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Abstract

We discuss a generalization of entropy function in terms of Orlicz functional.
Orlicz functional is defined by using Young function but we extend a scope of Young
function adapted to entropy function. We introduce the ¢-Sobolev inequality and
discuss the relation between the spectral gap and the ¢-Sobolev inequality. Taking
function ¢ to be {log(1l + z)}7, we can define the fractional logarihtmic Sobolev
inequality. The connection with the Latata-Oleszkiewicz inequality is also discussed.

1. Introduction

In this paper, we try to generalize the notion of entropy. To do this, we use Orlicz spaces.
To define an Orlicz space, we need a Young function but our Young function belongs to
a wider class than usual one. A Young function is defied as follows:

O(z) = /0 " o)t

Here ¢ is a non-negative right-continuous non-decreasing function with ¢(0) = 0. In our
definition, we do not assume the positivity of ¢. By using this Young function, we can
define an Orlicz functional and we see that the entropy function is a typical example of
Orlicz functional. To be more precise, let (M, m) be a probability space. The entropy
function is defied as follows:

Ent(f) = E[flog f] — ELf] log ELf].

*e-mail: 1iu@math.kyoto-u.ac.jp

fe-mail: ichiro@math.kyoto-u.ac.jp, URL: http://www.math.kyoto-u.ac.jp/~ichiro/

IThis research was partially supported by the Ministry of Education, Culture, Sports, Science and
Technology, Grant-in-Aid for Scientific Research (B), No. 17340036



Here E stands for the integration with respect to m. We will define an Orlicz functional
| llo (for the definition, see Section 2) so that if we take ¢(z) = log x, then

[flle = Ent(f).

Using this Orlicz functional, we define a ¢-Sobolev inequality and discuss its properties.
Under suitable conditions, we can show that the ¢-Sobolev inequality is in between the
Poincaré inequality and the logarithmic Sobolev inequality. Such kind of inequality was
discussed by, e.g., F.-Y. Wang [9], D. Chafai[3], and we give a different formulation. We
also discuss the fractional logarithmic Sobolev inequality. In particular, we discuss these
inequalities in L setting. A typical inequality is the following:

E ||fP1g(Lf1P/I115)| < KillVIIE + Kl F11.
Further we consider the following Beckner type inequality:

E[|f7] = E[| f|9P/e
(p—q)°

< LIV + Lol £,

Latata-Oleszkiewicz [5] discussed this type of inequality in the case p = 2. We generalize
it to the L” case.

The organization of the paper is as follows. In Section 2, we discuss the Orlicz functional
for a generalized Young function. We define ¢-Sobolev inequality and defective ¢-Sobolev
inequality and show that ¢-Sobolev inequality is stronger than the Poincaré inequality.
In Section 3, we introduce the fractional logarithmic Sobolev inequality and discuss it in
L? setting. Last, in Section 4, we discuss the relation between the fractional logarithmic
Sobolev inequality and the Beckner type inequality,

2. Generalized entropy and Poincaré inequality

Young functions play a fundamental role in the Orlicz space theory. In this section,
we treat a little wider class of functions. Usually, we are given a function ¢ satisfying
#(0) =0, ¢(t) > 0if t > 0 and ¢(o0) = oo. P is defined to be an integral of ¢. Here, we
generalize ¢ so that

1. ¢:1]0,00) = RU{—00} is continuous and strictly increasing.
2. ¢(o0) = .
3. ¢ is integrable on any finite interval of [0, 00).

4. ¢ is of class C1.

In particular, ¢ can be negative and unbounded from below. Therefore it may happen that
#(0) = limy_ ¢(t) = —oo. Typical example is ¢(t) = logt. We will define a functional,
which is an entropy when ¢(t) = logt. ® is defined as

O(x) = /0 "ot dt

and satisfies the following:



1. @ is convex and ®(0) = 0.

P o o
2. (z) is strictly increasing, hH(l) ﬁ = ¢(0), and lim ﬁ = ¢(0).
x =0 z—o0 I

The inverse function ¢ is defined by

U(u) = inf{t; o(t) > u}.

Note that 1(u) is defined for all u € R and ¢ (u) = 0 for u < ¢(0). The complementary
function ¥ is defined by
y
~ [ vtwau

Then the following holds:
(2.

zy < ®(z) + V(y),
zp(x) = O(x) + V(p(z)).

)
(2.2)
(2.1) is called the Young inequality. We also have
(2:3)

V(y) = sup{zy — ®(x)}.

x>0

SR
o

2.3

Suppose we are given a measure space (M, m). We assume that a reference measure m
is a probability measure. We denote the integration with respect to m by E| |. From the
Young inequality, we have the following proposition.

Proposition 2.1. Let U, V > 0 be functions on the measure space and let E denote a
integration with respect to a finite measure. Suppose —oco < E[U¢(U)] < oo. If

(2.4) EUg(U)] < E[V(U)] +C,
then we have

(2.5) E[®(U)] < E[®(V)] + C.
Here we use the convention z¢(z) = 0 for = = 0.

Proof. (2.4) means that P[V > 0,U = 0] = 0 when ¢(0) = —oco. By the Young inequality,
we have

EVeU)] < E[®(V)] + E[¥(o(U))];
EUS(U)] = E[®(U)] + E[V(6(U))].

Since E[U¢(U)] < o0, it follows that E[U(p(U))] < oo and

which is the desired inequality. O



We introduce some functionals in connection to ®. Usually, these functions become
norms but they do not in our case because ¢ is not positive.
First define Ng by

(2.6) No(f) = inf{A > 0; E[®(|f]/M)] < 1}.

We denote by L? the set of all functions with Ng(f) < oo and call it an Orlicz space. For
f € L® F(t) = E[®(t|f])] is a convex function. It is easy to see that F(T) = 1 if and

We denote the minimum of ® by —m. Ng satisfies the following.

only if T'= .
No(f)

Proposition 2.2. We have

a(f) =
o(f) = 0if and only if f = 0.

