NΦ(f1 + f2) ≤ NΦ(f1) +NΦ(f2).

(5) For general f1, f2, NΦ(f1 + f2) ≤ (1 +m)(NΦ(f1) +NΦ(f2)).

Proof. (1), (2), (3) are easy.
To show (4), set ai = NΦ(fi), b = a1 + a2. Then

E

[
Φ

(
f1 + f2

b

)]
= E

[
Φ

(
a1

b

f1

a1
+
a2

b

f2

a2

)]

≤ E

[
a1

b
Φ

(
f1

a1

)
+
a2

b
Φ

(
f2

a2

)]

≤ a1

b
+
a2

b
= 1.

Now NΦ(f1 + f2) ≤ b follows.
To show (5), set Φ+ = max{Φ, 0}. Φ+ is a non-negative, increasing and convex function

satisfying Φ+(0) = 0. In particular, Φ+(θx) ≤ θΦ+(x), 0 < θ < 1. We also note that
Φ ≤ Φ+ ≤ Φ +m. Now, setting ai = NΦ(fi), b = a1 + a2, we have

E

[
Φ

( |f1 + f2|
(1 +m)b

)]
≤ E

[
Φ+

( |f1 + f2|
(1 +m)b

)]

≤ E

[
Φ+

( |f1| + |f2|
(1 +m)b

)]

≤ E

[
Φ+

(
a1

b

|f1|
(1 +m)a1

+ (
a2

b

|f2|
(1 +m)a2

)]

≤ a1

b
E

[
Φ+

( |f1|
(1 +m)a1

)]
+
a2

b
E

[
Φ+

( |f2|
(1 +m)a2

)]

≤ a1

b

1

1 +m
E

[
Φ+

( |f1|
a1

)]
+
a2

b

1

1 +m
E

[
Φ+

( |f2|
a2

)]
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≤ a1

b

1

1 +m
E

[
Φ

( |f1|
a1

)
+m

]
+
a2

b

1

1 +m
E

[
Φ

( |f2|
a2

)
+m

]
= 1,

which yields (5).

The property (5) shows that NΦ is a quasi-norm and so LΦ is a topological linear space.
This topology is stronger than L1 as will be shown below.

Proposition 2.3. The following inequality holds:

‖f‖1 ≤ (1 + Ψ(1))NΦ(f).(2.7)

Proof. If NΦ(f) = 1, then the Young inequality xy ≤ Φ(x) + Ψ(y) yields

E[|f |y] ≤ E[Φ(|f |) + Ψ(y)] = 1 + Ψ(y).

Setting y = 1,

‖f‖1 ≤ 1 + Ψ(1).

Now (2.7) follows easily.

We introduce another functional ‖ ‖Φ. Define

‖f‖Φ = sup{E[|f |g]; E[Ψ(g)] ≤ 1}.(2.8)

We call ‖ ‖Φ the Orlicz functional. If Φ is a nice Young function, then ‖ ‖Φ becomes a
norm. But it does not in our case as we remarked.

Proposition 2.4. Let f ≥ 0 be a non-trivial function. Choose λ > 0 so that

E[Ψ(φ(λf ))] = 1.(2.9)

Then we have

‖f‖Φ = E[fφ(λf)] =
1

λ
{E[Φ(λf)] + 1}.(2.10)

For general f , we have

‖f‖Φ = inf
κ>0

1

κ
{E[Φ(κ|f |)] + 1}.(2.11)

Proof. First we assume E[Ψ(φ(f))] = 1, i.e., in the case of λ = 1. If g satisfies E[Ψ(g)] ≤
1, then, by the Young inequality, we have

E[fg] ≤ E[Φ(f)] + E[Ψ(g)] ≤ E[Φ(f)] + 1.

If we take g = φ(f), then E[Ψ(g)] ≤ 1 and

E[fg] = E[fφ(f)] = E[Φ(f)] + E[Ψ(φ(f))] = E[Φ(f)] + 1.
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This shows that ‖f‖Φ = E[fφ(f)] = E[Φ(f)] + 1.
Next, for non-negative f , we take λ satisfying (2.9). The above result implies

‖λf‖Φ = E[λfφ(λf)] = E[Φ(λf)] + 1

and (2.10) follows because of ‖λf‖Φ = λ‖f‖Φ.
Last we see (2.11). If E[Ψ(g)] ≤ 1, then, for κ > 0,

E[|f |g] =
1

κ
E[κ|f |g]

≤ 1

κ
{E[Φ(κ|f |)] + E[Ψ(g)]}

≤ 1

κ
{E[Φ(κ|f |)] + 1}.

Hence

E[|f |g] ≤ inf
κ>0

1

κ
{E[Φ(κ|f |)] + 1}.

Since g is arbitrary, we have

‖f‖Φ ≤ inf
κ>0

1

κ
{E[Φ(κ|f |)] + 1}.

We have already seen that the equality holds if κ = λ. Now the proof is complete.

We see some properties of the Orlicz functional ‖f‖Φ.

Proposition 2.5. The Orlicz functional ‖ ‖Φ satisfies the following

(1) For f �≡ 0, Ψ−1(1) ≤ ‖f‖Φ

‖f‖1

. The equality holds if and only if |f | is constant.

(2) ‖cf‖Φ = |c|‖f‖Φ.

(3) For f1, f2 ≥ 0, ‖f1 + f2‖Φ ≤ ‖f1‖Φ + ‖f2‖Φ.

Proof. Take g so that g ≡ Ψ−1(1). Then E[Ψ(g)] = 1 and so

E[|f |Ψ−1(1)] ≤ ‖f‖Φ.

This means that

Ψ−1(1) ≤ ‖f‖Φ

‖f‖1
.

It is easy to see that the equality holds when |f | is constant.
We will show the converse: if the equality holds, then |f | is constant. We take λ so

that E[Ψ(φ(λ|f |)] = 1. From Proposition 2.4, we have

‖f‖Φ =
1

λ
{E[Φ(λ|f |)] + 1}.
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Therefore

‖λf‖Φ = E[Φ(λ|f |)] + 1

≥ Φ(E[λ|f |]) + 1 (∵ Φ is convex)

= Φ(E[λ|f |]) + Ψ(Ψ−1(1))

≥ E[λ|f |]Ψ−1(1) (∵ the Young inequality)

= ‖λf‖Φ.

Hence, all inequalities above should be equalities. In particular, E[Φ(λf)] = Φ(E[λf ])
and so f is constant since Φ is strictly convex.

(3) is easy.

Let us see the relation between NΦ and ‖ ‖Φ.

Proposition 2.6. The following inequality holds:

‖f‖Φ ≤ 2NΦ(f).(2.12)

Proof. For any λ, we have

‖f‖Φ ≤ 1

λ
{E[Φ(λf) + 1}.

Taking λ = NΦ(f)−1,

‖f‖Φ ≤ NΦ(f)

{
E

[
Φ

(
f

NΦ(f)

)]
+ 1

}
≤ 2NΦ(f),

which is the desired result.

When we are given two Young functions Φ1, Φ2, we can have the following comparisons.
If there exists a constant a so that Φ1(x) ≤ Φ2(ax), x ≥ 0, then

(1) NΦ1(f) ≤ aNΦ2(f).

(2) ‖f‖Φ1 ≤ a‖f‖Φ2.

The proof is standard (e.g., see [8, II.2.2]) and will be omitted.
To get the comparison, we only need the inequality near ∞, i.e., Φ1(x) ≤ Φ2(ax), x ≥ x0

for some constant x0. In this case, we can find a constant C so that NΦ1(f) ≤ CNΦ2(f).
From now on, we add the following assumption to φ:

sup
x>0

xφ′(x) = l <∞.(2.13)

This means that the growth order of φ is less than that of log.

Proposition 2.7. Under the assumption (2.13), we have

NΦ(f) ≤ max{‖f‖Φ, l‖f‖1}.(2.14)
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Proof. Using xφ′(x) ≤ l,

d

dx
Ψ ◦ φ(x) = Ψ′(φ(x))φ′(x) = φ−1 ◦ φ(x)φ′(x) = xφ′(x) ≤ l.

Since Ψ ◦ φ(0) = 0, we haveΨ ◦ φ(x) ≤ lx. Therefore

E

[
Ψ

(
φ

(
f

l‖f‖1

))]
≤ E

[
l

f

l‖f‖1

]
= 1.

Now we have

‖f‖Φ = sup{E [fg] ; E [Ψ(g)] ≤ 1}
≥ E

[
fφ

(
f

max{‖f‖Φ, l‖f‖1}
)]

= max{‖f‖Φ, l‖f‖1}E
[

f

max{‖f‖Φ, l‖f‖1}φ
(

f

max{‖f‖Φ, l‖f‖1}
)]

= max{‖f‖Φ, l‖f‖1}E
[
Φ

(
f

max{‖f‖Φ, l‖f‖1}
)

+ Ψ

(
φ

(
f

max{‖f‖Φ, l‖f‖1}
))]

.

This brings

E

[
Φ

(
f

max{‖f‖Φ, l‖f‖1}
)]

≤ ‖f‖Φ

max{‖f‖Φ, l‖f‖1} −E

[
Ψ

(
φ

(
f

max{‖f‖Φ, l‖f‖1}
))]

≤ 1.

This shows (2.14).

Under the assumption (2.14), let us further investigate ‖ ‖Φ. Our aim is to generalize
the inequality in Deuschel-Stroock [4, Chapter VI (6.1.26)]. Define a constant α as

α = φ−1 ◦ Ψ−1(1).(2.15)

Proposition 2.8. Let f be a bounded function and set f̂ = f −E [f ]. Then we have

‖f 2‖Φ ≤ ‖f̂ 2‖Φ + 2l‖f̂‖2
2 + Ψ−1(1)E [f ]2 ,(2.16)

‖f̂ 2‖Φ ≤ ‖f 2‖Φ + 2l‖f‖2
2 − Ψ−1(1)E [f ]2(2.17)

and further

lim
t↓0

‖(1 + tf)2‖Φ − Ψ−1(1) − 2Ψ−1(1)E [f ] t

t2
= 2αφ′(α)‖f̂‖2

2 + Ψ−1(1)E
[
f 2

]
.(2.18)

Proof. We first show

‖(1 + tf)2‖Φ ≤ Ψ−1(1) + Ψ−1(1)E [f ] t+ t2‖f 2‖Φ + 2lt2E
[
f 2

]
.(2.19)

To do this, take any δ > 0 and set

gt = φ(λt{(1 + tf)2 + δ}).
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Here λt is taken so that E [Ψ(gt)] = 1. By Proposition 2.4, we have ‖(1 + tf)2 + δ‖Φ =
E [{(1 + tf)2 + δ}gt]. Since E [Ψ(gt)] = 1, by differentiating in t, we have

0 = E [Ψ′(gt)g
′
t] = E

[
ψ ◦ φ(λt{(1 + tf)2 + δ})g′t

]
= λtE

[{(1 + tf)2 + δ}g′t
]
,

which yields

E
[{(1 + tf)2 + δ}g′t

]
= 0.(2.20)

On the other hand, g′t is computed as

g′t = φ′λ′t{(1 + tf)2 + δ} + φ′2λt(1 + tf)f.

Here we have omitted the variable λt{(1 + tf)2 + δ} of φ′. Substituting this into (2.20),

0 = E
[{(1 + tf)2 + δ}φ′{λ′t{(1 + tf)2 + δ} + 2λt(1 + tf)f}]

= λ′tE
[{(1 + tf)2 + δ}2φ′] + 2λtE

[
φ′{(1 + tf)2 + δ}(1 + tf)f

]
and therefore

λ′t = −2λtE [φ′{(1 + tf)2 + δ}(1 + tf)f ]

E [{(1 + tf)2 + δ}2φ′]
.(2.21)

Now we set

Kt = ‖(1 + tf)2 + δ‖Φ − t2‖f 2‖Φ = E
[{(1 + tf)2 + δ}gt

] − t2‖f 2‖Φ.

Differentiating this, we have

K ′
t = E

[{(1 + tf)2 + δ}g′t
]

+ E [2(1 + tf)fgt] − 2t‖f 2‖Φ

= E [2(1 + tf)fgt] − 2t‖f 2‖Φ. (∵ (2.20))

Further

K ′′
t = 2E

[
f 2gt

]
+ E [2(1 + tf)fg′t] − 2‖f 2‖Φ

≤ E [2(1 + tf)fg′t]

= E
[
2(1 + tf)f

{
φ′λ′t{(1 + tf)2 + δ} + 2φ′λt(1 + tf)f

}]
= 2λ′tE

[
φ′{(1 + tf)2 + δ}(1 + tf)f

]
+ 4E

[
φ′λt(1 + tf)2f 2

]
= −4λtE [φ′{(1 + tf)2 + δ}(1 + tf)f ]

2

E [{(1 + tf)2 + δ}φ′]
+ 4E

[
φ′λt{(1 + tf)2 + δ}f 2

] − 4E
[
φ′λtδf

2
]

(∵ (2.21))

≤ 4E
[
φ′λt{(1 + tf)2 + δ}f 2

]
.