(1) N

(2) N

(3) Na(cf) = [c[Na(f)-
(4) If f1, f2 = 0, then No(f1 + f2) < No(f1) + Na(f2).

(5) For general f1, fo, No(f1 + f2) < (14+m)(Ne(f1) + No(/f2)).

Proof. (1), (2), (3) are easy.
To show (4), set a; = No(f;), b = a1 + az. Then

Ji+ 2\ _ ap fi | az fa
el (55)] -5 5)
<elpei) iole)]
aq b (05}

b
+2=1

??

Now Ng(f1 + f2) < b follows.
To show (5), set &, = max{®,0}. ¥, is a non-negative, increasing and convex function

satisfying ®,(0) = 0. In particular, ®,(0z) < 6P, (z), 0 < § < 1. We also note that
® <P, <P+ m. Now, setting a; = Ng(f;), b = a1 + a2, we have

e < e (o)

<s[o-(0m)|

cofo ()
<52 ()| 51 ()|
<l ()] el (2)
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which yields (5). O

The property (5) shows that Ng is a quasi-norm and so L® is a topological linear space.
This topology is stronger than L' as will be shown below.

Proposition 2.3. The following inequality holds:
(2.7) [l < (1 4+ W(1))Na(f).
Proof. If Ng(f) =1, then the Young inequality xy < ®(x) + ¥(y) yields
Ellfly] < E[(If]) + ¥(y)] = 1+ V(y).
Setting y = 1,
[fllr < T4+ ¥(1).

Now (2.7) follows easily. O

We introduce another functional || ||¢. Define

(2.8) [flle = sup{E[|flg]; E[¥(g)] < 1}.

We call || || the Orlicz functional. If ® is a nice Young function, then || ||¢ becomes a
norm. But it does not in our case as we remarked.

Proposition 2.4. Let f > 0 be a non-trivial function. Choose A > 0 so that
(2.9) EM(o(Af))] = 1.

Then we have

(210) I7lle = BLFOO)] = {E[ROAL)] + 1.

For general f, we have

(2.11) £l = inf - (EL@(s1f1)] + 1.

Proof. First we assume E[U(¢(f))] =1, i.e., in the case of A = 1. If g satisfies E[V(g)] <
1, then, by the Young inequality, we have

Elfg) < E®(/)] + E[¥(g)] < E[®(f)] + 1.

If we take g = ¢(f), then E[¥(g)] <1 and
Elfg] = Elfo(f)] = E[®()] + EMV((f))] = E[@(f)] + 1.

5



This shows that || f|le = E[fo(f)] = E[®(f)] + 1.
Next, for non-negative f, we take A satisfying (2.9). The above result implies

A lle = EAfo(Af)] = E[®(Af)] +1
and (2.10) follows because of |\ f||le = A||f|le-
Last we see (2.11). If E[¥(g)] < 1, then, for x > 0,

E(l71g] = - Blslflo]

< %{E[(I)(/f|f|)] + E[¥(9)]}

< {Bl@(s|f])] +1}.

Hence

E||flg] < inf ~{E[®(s|f])] + 1}.

k>0 K

Since ¢ is arbitrary, we have

£l < inf - {Bl@(sf])] + 1}

We have already seen that the equality holds if Kk = A\. Now the proof is complete. O
We see some properties of the Orlicz functional || f||s.

Proposition 2.5. The Orlicz functional || || satisfies the following

(1) For f #£0, U71(1) < [/ lle

A
(2) lleflle = lelll flle-
(3) For fi, fo >0, ||fi + falle < [[fille + || fo]le-

Proof. Take g so that g = ¥~1(1). Then E[¥(g)] = 1 and so

E[f[e @] < [ f]e-

. The equality holds if and only if | f| is constant.

This means that

i1 W.
W=7

It is easy to see that the equality holds when |f| is constant.
We will show the converse: if the equality holds, then |f| is constant. We take A so
that E[¥(4(A|f])] = 1. From Proposition 2.4, we have

171l = 5 (R + 1}
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Therefore

[Aflle = EIR(A[f])] +1
> O(ENf]) +1 (. ® is convex)
= ®(Ef]]) +w((1))
> B[ f|]Je1(1) (" the Young inequality)
= A flle-

Hence, all inequalities above should be equalities. In particular, E[®(\f)] = ®(E[\f])

and so f is constant since @ is strictly convex.
(3) is easy.

Let us see the relation between Ng and || ||¢.

Proposition 2.6. The following inequality holds:

(2.12) [flle < 2Na(f)-

Proof. For any A\, we have

I£lle < 5 (B2 + 1}

Taking A = Ng(f)7},

[flle < N@(f){E [q’( ff )} +1} < 2Ns(f),

which is the desired result.

O

O

When we are given two Young functions @, ®,, we can have the following comparisons.

If there exists a constant a so that ®1(z) < ®y(ax), z > 0, then
(1> N‘1>1(f) < aNq>2(f).

@) [[flle, < allfll,-

The proof is standard (e.g., see [8, 11.2.2]) and will be omitted.
To get the comparison, we only need the inequality near co, i.e., ®;(z) < Py

(az), ©
for some constant xq. In this case, we can find a constant C' so that Ng,(f) < CN.

From now on, we add the following assumption to ¢:

(2.13) supxd'(z) =1 < 0.

z>0

This means that the growth order of ¢ is less than that of log.

Proposition 2.7. Under the assumption (2.13), we have

(2.14) No(f) < max{]|flle, [ f]l1}-

>

.(f

).



Proof. Using z¢/(z) <,

d

Y 0d(z) = V((x))¢'(z) = ¢~ o ¢(x)¢/(z) = x¢/(x) < L.