The variable of φ′ above is omitted. Writing it explicitly, we have

φ′λt{(1 + tf)2 + δ}f 2 = φ′(λt{(1 + tf)2 + δ})λt{(1 + tf)2 + δ}f 2 ≤ lf 2.
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We now obtain

K ′′
t ≤ 4lE

[
f 2

]
.

g0 satisfies Ψ(g0) = 1 and so g0 = Ψ−1(1). By noting that K0 = E[(1 + δ)g0] = (1 +
δ)Ψ−1(1), K ′

0 = E[2fg0] = 2Ψ−1(1)E [f ], we have

Kt ≤ (1 + δ)Ψ−1(1) + 2Ψ−1(1)E [f ] t+ 2lt2E
[
f 2

]
.

Combining all of them,

‖(1 + tf)2 + δ‖Φ ≤ (1 + δ)Ψ−1(1) + 2Ψ−1(1)E [f ] t+ t2‖f 2‖Φ + 2lt2E
[
f 2

]
.

Letting δ ↓ 0, we get (2.19).
Next, we show (2.16), (2.17). If E [f ] = 0, then (2.16), (2.17) are trivial since f = f̂ .
If E [f ] �= 0, then we take f̂/E [f ] instead of f . Then

∥∥∥∥
(

f

E [f ]

)2∥∥∥∥
Φ

=

∥∥∥∥
(

1 +
f̂

E [f ]

)2∥∥∥∥
Φ

≤ Ψ−1(1) +

∥∥∥∥
(

f̂

E [f ]

)2∥∥∥∥
Φ

+ 2l

∥∥∥∥ f̂

E [f ]

∥∥∥∥
2

2

and (2.16) follows. If we take −f/E [f ] instead of f , then

∥∥∥∥
(

f̂

E [f ]

)2∥∥∥∥
Φ

=

∥∥∥∥
(

1 − f

E [f ]

)2∥∥∥∥
Φ

≤ Ψ−1(1) − 2Ψ−1(1) +

∥∥∥∥
(

f

E [f ]

)2∥∥∥∥
Φ

+ 2l

∥∥∥∥ f

E [f ]

∥∥∥∥
2

2

.

which shows (2.17).
Lastly we show (2.18). Since t is small, we may assume that 1 + tf is positive. Hence

we can put δ = 0 in the above argument. We set gt = φ(λt(1 + tf)2) and choose λt so
that E [Ψ(gt)] = 1. Set

Kt = ‖(1 + tf)2‖Φ = E
[
(1 + tf)2gt

]
.

By differentiating in t,

K ′
t = E [2(1 + tf)fgt] + E

[
(1 + tf)2g′t

]
= E [2(1 + tf)fgt]

and

K ′′
t = E

[
2f 2gt

]
+ E [2(1 + tf)fg′t]

Since g0 = Ψ−1(1), K0 = Ψ−1(1) and K ′
0 = 2Ψ−1(1)E [f ]. Let us compute K ′′

0 .

g′t = φ′λ′t(1 + tf)2 + φ′2λt(1 + tf)f

and

λ′t = −2λtE [φ′(1 + tf)3f ]

E [(1 + tf)4φ′]
.
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Noting that λ0 = φ−1 ◦ Ψ−1(1) = α, we have

λ′0 = −2λ0E [φ′(λ0)f ]

E [φ′(λ0)]
= −2αE [f ] ,

g′0 = φ′(λ0)λ
′
0 + φ′(λo)2λ0f = −2αφ′(α)E [f ] + 2αφ′(α)f = 2αφ′(α)f̂ .

Thus

K ′′
0 = E

[
2f 2g0

]
+ E [2fg′0] = 2Ψ−1(1)E

[
f 2

]
+ 2E

[
f2αφ′(α)f̂

]
= 2Ψ−1(1)E

[
f 2

]
+ 4αφ′(α)E

[
f̂ 2

]
.

Now we have

lim
t↓0

Kt − Ψ−1(1) − 2Ψ−1(1)E [f ] t

t2
=
K ′′

0

2
= Ψ−1(1)E

[
f 2

]
+ 2αφ′(α)E

[
f̂ 2

]
,

which shows (2.18).

The entropy function is defined by

Ent(f) = E[f log f ] − E[f ] logE[f ].(2.22)

Here f is a non-negative function. Usually f is assumed to satisfy E[f ] = 1 but we do
not assume it. If we take φ(t) = log t, then

Φ(x) =

∫ x

0

log t dt = x log x− x,

Ψ(y) =

∫ y

−∞
eudu = ey

Ent(f) = ‖f‖Φ.

In fact, by Proposition 2.4

‖f‖Φ = inf
λ>0

E [f log f − f log λ− f + λ] .

The right hand side is nothing but the entropy. So our Orlicz functional is regarded as a
generalization of the entropy.

We call the following inequality a φ-Sobolev inequality :

‖f 2‖Φ ≤ 2λE(f, f) + Ψ−1(1)‖f‖2
2.(2.23)

Here E is a Dirichlet form on a probability space (M,m). λ is a non-negative constant
and (2.23) holds for all f ∈ Dom(E). We assume that 1 ∈ Dom(E) and E(1, 1) = 0. So
the associated generator has the maximal eigenvalue 0 and its eigenfunction 1. The term

11



Ψ−1(1)‖f‖2
2 is indispensable since the equality holds when f = 1. The following little

weakened inequality is called a defective φ-Sobolev inequality :

‖f 2‖Φ ≤ 2λE(f, f) + Ψ−1(1)‖f‖2
2 + 2μ‖f‖2

2.(2.24)

When φ(t) = log t, ‖ ‖Φ is the entropy and (2.23) is a logarithmic Sobolev inequality. So
our terminology is consistent with this.

On the other hand the following inequality is called the Poincaré inequality:

‖f̂‖2
2 ≤ νE(f, f).(2.25)

Here, f̂ = f − E [f ]. Now we have the following theorem:

Theorem 2.9. We have the following:

(1) If the φ-Sobolev inequality (2.23) holds, then, setting ν = λ/αφ′(α), the Poincaré
inequality (2.25) holds.

(2) If we assume the defective φ-Sobolev inequality (2.24) and, in addition, the Poincaré
inequality, the φ-Sobolev inequality (2.23) holds for λ+ (μ+ l)ν in place of λ.

Proof. To show (1), from (2.23), we note

‖(1 + tf)2‖Φ ≤ 2λt2E(f, f) + Ψ−1(1)‖1 + tf‖2
2

= 2λt2E(f, f) + Ψ−1(1)(1 + 2tE [f ] + t2E
[
f 2

]
).

But, from Proposition 2.8 and (2.18), we have

lim
t↓0

‖(1 + tf)2‖Φ − Ψ−1(1)(1 + 2tE [f ])

t2
= 2αφ′(α)‖f̂‖2

2 + Ψ−1(1)E
[
f 2

]
and hence

2αφ′(α)‖f̂‖2
2 ≤ 2λE(f, f).

This is what we wanted.
As for (2), by Proposition 2.8 and (2.16), we have

‖f 2‖Φ ≤ Ψ−1(1)E [f ]2 + ‖f̂ 2‖Φ + 2l‖f̂‖2
2

≤ Ψ−1(1)E [f ]2 + 2λE(f̂ , f̂) + Ψ−1(1)E
[
f̂ 2

]
+ 2μ‖f̂‖2

2 + 2l‖f̂‖2
2

≤ 2λE(f̂ , f̂) + 2(μ + l)νE(f, f) + Ψ−1(1)E
[
f 2

]
= 2(λ+ (μ+ l)ν)E(f, f) + Ψ−1(1)E

[
f 2

]
,

which is the desired result.
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3. Fractional Logarithmic Sobolev inequality

When we take φ = logγ(1 + x), the inequality

‖f 2‖Φ ≤ 2λE(f, f) + Ψ−1(1)‖f‖2
2(3.1)

is called a logarithmic Sobolev inequality of the fractional order γ. Here γ > 0 and when
γ = 1, it is a usual logarithmic Sobolev inequality and it is natural to take φ(x) = log x in
this case. Anyway, we call these inequalities fractional logarithmic Sobolev inequalities in
general. We are interested in inequalities which is stronger than the Poincaré inequality
and is weaker than the logarithmic Sobolev inequality. So, in the sequel, we always assume

0 < γ ≤ 1.(3.2)

We mention here some recent related results. Lata�la-Oleszkiewicz [5] proposed the
intermediate inequality in between the Poincaré inequality and the logarithmic Sobolev
inequality. F.-Y. Wang [9] proved the Lata�la-Oleszkiewicz inequality is equivalent to the
strong Poincaré inequality and, at the same time, he proved that it is equivalent to the
F -Sobolev inequality. Therefore, inequalities we have discussed are equivalent to the F -
Sobolev inequality and we formulated them in the framework of Orlicz space. We have
seen that the φ-Sobolev inequality is stronger than the Poincaré inequality. On the other
hand, the defective logarithmic Sobolev inequality is not necessarily stronger than the
Poincaré inequality. So, to be more precise, the F -Sobolev inequality corresponds to the
defective logarithmic Sobolev inequality.

So far, our discussions are in L2 setting. We are now turning to Lp setting. To do so,
we change the formulation. We assume that the Dirichlet form is of the gradient form:

E(f, g) =

∫
M

(∇f,∇g)dm.(3.3)

We consider the following inequality in Lp setting:

‖f‖Φ ≤ K(‖∇f‖p + ‖f‖p).(3.4)

We are interested in this kind of Lp inequality. To investigate these inequalities, we
prepare a general theory. So we consider a general norm ‖ ‖ for a while. We also need a
class of functions Φ. For α > 0, we define Φ ∈ U(α) if and only if

xΦ′(x) ≤ αΦ(x), x ≥ 0.

Proposition 3.1. Assume Φ ∈ U(α). If the following inequality

‖f‖Φ ≤ K‖f‖

holds, then

E [Φ(f)] ≤ Kα‖f‖α + 1.(3.5)
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Proof. Note

NΦ(f) ≤ ‖f‖Φ ≤ K‖f‖.
Using Φ ∈ U(α), if K‖f‖ ≥ 1, then we have

E [Φ(f)] = E

[
Φ(K‖f‖ f

K‖f‖)

]

≤ E

[
Kα‖f‖αΦ(

f

K‖f‖)

]
≤ Kα‖f‖α.

If K‖f‖ ≤ 1, then

E [Φ(f)] ≤ E

[
Φ(

f

K‖f‖)

]
≤ 1.

In all cases, (3.5) holds.

We can also show the converse.

Proposition 3.2. If

E [Φ(f)] ≤ K‖f‖α + C

for α ≥ 1, then

‖f‖Φ ≤ αK1/α

(
C + 1

α− 1

)1−1/α

‖f‖.(3.6)

In case of α = 1, (3.6) should be read as

‖f‖Φ ≤ K‖f‖.
Proof. By Proposition 2.4, we have

‖f‖Φ ≤ 1

λ
{E [Φ(λf)] + 1}.

From the assumption,

1

λ
{E [Φ(λf)] + 1} ≤ 1

λ
{Kλα‖f‖α + C + 1}

≤ λα−1K‖f‖α +
1

λ
(C + 1)

=: g(λ).

It is enough to minimize the g(λ). By an easy computation, g(λ) takes its minimum at
λ = ‖f‖−1( C+1

K(α−1)
)1/α and the minimum is

g

(
‖f‖−1

(
C + 1

K(α− 1)

)1/α)
= ‖f‖1−α

(
C + 1

K(α− 1)

)(α−1)/α

K‖f‖α
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+ ‖f‖
(
K(α− 1)

C + 1

)1/α

(C + 1)

= ‖f‖
(
C + 1

α− 1

)1−1/α

(K−1+1/α ·K +K1/αα)

= αK1/α

(
C + 1

α − 1

)1−1/α

‖f‖,

which is (3.6).
When α = 1, we have

1

λ
{E [Φ(λf)] + 1} ≤ 1

λ
{Kλ‖f‖ + C + 1} ≤ K‖f‖ +

1

λ
(C + 1).

Now letting λ→ ∞,

‖f‖Φ ≤ K‖f‖.

This is the desired result.

We now return to the inequality

‖f‖Φ ≤ K(‖∇f‖p + ‖f‖p).

We assume that φ is of the following form:

φ(x) = φp,β(x) = xp−1 logpβ(e + x).

Here p > 1 and β ∈ R. We denote its integration by Φ = Φp,β :

Φp,β(x) =

∫ x

0

φp,β(y)dy.

It is not difficult to see that Φ ∈ U(α) for sufficiently large α. From now on, to avoid the
change of constant, we use the following convention: we denote A � B if there exists a
constant c so that A ≤ cB.

Proposition 3.3. Assume β ≥ 0. Then the inequality

‖f‖Φp,β
≤ K(‖∇f‖p + ‖f‖p)(3.7)

is equivalent to

E
[
|f |p logpβ

+ (|f |p/‖f‖p
p)

]
≤ K1‖∇f‖p

p +K2‖f‖p
p.(3.8)

Proof. Assume (3.7). From Proposition 3.1, there exists a constant α such that

E [Φp,β(f)] � (‖∇f‖p + ‖f‖p)
α + 1.
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Using xp logpβ
+ x ≤ KΦp,β(x), we have

E
[
|f |p logpβ

+ |f |p
]

� (‖∇f‖p + ‖f‖p)
α + 1.