Since W o ¢(0) = 0, we haveW¥ o ¢(z) < lx. Therefore

)] <# ) -
E v E |l =1.
[ ((b(zuful =*1m
Now we have

| flle =sup{E [fg]; E[¥(g)] <1}

> 14 i )|

= max{|[flle, [ f].} E Lnam{“j"”cp7 l“f||1}¢(max{||f||q>,l||f]|1})]

) / ;
= max{{|flle. 171} £ {q)(max{l\f\!@l!\f\!l}) " W@(maxﬂ!f!h»leHl}))} '
This brings

b [q)(maXﬂlf!{@,Hlle})] = max{n%kwl} -F {‘I’ (¢(max{||f!{q>,l!|f||1}))]

<1

This shows (2.14). O

Under the assumption (2.14), let us further investigate || ||¢. Our aim is to generalize
the inequality in Deuschel-Stroock [4, Chapter VI (6.1.26)]. Define a constant « as

(2.15) a=¢toUT(1).

Proposition 2.8. Let f be a bounded function and set f = f — E[f]. Then we have
(2.16) 172 lle < 12l + 20| F1I3 + ¥ (D) E[f]?,

(2.17) 12l < [1F7lle + 201 £115 — ¥~ (D E [f)

and further

(218)  lim [+ tf)*[le — O~H(1) — 20~ (1) E'[f]¢

t10 t2

=2a¢/(a)[| I3+ 0 (1) E [f7] .

Proof. We first show
(2.19) I+ tf)2lle < T7HL) + THDE[fIt + ) f*]|lo + 27 E [f7].
To do this, take any § > 0 and set

g = ¢(>\t{(1 + tf)Q + 5})

8



Here ); is taken so that E[¥(g;)] = 1. By Proposition 2.4, we have ||(1 + tf)? + d|le =
E{(1+tf)>+ d}g. Since E [¥(g;)] = 1, by differentiating in ¢, we have

0=E[¥(g:)g]) = E [ o o\{(1+tf)* +6})g;] = ME [{(1 +1f)* +}gy]
which yields
(2.20) E[{(1+tf)*+d}g] =0.
On the other hand, g; is computed as
g0 = ON{(A+1f)° + 0} + @2\ (1 +tf) f.
Here we have omitted the variable A, {(1 4 ¢f)? + &} of ¢. Substituting this into (2.20),

0=FE[{(1+tf)+ 6 {N{(L +tf)>+ 6} +2M(1 +tf)f}]
=NE[{(1+tf)°+01°¢] +2ME [¢'{(L+tf)> + ML+ tf) f]

and therefore

B [P{( )2+ SHL+tf)f)

(2.21) A = E{(+tf)2+ 0124

Now we set
Ky = (1 +tf)? +dlla — | f*lle = E [{(1 +tf)* + 0}g:] — ]| f*]|e-

Differentiating this, we have

Ki=E[{(L+tf)* +d}a] + E2(1+tf)fa] — 2t/ ]l

— ER2(1+t)fg] =26 le- (- (2:20))
Further
K} =2E [f’g;] + E2(0 +tf)foi] — 2] f*]le

<E2(1+tf)fq]

= B 200+ t1) { N+ L)+ 6} + 2001+ 1) }]

=2NE [¢{(L+tf)?+ 0 A+ tf)f] +4E [¢N(1 +tf)*f°]

C ANE[F{A )P+ 0 A+ ) f)
a E{(Q+tf)*+6}¢

+AE [¢N{(L+tf)? + 6} f2] —4E [¢'NSf%] (- (2:21))
<AE [¢AN{(1+tf)* + 0} f7] .

The variable of ¢’ above is omitted. Writing it explicitly, we have
GIN{A+tf) + 63 = AL+ tf)? + AL+ 2)* + 632 < Uf>

9



We now obtain
K| <4FE[f?].

go satisfies ¥(gy) = 1 and so g9 = ¥~(1). By noting that Ky = E[(1 + d)ge] = (1 +
6)¥1(1), K = E[2fgo] = 29" (1)E [f], we have

K, < (146U (1)+ 20 (1) E[f]t + 2E [ f*] .
Combining all of them,
1L+ ¢f)? +dlle < (L+ )T (1) + 207 (DE[f]t + ]| f*lo + 2 E [f?].

Letting d | 0, we get (2.19). )
Next, we show (2.16), (2.17). If E'[f] =0, then (2.16), (2.17) are trivial since f = f.
If E[f] # 0, then we take f/E [f] instead of f. Then

2

I =1z ], w0+ () 1, =161,
and (2.16) follows. If we take — f/E [f] instead of f, then
G- 10- =) ], w020+ (555) 1, 26l

which shows (2.17).
Lastly we show (2 18). Since t is small, we may assume that 1 + tf is positive. Hence

we can put § = 0 in the above argument. We set g; = ¢(\(1 + tf)?) and choose \; so
that E [¥(g:)] = 1. Set

K =1+ tf)le = E[(1+tf)q] -
By differentiating in ¢,
K{=E[201+tf)fa]+E[(1+tf)g] = E[2(1+tf)fg]
and
K{ = E[2fq] + E[2(1 +tf)fg]
Since go = U~1(1), Ky = U~'(1) and K, = 20U~ (1)E [f]. Let us compute K.
9= ONL L)+ 2N (L +tf)f

and

2\ E [¢(1+ )P f]
E[1+tf)'¢]

X =

10



Noting that A\g = ¢~ o U=1(1) = «, we have
_2ME[¢' (M) /]

B9 Do) A
90 = &' (M)A + ¢'(Xo)2X0f = =209 () E[f] + 20¢/(a) f = 20¢/(a) .

Xy =

= 2B/,

Thus
Ky = E[2f%g] + E[2fgp) =20 (1)E [f*] +2E [fmd)’(a)ﬂ
=20 ()E [f?] + da¢ () E [Jﬂ :

Now we have

K — U1(1) — 201 (1)E Kl , .
ltifgl (1) t2 (1) [f]t:TO:\I/ 1(1)E[f2}+2a¢(oz)E[f2},
which shows (2.18). O

The entropy function is defined by

(2.22) Ent(f) = E[flog f] — ELf] log ELf].

Here f is a non-negative function. Usually f is assumed to satisfy E[f] = 1 but we do
not assume it. If we take ¢(t) = logt, then

O (x) :/ logtdt = zlogzx — x,
0

)

U(y) = / e'du = €Y

—00

Ent(f) = [| flle-

In fact, by Proposition 2.4
I£le = inf B [flog f — flogA— f + .

The right hand side is nothing but the entropy. So our Orlicz functional is regarded as a
generalization of the entropy.
We call the following inequality a ¢-Sobolev inequality:

(2.23) 172l < 20E(f, £) + T D)1 £II3

Here £ is a Dirichlet form on a probability space (M, m). A is a non-negative constant
and (2.23) holds for all f € Dom(E). We assume that 1 € Dom(€) and £(1,1) = 0. So
the associated generator has the maximal eigenvalue 0 and its eigenfunction 1. The term

11



~1(1)||f]|3 is indispensable since the equality holds when f = 1. The following little
weakened inequality is called a defective ¢-Sobolev inequality:

(2.24) 1F%le < 20E(F, f) + U WA + 2 £ 112

When ¢(t) =logt, || || is the entropy and (2.23) is a logarithmic Sobolev inequality. So
our terminology is consistent with this.
On the other hand the following inequality is called the Poincaré inequality:

(2.25) 1713 < vE(£, £)-

Here, f = f — E[f]. Now we have the following theorem:
Theorem 2.9. We have the following:

(1) If the ¢-Sobolev inequality (2.23) holds, then, setting v = \/a¢’(a), the Poincaré
inequality (2.25) holds.

(2) If we assume the defective ¢-Sobolev inequality (2.24) and, in addition, the Poincaré
inequality, the ¢-Sobolev inequality (2.23) holds for A + (x4 )v in place of A.

Proof. To show (1), from (2.23), we note

[(L+tf)]le < 2MZE(f, f) + TN D)L+ tf]3
=2MPE(f, [) + VT ()1 + 2 E[f] + £ E [f?]).

But, from Proposition 2.8 and (2.18), we have

L £ — 9 )L+ 2E )
£10 2

= 2a¢/ ()| 113 + ¥ (1)E [f7]
and hence

2a¢/ ()| fII3 < 2AE(f, f).

This is what we wanted.
As for (2), by Proposition 2.8 and (2.16), we have

{OET + 1 e + 211 F13
B +22E(F )+ v < VE | £2] + 20l 113 + 20113
(

<2NE(F, )+ 2(n+ DvE(S, f) + VYD E [
=2+ (u+Dw)Ef, [)+ T~ ()E[Jﬂ]’

which is the desired result. O

Hf2H<1> <

12



3. Fractional Logarithmic Sobolev inequality
When we take ¢ =log” (1 + z), the inequality

(3.1) 1£2lle < 2XE(f, £) + ¥ D)3

is called a logarithmic Sobolev inequality of the fractional order ~v. Here v > 0 and when
v =1, it is a usual logarithmic Sobolev inequality and it is natural to take ¢(z) = logx in
this case. Anyway, we call these inequalities fractional logarithmic Sobolev inequalities in
general. We are interested in inequalities which is stronger than the Poincaré inequality
and is weaker than the logarithmic Sobolev inequality. So, in the sequel, we always assume

(3.2) 0<~<1.

We mention here some recent related results. Latata-Oleszkiewicz [5] proposed the
intermediate inequality in between the Poincaré inequality and the logarithmic Sobolev
inequality. F.-Y. Wang [9] proved the Latala-Oleszkiewicz inequality is equivalent to the
strong Poincaré inequality and, at the same time, he proved that it is equivalent to the
F-Sobolev inequality. Therefore, inequalities we have discussed are equivalent to the F-
Sobolev inequality and we formulated them in the framework of Orlicz space. We have
seen that the ¢-Sobolev inequality is stronger than the Poincaré inequality. On the other
hand, the defective logarithmic Sobolev inequality is not necessarily stronger than the
Poincaré inequality. So, to be more precise, the F-Sobolev inequality corresponds to the
defective logarithmic Sobolev inequality.

So far, our discussions are in L? setting. We are now turning to LP setting. To do so,
we change the formulation. We assume that the Dirichlet form is of the gradient form:

(3.3) £(.9) = [ (V1.Vg)im.
M
We consider the following inequality in LP setting:

(3.4) [flle < KNV Fllp + 11£1])-

We are interested in this kind of L inequality. To investigate these inequalities, we
prepare a general theory. So we consider a general norm || || for a while. We also need a
class of functions ®. For o > 0, we define ® € U(a) if and only if

z®'(z) < ad(x), x>0.
Proposition 3.1. Assume ¢ € U(«). If the following inequality
I7lls < KNI
holds, then

(3.5) E®(f)] < K| f[I* + 1.

13



Proof. Note

No(f) < [flle < K[lf]-
Using ® € U(«), if K||f|| > 1, then we have

Elo(f)] - E [@<K!\f\rﬁ>]

<E [K“Hf!\“@(%)}
< K| 7]

If K||f|| < 1, then

Elo(f) < E [@(%)} <1

In all cases, (3.5) holds. O
We can also show the converse.
Proposition 3.2. If
E[@(N)] <K[f|*+C

for a > 1, then

. C+1 1-1/c
(3.6) HM¢S&K”(ng) 1£1I-
In case of @ =1, (3.6) should be read as
I flle < K[ f]]-

Proof. By Proposition 2.4, we have

1
I7lls < 3{E @] + 1},
From the assumption,
HBRON +1} < LA+ C + 1)

1

< /\a—lK «
<RSI + 3

=1 9(\).