We show that the left hand side dominates E
[
|f |p logpβ

+ (|f |p/‖f‖p
p)

]
. If ‖f‖p ≥ 1, then

logpβ
+ (|f |p/‖f‖p

p) ≤ logpβ
+ |f |p and the result is clear. In the case of ‖f‖p < 1, we have

E
[
|f |p logpβ

+ (|f |p/‖f‖p
p)

]
≤ E

[
|f |p

{
log+ |f |p + log+

1

‖f‖p
p

}pβ
]

≤ 2pβ−1

{
E

[
|f |p logpβ

+ |f |p
]

+ E

[
|f |p logpβ

+

1

‖f‖p
p

]}

≤ 2pβ−1

{
E

[
|f |p logpβ

+ |f |p
]

+ ‖f‖p
p logpβ

+

1

‖f‖p
p

}
.

Since f(x) = x logpβ 1
x

is bounded on (0, 1], we have

E
[
|f |p logpβ

+ (|f |p/‖f‖p
p)

]
� E

[
|f |p logpβ

+ |f |p
]

+ 1

which leads to

E
[
|f |p logpβ

+ (|f |p/‖f‖p
p)

]
� (‖∇f‖p + ‖f‖p)

α + 1.

Substitute λf in place of f ,

E
[
|f |p logpβ

+ (|f |p/‖f‖p
p)

]
� λα−p(‖∇f‖p + ‖f‖p)

α + λ−p.

Now we take λ = 1
‖∇f‖p+‖f‖p

. Then

E
[
|f |p logpβ

+ (|f |p/‖f‖p
p)

]
� (‖∇f‖p + ‖f‖p)

p−α(‖∇f‖p + ‖f‖p)
α + (‖∇f‖p + ‖f‖p)

p

� (‖∇f‖p + ‖f‖p)
p

� ‖∇f‖p
p + ‖f‖p

p.

Next let us show the reversed inequality. So we assume (3.8). Then

E
[
|f |p logpβ

+ |f |p
]

= E
[
|f |p logpβ

+ (|f |p/‖f‖p
p) · ‖f‖p

p

]
� E

[
|f |p(logpβ

+ |f |p/‖f‖p
p + logpβ

+ ‖f‖p
p)

]
� ‖∇f‖p

p + ‖f‖p
p + ‖f‖p

p logpβ
+ ‖f‖p

p.

Using Φp,β(x) � xp logpβ
+ x+ 1, we have

E [Φp,β(f)] � ‖∇f‖p
p + ‖f‖p

p + ‖f‖p
p logpβ

+ ‖f‖p
p + 1

� (‖∇f‖p + ‖f‖p)
q + 1.

Here q is any number satisfying q > p. The rest is easy by Proposition 3.2.
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Now we assume the fractional logarithmic Sobolev inequality of the following form:

E
[|f |2 logγ

+(|f |2/‖f‖2
2)

] ≤ C1‖∇f‖2
2 + C2‖f‖2

2.(3.9)

This means that we only assume the defective inequality. From now on, until the end of
this section, we always assume (3.9) and we will deduce Lp inequalities of the type (3.9).

We introduce a new Young function as follows. Setting

θ(x) = {x2 logγ(e + x2)}(p−2)/4 logpβ/4(k + x2 logγ(e + x2)),(3.10)

we define

Θ(x) =

∫ x

0

θ(y)dy.(3.11)

Then we have

Proposition 3.4. There exist k ≥ 1 and K > 0 so that

xp logpγ/2(e + x2) logpβ/2(k + x2 logγ(e + x2)) ≤ KΘ(x)2 logγ(e+ Θ(x)2).(3.12)

Proof. We divide into two cases.
(i) In the case of β ≥ 0, k = 1.

We investigate the asymptotic behavior as x→ 0.

LHS ∼ xp · x(pβ/2)2 = xp(1+β).

Here A ∼ B means that lim A
B

= 1. Further

θ(x) ∼ x(p−2)/2+(pβ)/2 = xp(β+1)/2−1

and hence

Θ(x) ∼ 2

p(β + 1)
xp(β+1)/2,

Θ(x)2 ∼ 4

p2(β + 1)2
xp(β+1).

We can see that they have the same asymptotics up to constant.
Next, when x→ ∞,

LHS ∼ xp2pγ/2 logpγ/2 x2pβ/2 logpβ/2 x = 2p(β+γ)/2xp logp(β+γ)/2 x.

On the other hand

θ(x) ∼ x(p−2)/22(p−2)γ/4(log(p−2)γ/4 x)2pβ/4 logpβ/4 x

= 2(pβ+pγ−2γ)/4x(p−2)/2 log(pβ+pγ−2γ)/4 x,

Θ(x) ∼ (2/p)2(pγ+pγ−2γ)/4xp/2 log(pβ+pγ−2γ)/4 x

= p−12(pβ+pγ−2γ+4)/4xp/2 log(pβ+pγ−2γ)/4 x,

17



Θ(x)2 logγ(e+ Θ(x)2) ∼ p−22(pβ+pγ−2γ+4)/2xp(log(pβ+pγ−2γ)/2 x)pγ logγ x

= p−2+γ2(pβ+pγ−2γ+4)/2xp log(pβ+pγ)/2 x.

Again, they have the same asymptotics.
(ii) In the case of β < 0.

This time, k is taken to be sufficiently large. The behavior near x = ∞ can be checked
in a similar manner as in the case β ≥ 0. When x→ 0, it is clear that LHS ∼ logpβ/2 kxp.
Further

θ(x) ∼ (logpβ/4 k)x(p−2)/2

Θ(x) ∼ 2 logpβ/4 k

p
xp/2

Θ(x)2 logγ(e+ Θ(x)2) ∼ 4 logpβ/2 k

p2
xp

and we can see that they have the same asymptotics.

Using this proposition, we have the following

Theorem 3.5. For p > 2, β ∈ R, we have

E[Φp,(β+γ)/2(|f |)] � E[e + Φp,(β+γ−(2γ/p))/2(|f |)]{1 + logγ(e + E[Φp,(β+γ−(2γ/p))/2(|f |)])}
(3.13)

+ E[Φp,β/2(|∇f |)].

Proof. First we set g =
√
e + Θ(|f |)2. Then, since ∇g = 2Θ(|f |)Θ′(|f |)∇|f |

2
√

Θ(|f |)2+e
, we have |∇g| ≤

θ(|f |)|∇f |. Combining this with the fractional logarithmic Sobolev inequality

E[g2 logγ
+ g

2/‖g‖2
2] ≤ K1E[|∇g|2] +K2E[g2],

we have

E[g2 logγ
+ g

2] � E[g2 logγ
+ ‖g‖2

2] + E[|∇g|2] + E[g2]

and hence

E[{e+Θ(|f |)2} logγ(e + Θ(|f |)2)]

� E[e + Θ(|f |)2] logγ E[e + Θ(|f |)2] + E[|∇f |2θ(|f |)2] + E[e+ Θ(|f |)2].