It is enough to minimize the g(\). By an easy computation, g(\) takes its minimum at
A= Hf’\_l(%)l/a and the minimum is

» C+1 1/ - C+1 (a—1)/« .
g(HfH (m) ) = ||l (m) K| £l

14
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o — 1/a
HIA( TG €

:an( +) (K1 K 4 KV

a—1

—ar(SE1)

which is (3.6).
When a = 1, we have

ERON]+ 1} < S RN+ 0+ 1) < KIf +5(C+ 1)
Now letting A — oo,

1flle < K| f]]-
This is the desired result. O

We now return to the inequality

[flle < KNV Fllp +11£1])-

We assume that ¢ is of the following form:

() = ¢pp(x) = 2771 logpﬂ(e + x).

Here p > 1 and 8 € R. We denote its integration by ® = &, 5:

Py p(z) = /0 ' bp.s(y)dy.

It is not difficult to see that ® € U(«a) for sufficiently large . From now on, to avoid the
change of constant, we use the following convention: we denote A < B if there exists a
constant ¢ so that A < ¢B.

Proposition 3.3. Assume 3 > 0. Then the inequality

(3.7) 1flle, s < KUV Fllp+151)

is equivalent to

(3.8) E|f1P0g(IFP/I£115)] < KV FIE + Kl f 1.
Proof. Assume (3.7). From Proposition 3.1, there exists a constant a such that

E[@p (N < IV Fllp + [1£1lp)" + 1.

15



Using 2 log”’ < K®, 5(x), we have
E 111108 [f17] S IV Fllp+ £l +1

We show that the left hand side dominates E [\f]p lo p’g(]f\p/Hpr)_ If || ]|, > 1, then
log (\f]p/Hpr) < log”’ | f|P and the result is clear. In the case of Hpr < 1, we have

1 pﬂ_
Ifl”{log+|f|p+log+ }
7S |

B |If1 g (£17/1£1)| < B

06— P1noPB | £IP Plog?’ —
< o8 { 1717108’ |71 +E['f' g HfH?H

<298 [isr 108 111 + 108 1
17115
Since f(z) = xlog”” L is bounded on (0, 1], we have

E 1P 1ogl(f1P/IF1)] S E [ 17171082 1117) +1
which leads to
E [P 1ogl(fP/IFID] S (9l + 171)° +1
Substitute Af in place of f,

E 1P 1og2(f P/ FID)] S XU Fllp+ 1F11p)* + A7

Now we take \ = m. Then
E || f[7log (Ifl”/llfll”)} S ANV 1A UVl + A1) + AV Al + 11 F 1)
S UVl + 11 1)7
SV + LA

Next let us show the reversed inequality. So we assume (3.8). Then

E[|fIr0g 1£17] = B |17 10g (| F17/1F12) - 112

S B |If17 008 £/ 1£ 115+ logh’ |1 F12)]
S IV + 1L+ 17151082 1511

Using @, 5(z) < 2”log”’ z + 1, we have

E[®,5(f)] SIVIE+[I£IE+ HfH”log PUFIE+1
S UV Fllp + I F11)7 +

Here ¢ is any number satisfying ¢ > p. The rest is easy by Proposition 3.2. O
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Now we assume the fractional logarithmic Sobolev inequality of the following form:

(3.9) E [ logL(1fI*/1f1I5)] < C1lIV£1l5 + Call£115-

This means that we only assume the defective inequality. From now on, until the end of
this section, we always assume (3.9) and we will deduce L? inequalities of the type (3.9).
We introduce a new Young function as follows. Setting

(3.10) 0(z) = {22 log” (e 4+ )} P~/ 10gP?4(k + 22 log” (e + 22)),

we define
(3.11) O(x) = /Ox 0(y)dy.

Then we have

Proposition 3.4. There exist £k > 1 and K > 0 so that
(3.12) 2P 1og?? (e + %) log"??(k + 22 log™ (e 4+ 22)) < KO(x)*log” (e + O(x)?).

Proof. We divide into two cases.
(i) In the case of § >0, k = 1.
We investigate the asymptotic behavior as x — 0.

LHS ~ 2P . 2(P8/2)2 — p(1+5)

Here A ~ B means that lim% = 1. Further

B(x) ~ £lPD/2HA/2 _ p(341)/2-1

and hence

2
O(x) ~ 7xp(ﬂ+1)/2,
@)~ D

4
2 p(B+1)
O(x) pQ(ﬁ—l-l)Qx )

We can see that they have the same asymptotics up to constant.
Next, when x — o0,

LHS ~ zPopPV/2 logp7/2 7oPB/2 1ng5/2 z = 9P(B+1)/2,p 1ng(ﬂ+“/)/2 T

On the other hand
O(z) ~ J;(pr)/Zg(pr)v/‘l(10g(p*2)v/4 JU)Qpﬁ/Ax 1ng,8/4 T
— 9(PB+py=27)/4 1.(p—2)/2 log(pﬁerf?v)/ﬁl r,

O(z) ~ (2/p)2PrHPr=20/43p/2 |og (POFPY=2)/4 5

— plo®B+PI=29+) /4 p/2 1Og(pﬂ+mf2w)/4 z,

17



O(z)%log" (e + O(z)?) ~ p—22(pﬁ+p7—2v+4)/2xp(1Og(pﬁ+pv—27)/2 2)p” log” x
— p—2+W2(pﬁ+m—2v+4)/2xp 1Og(pﬂ+m)/2 T

Again, they have the same asymptotics.
(ii) In the case of 8 < 0.

This time, k is taken to be sufficiently large. The behavior near x = co can be checked
in a similar manner as in the case 3 > 0. When 2 — 0, it is clear that LHS ~ log?*/? ka?.
Further

0(x) ~ (logpﬁ/4 k)x(pf2)/2
N 210gp5/4kxp/2

O(z) 5

O(x)*log” (e + O(1)?) ~ Z“ngﬁxp

and we can see that they have the same asymptotics. O
Using this proposition, we have the following

Theorem 3.5. For p > 2, § € R, we have

(3.13)

B[, 512l D] S Ele + @p 51— 2y/m)2(IF DL + log” (e + B[Py (51— 2y/m)2(IF D)
+ E[®5/2(IVf])]-

Proof. First we set g = \/e + O(|f|)2. Then, since Vg = 200/DOA/)VIAL e have Vg| <
24/ 0(|f)*+e -

O(|f1)IV f]. Combining this with the fractional logarithmic Sobolev inequality
Elg’log] ¢*/llgll3] < K1E[|Vg|’] + K2E[g%),
we have
Elg*log) g°] < Elg*logl |lgll2] + E[|Vgl*] + Elg”]
and hence

E[{e+6(f])*}log"(e + O(|f])*)]
S Ele +O(/f1)*]1og” Ele + O(1£)*] + E[ VS0 f)*] + Ele + O(If])°]

Thus we have

E[O(]f1)*log™(e + O(| f)*)]
S Ele+O(f)?)(1 +log” Ele + O(| f)*]) + 2AE[V f*0(| f1)7].

We set ¢(z) = /2~ 1ogP?%(k + z) and U = |f|?log”(e + |f|?). Here k is taken to be
large enough. Note that 6 has been defined to be 0(|f])* = ¢(U).

Up(U) = |f*1og” (e + [ /) {If*1og” (e + [ F1*)}*/2~ og" (k + | f[*1og” (e + | £17))

18



= [ f["log™"* (e + | f*) log""* (k + | f|* log” (e + | £[*))
SO(fD)*log (e + O(If)%). (. (3.12)

Hence
E[Ug(U)] S Ele +O(If1)*](1 + log” Ele + O(| f1)°]) + E[IV f|*6(U))].
Now, by Proposition 2.1, we have
E[@(U)] £ Ele +O(f)?)(1 +1log” Ele + O(If])%]) + E[2(CIV fI*)].
Since @ is an integral of ¢(z) = /2~ 10g??/?(k + x), we have
¢(Ca?) S 2*¢(a?)
— xQ(ﬁ)(p*Z)/? lng’B/Z(k + 22)
— 2P logp’B/Q(k + 22)
S Cpp/2(2).
Further
O(a?log? (e + %)) Z 2 log” (e + 2%)p (2" log™ (e + 27))
= 2%1og" (e + z2) {2 log” (e + )} P22 10?2k + 2 log (e + x2))
= 2P log""?(e + %) log"?/?(k + 2% log” (e + 2?))
> 2P log""*(e + x) log"??(k + x)
> P logp(ﬁﬂ)/?(k + )
2 P (34y)/2(7)
and
O(x)* < 2°0(x)*
= 2% log” (e + )} P22 10gPP2 (| + 2% log” (e + 2?))
< 2P log?= 22 (e + ) log"*?(k + )

< P 1Og(pﬁ+m—27)/2(k + )
— 7P 1ng(ﬂ+~/—(2”//p))/2(k + )

S q)p7(ﬁ+“/—(2"//p))/2—(1/p) (x)

Combining all of them, we eventually have

B[, 51721 fD] S Ele + Pp 51y 2y/p)/2([F D1 +10g” Ele + @y (514 29/p))/2(|FD])
+ E[®,52(IVf])]-

This is what we wanted.
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By the above theorem, it follows that

Hf”‘bp,(ﬁw/z S ||f“¢p,(ﬁ+w—(2w/p>)/2 + va”%ﬂ/z‘

This implies that differentiability improves the integrability by the logarithmic order p~y/2.
When p = 2, the same result holds if we impose the additional condition § > 0. We
give a proof for completeness. Set

(3.14) 0(z) = log?*(1 + 2% log(e + 2?))

and
(3.15) O(z) = /Ox 0(y)dy.

We need the monotonicity of #, which forces 3 > 0. Moreover, in the proof of Theorem 3.5,
¢ becomes ¢ = log” (k + x), which also forces 8 > 0. By being aware of this, we just
repeat the same proof. So we have the following

Proposition 3.6. There exists a constant K > 0 so that
(3.16) 2%1og” (e + %) log” (1 + 22 log” (e + 2%)) < KO(z)*log” (e 4 O(z)?).

Proof. We investigate the asymptotic behavior.

Near x = 0, noting O(x) ~ 2°+1, we have O(z)?log(e + O(z)?) ~ 2%*2. The left hand
side is ~ 22 - 2% = 2?+2 and so they have same asymptotics.

Next we consider when x — oo. This time,

i 2@ o' (x)
250 7 log?P 22 -0 log?2 22 + Blog PP 12

_log??(k + 22 log(e + )
= lim
B/2 2

_ log
- :v1—>I£10 logﬁ/Q 2

which yields log” (e + ©(z)?) ~ log” 2. Combining them, we have
@(:p)Q IOgV(e + @(I)2) ~ x2(10gﬁ IQ) logw 2 = 22 logﬁ"w 2.

It is easy to see that the left hand side has the same asymptotics. Thus we have obtained
(3.16). O

To proceed further, it is subtle to see z0(x) < O(z) < z0(x). In the case of p > 2,
0(z) < x6'(x) holds but in the case of p = 2, this does not hold. In fact

_ Br{(e+2?)log(e + 2?) + y2? log” ! (e + 22)} log”*(1 + 22 log (e + 22))

o) (e +22)(1 + 22 log (e + 22)) log(1 + 2% log'(c + 22))
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Hence

B ozt (xz)
=0, };13(13 0(x) =5

/
lim 0 (z)

o 9()

and we can show z6'(x) < 6(x). But the reversed estimate does not hold. We should
notice that the reversed estimate does hold for ©. To see this,

o P O(x) + x0'(x)
z—o0 O(1) T—00 0(x)
_ O(x) + x0'(x)
Mo T o)

=1, (.26 (x)/0(x)—0),

=140,

which shows zf(z) < O(x) < xf(x). Noticing this, we have the following.