Thus we have

E[Θ(|f |)2 logγ(e+ Θ(|f |)2)]

� E[e+ Θ(|f |)2](1 + logγ E[e + Θ(|f |)2]) + 2λE[|∇f |2θ(|f |)2].

We set φ(x) = x(p/2)−1 logpβ/2(k + x) and U = |f |2 logγ(e + |f |2). Here k is taken to be
large enough. Note that θ has been defined to be θ(|f |)2 = φ(U).

Uφ(U) = |f |2 logγ(e+ |f |2){|f |2 logγ(e+ |f |2)}(p/2)−1 logpβ/2(k + |f |2 logγ(e + |f |2))

18



= |f |p logpγ/2(e+ |f |2) logpβ/2(k + |f |2 logγ(e + |f |2))
� Θ(|f |)2 logγ(e+ Θ(|f |)2). (∵ (3.12))

Hence

E[Uφ(U)] � E[e+ Θ(|f |)2](1 + logγ E[e + Θ(|f |)2]) + E[|∇f |2φ(U)].

Now, by Proposition 2.1, we have

E[Φ(U)] � E[e + Θ(|f |)2](1 + logγ E[e+ Θ(|f |)2]) + E[Φ(C|∇f |2)].

Since Φ is an integral of φ(x) = x(p/2)−1 logpβ/2(k + x), we have

Φ(Cx2) � x2φ(x2)

= x2(x2)(p−2)/2 logpβ/2(k + x2)

= xp logpβ/2(k + x2)

� Φp,β/2(x).

Further

Φ(x2 logγ(e+ x2)) � x2 logγ(e + x2)φ(x2 logγ(e+ x2))

= x2 logγ(e+ x2){x2 logγ(e+ x2)}(p−2)/2 logpβ/2(k + x2 logγ(e+ x2))

= xp logpγ/2(e+ x2) logpβ/2(k + x2 logγ(e+ x2))

� xp logpγ/2(e+ x) logpβ/2(k + x)

� xp logp(β+γ)/2(k + x)

� Φp,(β+γ)/2(x)

and

Θ(x)2 � x2θ(x)2

= x2{x2 logγ(e+ x2)}(p−2)/2 logpβ/2(k + x2 logγ(e + x2))

� xp log(p−2)γ/2(e + x) logpβ/2(k + x)

� xp log(pβ+pγ−2γ)/2(k + x)

= xp logp(β+γ−(2γ/p))/2(k + x)

� Φp,(β+γ−(2γ/p))/2−(1/p)(x).

Combining all of them, we eventually have

E[Φp,(β+γ)/2(|f |)] � E[e+ Φp,(β+γ−(2γ/p))/2(|f |)](1 + logγ E[e+ Φp,(β+γ−(2γ/p))/2(|f |)])
+ E[Φp,β/2(|∇f |)].

This is what we wanted.
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By the above theorem, it follows that

‖f‖Φp,(β+γ)/2
� ‖f‖Φp,(β+γ−(2γ/p))/2

+ ‖∇f‖Φp,β/2
.

This implies that differentiability improves the integrability by the logarithmic order pγ/2.
When p = 2, the same result holds if we impose the additional condition β ≥ 0. We

give a proof for completeness. Set

θ(x) = logβ/2(1 + x2 log(e+ x2))(3.14)

and

Θ(x) =

∫ x

0

θ(y)dy.(3.15)

We need the monotonicity of θ, which forces β ≥ 0. Moreover, in the proof of Theorem 3.5,
φ becomes φ = logβ(k + x), which also forces β ≥ 0. By being aware of this, we just
repeat the same proof. So we have the following

Proposition 3.6. There exists a constant K > 0 so that

x2 logγ(e+ x2) logβ(1 + x2 logγ(e+ x2)) ≤ KΘ(x)2 logγ(e + Θ(x)2).(3.16)

Proof. We investigate the asymptotic behavior.
Near x = 0, noting Θ(x) ∼ xβ+1, we have Θ(x)2 log(e+ Θ(x)2) ∼ x2β+2. The left hand

side is ∼ x2 · x2β = x2β+2 and so they have same asymptotics.
Next we consider when x→ ∞. This time,

lim
x→∞

Θ(x)

x logβ/2 x2
= lim

x→∞
Θ′(x)

logβ/2 x2 + β log(β/2)−1 x2

= lim
x→∞

logβ/2(k + x2 log(e+ x))

logβ/2 x2

= lim
x→∞

logβ/2 x2

logβ/2 x2

= 1,

which yields logγ(e+ Θ(x)2) ∼ logγ x2. Combining them, we have

Θ(x)2 logγ(e + Θ(x)2) ∼ x2(logβ x2) logγ x2 = x2 logβ+γ x2.

It is easy to see that the left hand side has the same asymptotics. Thus we have obtained
(3.16).

To proceed further, it is subtle to see xθ(x) � Θ(x) � xθ(x). In the case of p > 2,
θ(x) � xθ′(x) holds but in the case of p = 2, this does not hold. In fact

θ′(x) =
βx{(e+ x2)γ log(e+ x2) + γx2 logγ−1(e+ x2)} logβ/2(1 + x2 logγ(e+ x2))

(e+ x2)(1 + x2 logγ(e+ x2)) log(1 + x2 logγ(e+ x2))
.
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Hence

lim
x→∞

xθ′(x)

θ(x)
= 0, lim

x→0

xθ′(x)

θ(x)
= β

and we can show xθ′(x) � θ(x). But the reversed estimate does not hold. We should
notice that the reversed estimate does hold for Θ. To see this,

lim
x→∞

xθ(x)

Θ(x)
= lim

x→∞
θ(x) + xθ′(x)

θ(x)
= 1, (∵ xθ′(x)/θ(x) → 0),

lim
x→0

xθ(x)

Θ(x)
= lim

x→0

θ(x) + xθ′(x)

θ(x)
= 1 + β,

which shows xθ(x) � Θ(x) � xθ(x). Noticing this, we have the following.

Theorem 3.7. For p = 2 and β ≥ 0, there exists a constant C > so that

E[Φ2,(β+γ)/2(|f |)] ≤ CE[e+ Φp,β/2(|f |)](2μ+ logγ(e+ E[Φp,β/2(|f |)]))(3.17)

+ CE[Φp,β/2(|∇f |)].