Theorem 3.7. For p =2 and 3 > 0, there exists a constant C' > so that

(3.17) E[®,517)2(IfD)] < CEle + @y 50 (|f)](21 + log™ (e + E[®p 55 f)]))
+CE[®p (VS

Proof. Set g = /e+©O(|f|)?2. Then, by noting that [Vg| < 6(|f])|Vf] since Vg =

%Jw, and by using the defective logarithmic Sobolev inequality

Elg*10g™(¢°/ 9] < 2AE(IVg|"] + 2uE]g"),

we have

E[{e+6(f])*}log" (e + O(|f])*)]
S Ele+O(f)1og” Ele + O(If)°] + E[IVf*0( )] + Ele + ©(f1)*]

and hence

E[O(|f])*1og™(e + (| f)*)]
< Ele + (| f)*)(1 +1og"(e + E[O(If)°]) + EIIV (1))

Now we set ¢(x) = IOgﬁ(l + ) and U = |f|?log”(e + |f|?). Then, since @ satisfies
0(1f)* = ¢(U), we have

Up(U) = |f*log” (e + | f1°) log” (1 + | f[*1og (e + | f[*))
< KO(|f])*log’(e + O(|f])*). (. (3.16))

Combining this with the previous result, we obtain

ElUp(U)] S Ele+O(|f)?)(1 +1log”(e + E[O(|f])?])) + E[Vf*6(U)).
From Proposition 2.1,

E[2(U)] < Ele+O(|f)?)(1 +log”(e + E[O(|f])’])) + E[2(C|V f*)].
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Since ® is an integral of ¢(x) = log®(1 4 z), we have

®(Ca?) S a*¢(a?) = 2 log” (1 +27) < Pog2(2).

Further
(2% log” (e + 2?)) 2 2?log” (e + 2?)p(z* log” (e + 27))
= 22log” (e + %) 1og’(1 + 2% log” (e + 2?))
> 2%log” (e + z)log’ (e + z) — 1
= 22log" (e + ) — 1
> Dy (g1y/2(x) — 1
and

O(x)* < 2*0(x)?
= 2% log’(1 4 22 log” (e + 2?))
< 22log?(1 4 2?)
S Pop/2(2).

Combining all of them, we eventually obtain

E[®a,314)/2(1f D] S Ele + Pa72([fDI(1 + log™ (e + E[Pap2(|f)]) + E[P2,8/2(IV )]

This is what we wanted. ]

By the above theorem, we can get

(3'18) Hf”‘1>2,(5+7)/2 S HfH‘1>2,5/2 + HVfH‘I’2,B/2'

The term | f|[s, ,, in the right hand side is of no importance. To see this, we need the
following proposition.

Proposition 3.8. Take any p > 1, # > 0, a € R. Then, for any € > 0, there exists a
constant K which depends on ¢, p, # and « so that

(3.19) [fllep < ellflle,ors + Kl Fll1-

Proof. Since

lim @p’a+ﬁ(€$) = o0,
a—00 By o(z)

there exists a constant C' > 0 so that @, ,15(cz) > @, ,(x) for 2 > C. When z < C, we
can take a constant K > 0 so that ®,,(x) < Kz.Therefore

B, o([f])] = E[®pallf);1f] = Cl+ E[@pa(|f]); ] < C]
< E[®ya4p(elf])] + EIK|f]].
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For any A > 0, we have

17 l0,.. < 5 LB + 1}
(Bl s A D] + BLEA] + 1)

{E®pars(AelfD]+ 1} + KE[|F1].

<

IN
ikt

Letting A run over positive numbers and taking the infimum of the right hand side, we
have

[f oo < elflle,ars + KNS
which is the desired result. 0J
Taking into account the above result, we eventually obtain the following

Theorem 3.9. We assume p > 2, € Ror p=2, 3> 0. Then we have

(320) ||f“<1>p,(g+7)/2 5 HVfH<1>p,g/2 + ||f“1

4. Beckner type inequality

Throughout this section, we again assume the following fractional logarithmic Sobolev
inequality:

(4.1) E{IfPlogL(fP/IIF1I2)] < CLlIV Al + Cl £15-

In Theorem 3.9, we take p so that py/2 =1 and use Proposition 3.3 to obtain

E | fPlog, (IFF/IFI7)] < KV AL+ Kol £

We do not need to take positive part of log, so we formulate it in the following form:

(4.2) E [[fPlog(If[P/1f1I7)] < KV FII} + Kl £

The left hand side is an entropy, i.c., E [|f[Plog(| f[?/[|f||2)] = Ent(|f[?).
Let p be as above and take ¢ € [1,p). We are now interested in the following inequality:

E(|f17) - E[lf1
1

43) (p—q)

< L[|V fIE+ Lol f[2.

The inequality of this type was discussed by Latata-Oleszkiewicz [5] in the case of p = 2.
This inequality with p = 2 and § = 1 holds for the Ornstein-Uhlenbeck process, which
was first proved by Beckner [2]. So we call it the Beckner type inequality.

We first consider the case of § = 1 for general p. It is just a slight modification of
Latala-Oleszkiewicz’ argument.
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Set a(t) = log || f|l1¢. Clearly a(t) is convex. Take any p > 1 and fix it. G(t) = eP®® =
E[f'/4]P* is also convex. Therefore

B(t) — B(1/p)
t—1/p

is non-decreasing on (1/p, 1] and

B(1/p) — B(1/q)
#la) = 1/g—1/p

is non-decreasing on [1,p). We now set

p—q p—q
and prove

(1.4 im V() = Ent(| ).

(4.5) Volg) < Ent(|f["), q€[l,p).

To show (4.4), by noting diqﬁ(l/q)\q:p, we get

d
G PP = B og BT (<5 ) + B0 B £ og ]

and if, in particular, ¢ = p, then

i q\p/q — _l P P P
@ﬂm] pﬂmﬂ%EWH+EWH%VH

1
=SBl log /1511
_ %Ent(!f!p)’

which is (4.4).
Next let us see (4.5). Note

_ 1 8(/p) —B(1/p)
) = T 1
1 1
= p—qSO(CJ) < 513%1 ©(q). (.0 ¢ is non-decreasing and ¢ > 1.)

Here

lim ¢(q) = lim pqV,(q) = p*lim V,(¢) = p Ent(| f[?).
qTp qTp qlp

Combining these, we can easily show (4.5).
From these facts, we have the following
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Proposition 4.1. Take any p > 1 and fix it. If
Ent(|f7) < Kal|V I} + Kl £1I)
holds, then it follows that

E[|fI"] - E[f|
p—gq

< K|V + Ko £,

Conversely, if we assume

E[fP] - E[|f]]""
P—q

< La|[ VIS + L2l £,

then

Ent([f[") < pLi[[VfI[} + pLall fII7
follows.
Now we return to the Beckner type inequality.

Theorem 4.2. We assume the fractional logarithmic Sobolev inequality (4.1). Then,
putting p = 2/, there exist constants K;, K so that for any ¢ € [1, p)

E(|f"] — B[|f]/s

(4.6) p—

Proof. From the assumption, the inequality (4.2) holds. Then Proposition 4.1 bears the
result. O

In the above theorem, we assumed p = 2. We now consider the case 2 < p < % The

—~= N

inequality (4.5) was crucial. Making use of (4.5), we will prove a little modified inequality

to show (4.3).
Proposition 4.3. For 1 <g<pand 0 < <1,

EIIfP) — B[S vosd (1] 2 2=
Lo SN (71151 + 1712

e

(4.7)

Proof. From (4.5), it follows that
(4.8) E(fP) < BT+ E | f1P(0 — @) log(| f17/11 £1)] -
Define a set A by

A={z; (p— ) log(|fIP/IIfII}) < 1}
Then

[P = a)° logl (IF1P/1118) = [ f1P(p — a) Log(If[P/I| fII5)  on A
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[P0 = @) Logl (| fP/N£115) = |fI7 on A
Writing the indicator function of A by x, we can see that

1FxPP(p — @) log® (| £/ FIB) = | £xIP(p — q) log (| fxIP/ | £IIE).
1F(=)P(p — @)’ logl (| F (1 =) P/ FIB) = 1£(1 = x)I”.

Adding them and then integrating them, we get

E[fIP(p — @) log’, (| f17/ 1 F1I2)]
> E[|fxIP(0 — @) log(IF x[P/IFIE)] + E T F(1 = x)IP)
= E[|fx[P(p — @) log(| f xIP/I1 fxI1%)]
+ E(|fxP(p — @) log(ILf xIP/ILFID)] + ELF (1= X))
> E (| fxP] = E[| £+ (0 — )l FxIELog (1L X/ FIE) + E (1 £(1 = x)I7]
= B[ f17) = E[If 7" + (0 — @)l FxIB Log (|| fxI1P/11.f112)
> E(|fP] = E[|f177/" + (p — @) || fxI2 Log([ £xIP/ 11 £112)-
Thus we have
E[fIP] = E[If1"* < (0 — )°E [|fPlog (If1/I1£12)] + (0 — @)l fxIE Log (£ 117/ 11 £ xII)
and, by dividing the both hands by (p — q)°,
E(f] - E[f17""
(p—q)°

Now we assume || f||, = 1. Then [|fx|[? <1 and hence

< E[|fP1og5. (IfP/IAID] + (0 = @) L x5 Log (LA IP /1L x1L)-

E[f| - B[ f]7""

< E[|fP1og% (IF17)] + (0 = @)' L F x5 Log (1/]] £ xII5)-

(p—q)°
Noting that the function —zlogz (x > 0) takes its maximum + at 2 = £, we have
E[f1"] - E[If17"" r—9q)'°

=" < E[|fIPlog’ (If")] +

Taldng |f1/|]l,, which satisties [|(|f]/[L£]l,)l, = L, we obtain

e

E[| f[F] — E[|f|9]P/4 » » ) —g)9 )
V=20 < e piog /1) + =211
This is what we wanted. 0

Now we recall Theorem 3.9. Then, assuming the fractional logarithmic Sobolev inequal-
ity (4.1), we have, for p > 2,

(4.9) E(IfIP 1087 (L FIP/NFIB)| < KLV FIIE + Kol £

Thus, from the above proposition, the following Beckner type inequality easily follows:
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Theorem 4.4. Assume the fractional logarithmic Sobolev inequality (4.1). Then, for
2 < p < 2/, there exist constants L; and L so that

E[|f7) = B[ |9/
(p—q)r/?

(4.10) < Lol VIR + Ll FI5 a € 1 p).

References

[1] R. A. Adams, “Sobolev spaces,” Academic press, New York, 1975.

[2] W. Beckner, A generalized Poincaré inequality for Gaussian measures, Proc. Amer. Math.
Soc., 105 (1989), no. 2, 397-400.

[3] D. Chafal, Entropies, convexity, and functional inequalities: on ®-entropies and ®-Sobolev
inequalities, J. Math. Kyoto Univ., 44 (2004), no. 2, 325-363.

[4] J-D. Deuschel and D. W. Stroock, “Large deviations,” Academic Press, San Diego, 1989.

[5] R. Latala and K. Oleszkiewicz, Between Sobolev and Poincare, in Geometric aspects of
functional analysis, pp. 147-168, Lecture Notes in Math., Vol. 1745, Springer, Berlin,
2000.

[6] M. Ledoux, Concentration of measure and logarithmic Sobolev inequalities, in Séminaire
de Probabilités,” XXXIII, Lecture Notes in Math., vol 1709, pp. 120-216, Springer, Berlin,
1999.

[7] M. Ledoux, “The concentration of measure phenomenon,” American Mathematical Society,
Providence, RI, 2001.

M. M. Rao and Z. D. Ren, “Theory of Orlicz spaces,” Marcel Dekker, New York, 1991.

[9] F.-Y. Wang, A generalization of Poincaré and log-Sobolev inequalities, Potential Anal., 22
(2005), no. 1, 1-15.

=)

27