Proof. Set g =
√
e+ Θ(|f |)2. Then, by noting that |∇g| ≤ θ(|f |)|∇f | since ∇g =

2Θ(|f |)Θ′(|f |)∇|f |
2
√

Θ(|f |)2+e
, and by using the defective logarithmic Sobolev inequality

E[g2 logγ(g2/‖g‖2
2)] ≤ 2λE[|∇g|2] + 2μE[g2],

we have

E[{e+Θ(|f |)2} logγ(e+ Θ(|f |)2)]

� E[e+ Θ(|f |)2] logγ E[e + Θ(|f |)2] + E[|∇f |2θ(|f |)2] + E[e+ Θ(|f |)2]

and hence

E[Θ(|f |)2 logγ(e+ Θ(|f |)2)]

≤ E[e+ Θ(|f |)2](1 + logγ(e+ E[Θ(|f |)2])) + E[|∇f |2θ(|f |)2].

Now we set φ(x) = logβ(1 + x) and U = |f |2 logγ(e + |f |2). Then, since θ satisfies
θ(|f |)2 = φ(U), we have

Uφ(U) = |f |2 logγ(e+ |f |2) logβ(1 + |f |2 logγ(e + |f |2))
≤ KΘ(|f |)2 logγ(e+ Θ(|f |)2). (∵ (3.16))

Combining this with the previous result, we obtain

E[Uφ(U)] � E[e+ Θ(|f |)2](1 + logγ(e+ E[Θ(|f |)2])) + E[|∇f |2φ(U)].

From Proposition 2.1,

E[Φ(U)] � E[e+ Θ(|f |)2](1 + logγ(e+ E[Θ(|f |)2])) + E[Φ(C|∇f |2)].
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Since Φ is an integral of φ(x) = logβ(1 + x), we have

Φ(Cx2) � x2φ(x2) = x2 logβ(1 + x2) � Φ2,β/2(x).

Further

Φ(x2 logγ(e+ x2)) � x2 logγ(e+ x2)φ(x2 logγ(e+ x2))

= x2 logγ(e+ x2) logβ(1 + x2 logγ(e+ x2))

� x2 logγ(e+ x) logβ(e+ x) − 1

= x2 logβ+γ(e+ x) − 1

≥ Φ2,(β+1)/2(x) − 1

and

Θ(x)2 � x2θ(x)2

= x2 logβ(1 + x2 logγ(e+ x2))

� x2 logβ(1 + x2)

� Φ2,β/2(x).

Combining all of them, we eventually obtain

E[Φ2,(β+γ)/2(|f |)] � E[e+ Φ2,β/2(|f |)](1 + logγ(e+ E[Φ2,β/2(|f |)]) + E[Φ2,β/2(|∇f |)].
This is what we wanted.

By the above theorem, we can get

‖f‖Φ2,(β+γ)/2
� ‖f‖Φ2,β/2

+ ‖∇f‖Φ2,β/2
.(3.18)

The term ‖f‖Φ2,β/2
in the right hand side is of no importance. To see this, we need the

following proposition.

Proposition 3.8. Take any p ≥ 1, β > 0, α ∈ R. Then, for any ε > 0, there exists a
constant K which depends on ε, p, β and α so that

‖f‖Φp,α ≤ ε‖f‖Φp,α+β
+Kε‖f‖1.(3.19)

Proof. Since

lim
x→∞

Φp,α+β(εx)

Φp,α(x)
= ∞,

there exists a constant C > 0 so that Φp,α+β(εx) ≥ Φp,α(x) for x ≥ C. When x ≤ C, we
can take a constant K > 0 so that Φp,α(x) ≤ Kx.Therefore

E[Φp,α(|f |)] = E[Φp,α(|f |) ; |f | ≥ C] + E[Φp,α(|f |) ; |f | < C]

≤ E[Φp,α+β(ε|f |)] + E[K|f |].
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For any λ > 0, we have

‖f‖Φp,α ≤ 1

λ
{E[Φp,α(λ|f |)] + 1}

≤ 1

λ
{E[Φp,α+β(ελ|f |)] + E[Kλ|f |] + 1}

≤ ε

λε
{E[Φp,α+β(λε|f |)] + 1} +KE[|f |].

Letting λ run over positive numbers and taking the infimum of the right hand side, we
have

‖f‖Φp,α ≤ ε‖f‖Φp,α+β
+K‖f‖1,

which is the desired result.

Taking into account the above result, we eventually obtain the following

Theorem 3.9. We assume p > 2, β ∈ R or p = 2, β ≥ 0. Then we have

‖f‖Φp,(β+γ)/2
� ‖∇f‖Φp,β/2

+ ‖f‖1.(3.20)

4. Beckner type inequality

Throughout this section, we again assume the following fractional logarithmic Sobolev
inequality:

E
[|f |2 logγ

+(|f |2/‖f‖2
2)

] ≤ C1‖∇f‖2
2 + C2‖f‖2

2.(4.1)

In Theorem 3.9, we take p so that pγ/2 = 1 and use Proposition 3.3 to obtain

E
[|f |p log+(|f |p/‖f‖p

p)
] ≤ K1‖∇f‖p

p +K2‖f‖p
p.

We do not need to take positive part of log, so we formulate it in the following form:

E
[|f |p log(|f |p/‖f‖p

p)
] ≤ K1‖∇f‖p

p +K2‖f‖p
p.(4.2)

The left hand side is an entropy, i.e., E
[|f |p log(|f |p/‖f‖p

p)
]

= Ent(|f |p).
Let p be as above and take q ∈ [1, p). We are now interested in the following inequality:

E[|f |p] −E[|f |q]p/q

(p− q)δ
≤ L1‖∇f‖p

p + L2‖f‖p
p.(4.3)

The inequality of this type was discussed by Lata�la-Oleszkiewicz [5] in the case of p = 2.
This inequality with p = 2 and δ = 1 holds for the Ornstein-Uhlenbeck process, which
was first proved by Beckner [2]. So we call it the Beckner type inequality.

We first consider the case of δ = 1 for general p. It is just a slight modification of
Lata�la-Oleszkiewicz’ argument.

23



Set α(t) = log ‖f‖1/t. Clearly α(t) is convex. Take any p > 1 and fix it. β(t) = epα(t) =
E[f 1/t]pt is also convex. Therefore

β(t) − β(1/p)

t− 1/p

is non-decreasing on (1/p, 1] and

ϕ(q) =
β(1/p) − β(1/q)

1/q − 1/p

is non-decreasing on [1, p). We now set

Vp(q) =
β(1/p) − β(1/q)

p− q
=
E[|f |p] −E[|f |q]p/q

p− q

and prove

lim
q↑p

Vp(q) =
1

p
Ent(|f |p),(4.4)

Vp(q) ≤ Ent(|f |p), q ∈ [1, p).(4.5)

To show (4.4), by noting d
dq
β(1/q)|q=p, we get

d

dq
E[|f |q]p/q = E[|f |q]p/q logE[|f |q]p/q

(
− p

q2

)
+
p

q
E[|f |q](p/q)−1E[|f |p log |f |]

and if, in particular, q = p, then

d

dq
E[|f |q]p/q

∣∣∣
q=p

= −1

p
E[|f |p] logE[|f |p] + E[|f |p log |f |]

=
1

p
E[|f |p log |f |p/‖f‖p

p]

=
1

p
Ent(|f |p),

which is (4.4).
Next let us see (4.5). Note

Vp(q) =
1

pq

β(1/p) − β(1/p)

1/q − 1/p

=
1

pq
ϕ(q) ≤ 1

p
lim
q↑p

ϕ(q). (∵ ϕ is non-decreasing and q ≥ 1.)

Here

lim
q↑p

ϕ(q) = lim
q↑p

pqVp(q) = p2 lim
q↑p

Vp(q) = pEnt(|f |p).

Combining these, we can easily show (4.5).
From these facts, we have the following
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Proposition 4.1. Take any p > 1 and fix it. If

Ent(|f |p) ≤ K1‖∇f‖p
p +K2‖f‖p

p

holds, then it follows that

E[|f |p] − E[|f |q]p/q

p− q
≤ K1‖∇f‖p

p +K2‖f‖p
p.

Conversely, if we assume

E[|f |p] −E[|f |q]p/q

p− q
≤ L1‖∇f‖p

p + L2‖f‖p
p,

then

Ent(|f |p) ≤ pL1‖∇f‖p
p + pL2‖f‖p

p

follows.

Now we return to the Beckner type inequality.

Theorem 4.2. We assume the fractional logarithmic Sobolev inequality (4.1). Then,
putting p = 2/γ, there exist constants K1, K2 so that for any q ∈ [1, p)

E[|f |p] − E[|f |q]p/q

p− q
≤ K1‖∇f‖p

p +K2‖f‖p
p, q ∈ [1, p).(4.6)

Proof. From the assumption, the inequality (4.2) holds. Then Proposition 4.1 bears the
result.

In the above theorem, we assumed p = 2
γ
. We now consider the case 2 ≤ p ≤ 2

γ
. The

inequality (4.5) was crucial. Making use of (4.5), we will prove a little modified inequality
to show (4.3).

Proposition 4.3. For 1 ≤ q < p and 0 < δ < 1,

E[|f |p] − E[|f |q]p/q

(p− q)δ
≤ E

[|f |p logδ
+(|f |p/‖f‖p

p)
]

+
(p− q)1−δ

e
‖f‖p

p(4.7)

Proof. From (4.5), it follows that

E [|f |p] ≤ E [|f |q]p/q + E
[|f |p(p− q) log(|f |p/‖f‖p

p)
]
.(4.8)

Define a set A by

A = {x; (p− q) log(|f |p/‖f‖p
p) ≤ 1}.

Then

|f |p(p− q)δ logδ
+(|f |p/‖f‖p

p) ≥ |f |p(p− q) log(|f |p/‖f‖p
p) on A
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|f |p(p− q)δ logδ
+(|f |p/‖f‖p

p) ≥ |f |p on Ac.

Writing the indicator function of A by χ, we can see that

|fχ|p(p− q)δ logδ
+(|fχ|p/‖f‖p

p) ≥ |fχ|p(p− q) log(|fχ|p/‖f‖p
p),

|f(1 − χ)|p(p− q)δ logδ
+(|f(1 − χ)|p/‖f‖p

p) ≥ |f(1 − χ)|p.
Adding them and then integrating them, we get

E[|f |p(p− q)δ logδ
+(|f |p/‖f‖p

p)]

≥ E
[|fχ|p(p− q) log(|fχ|p/‖f‖p

p)
]

+ E [|f(1 − χ)|p]
= E

[|fχ|p(p− q) log(|fχ|p/‖fχ‖p
p)

]
+ E

[|fχ|p(p− q) log(‖fχ‖p/‖f‖p
p)

]
+ E [|f(1 − χ)|p]

≥ E [|fχ|p] − E [|fχ|q]p/q + (p− q)‖fχ‖p
p log(‖fχ‖p/‖f‖p

p) + E [|f(1 − χ)|p]

= E [|f |p] − E [|fχ|q]p/q + (p− q)‖fχ‖p
p log(‖fχ‖p/‖f‖p

p)

≥ E [|f |p] − E [|f |q]p/q + (p− q)‖fχ‖p
p log(‖fχ‖p/‖f‖p

p).

Thus we have

E [|f |p] −E [|f |q]p/q ≤ (p− q)δE
[|f |p logδ

+(|f |p/‖f‖p
p)

]
+ (p− q)‖fχ‖p

p log(‖f‖p/‖fχ‖p
p)

and, by dividing the both hands by (p− q)δ,

E [|f |p] − E [|f |q]p/q

(p− q)δ
≤ E

[|f |p logδ
+(|f |p/‖f‖p

p)
]

+ (p− q)1−δ‖fχ‖p
p log(‖f‖p/‖fχ‖p

p).

Now we assume ‖f‖p = 1. Then ‖fχ‖p
p ≤ 1 and hence

E [|f |p] − E [|f |q]p/q

(p− q)δ
≤ E

[|f |p logδ
+(|f |p)] + (p− q)1−δ‖fχ‖p

p log(1/‖fχ‖p
p).

Noting that the function −x log x (x > 0) takes its maximum 1
e

at x = 1
e
, we have

E [|f |p] − E [|f |q]p/q

(p− q)δ
≤ E

[|f |p logδ
+(|f |p)] +

(p− q)1−δ

e
.

Taking |f |/‖f‖p, which satisfies ‖(|f |/‖f‖p)‖p = 1, we obtain

E[|f |p] −E[|f |q]p/q

(p− q)δ
≤ E

[|f |p logδ
+(|f |p/‖f‖p

p)
]

+
(p− q)1−δ

e
‖f‖p

p.

This is what we wanted.

Now we recall Theorem 3.9. Then, assuming the fractional logarithmic Sobolev inequal-
ity (4.1), we have, for p ≥ 2,

E
[
|f |p log

pγ/2
+ (|f |p/‖f‖p

p)
]
≤ K1‖∇f‖p

p +K2‖f‖p
p.(4.9)

Thus, from the above proposition, the following Beckner type inequality easily follows:
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Theorem 4.4. Assume the fractional logarithmic Sobolev inequality (4.1). Then, for
2 ≤ p ≤ 2/γ, there exist constants L1 and L2 so that

E[|f |p] −E[|f |q]p/q

(p− q)pγ/2
≤ L1‖∇f‖p

p + L2‖f‖p
p, q ∈ [1, p).(4.10)
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