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1. INTRODUCTION

The intertwining property plays an important role in dealing with semi-
groups. The intertwining property takes the following form:

DA = ÂD

where A and Â are generators of semigroups and D is a closed operator. In
the previous paper [12], we discussed the intertwining property and applied
it to the issue of the domain of a generator. The intertwining property
was used e.g., in Bakry’s paper [2] to discuss the Riesz transformation.
But there are many issues which are not within the scope of (complete)
intertwining property. In this paper, we extend it to the following defective
intertwining property:

DA = ÂD + R.

Here, an additional term R appears. If D is the identity map, the relation
above is noting but a perturbation of operators, in which there are many
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results (see e.g., [9, Chapter 3]). And so we can say that this work is
a generalization of perturbation theory to some extent. Such a relation
appeared in Yoshida’s paper [15] in connection with the Littlewood-Paley
theory. Yoshida noticed the importance of this relation but he treated only
bounded R. One of our motivations is to remove this restriction.

We discuss equivalent conditions in terms of resolvents and semigroups.
We formulate the issue in the framework of Banach space. In the case of
Hilbert space, the admissible class of R can be slightly extended. This
extension is useful when we deal with Schrödinger operators. In fact, as an
application, we discuss the Schrödinger operator of the form Δ − V on Rd

where V is a scalar potential. We give a characterization of the domain of
this operator. Further applications are discussed in the papers [13, 8] where
the Littlewood-Paley theory is developed for the Schrödinger operators on
a Riemannian manifold. In this case, the defective term R is unbounded
and our extension in this paper is crucial.

The organization of this paper is as follows. In §2, we give a precise
definition of the intertwining property and discuss the relationship with
resolvents and semigroups. We use the Hille-Yosida theory of semigroups.
In §3, we discuss the same problem in the case of Hilbert space setting.
We deal with the generators that satisfy the sector condition. Lastly we
consider a Schrödinger operator in §4. We give an example in which we
can exactly determine the domain of the operator.

2. DEFECTIVE INTERTWINING PROPERTY

In this section, we discuss the intertwining property of the generators of
semigroups. Suppose we are given two strongly continuous semigroups {Tt}
and {T̂t} on Banach spaces B and B̂. Let D be a closed operator from B
into B̂ with the domain Dom(D). We always denote by Dom the domain of
an operator or, later, the domain of quadratic form. The following property
is called the intertwining property:

DTt = T̂tD. (1)

We denote the generator of {Tt} and {T̂t} by A and Â, respectively. Then
the intertwining property above is (at least formally) equivalent to

DA = ÂD.

For the moment, we use this notation formally. This property is sometimes
too restrictive and so we will relax it as follows.

DA = ÂD + R. (2)
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Here R is an appropriate operator. If A and Â satisfy this identity, we
say that the defective intertwining property holds. We have to precisely
give the subspace where the equation (2) holds because our operators are
unbounded in general.

We will give the precise meaning of (2) and also give equivalent conditions
in terms of semigroups and resolvents. We denote the Resolvent set of A
by ρ(A). For λ ∈ ρ(A), the resolvent of A is denoted by Gλ = (λ − A)−1.
Similarly Ĝλ = (λ − Â)−1 denotes the resolvent of Â. We regard Dom(D)
as a Banach space equipped with the graph norm of D. In the sequel,
we always assume that the domain of a closed operator is regarded as a
Banach space equipped with the graph norm. Following this convention,
we assume

(A.1) R is a bounded operator from Dom(D) into B̂.

Here we regard Dom(D) to be equipped with the graph norm of D.
For later use, we introduce some notations. We denote the set of all

bounded linear operators from B1 into B2 by L(B1, B2). The opera-
tor norm is denoted by ‖ ‖L(B1,B2). When B1 = B2, we use L(B1) in
place of L(B1, B1). Hence the condition (A.1) can be written as R ∈
L(Dom(D), B̂).

Now we can give a characterization of defective intertwining property.

Theorem 2.1. Assume the condition (A.1). Then the following three
statements are equivalent to each other.

(a) There exists a subspace D ⊆ B satisfying the following conditions:

i) D ⊆ Dom(A) ∩ Dom(D).

ii) AD ⊆ Dom(D), DD ⊆ Dom(Â).

iii) For sufficiently large λ, (λ − A)D is dense in Dom(D).

iv) The following equality holds.

DAx = ÂDx + Rx, ∀x ∈ D. (3)

(b) For sufficiently large λ, Gλ Dom(D) ⊆ Dom(D) and

DGλx = ĜλDx + ĜλRGλx, ∀x ∈ Dom(D). (4)

(c) For any t ≥ 0, {Tt} is a (C0)-semigroup not only on B but also on
Dom(D) and the following holds:

DTtx = T̂tDx +
∫ t

0

T̂t−sRTsxds, ∀x ∈ Dom(D). (5)
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Proof. We first show (a)⇒(b). Take any y ∈ (λ − A)D and set x =
Gλy ∈ D. By the assumption (3),

D(A − λ)x = (Â − λ)Dx + Rx.

Applying Ĝλ to both sides of the preceding equality, we have

ĜλD(A − λ)x = −Dx + ĜλRx.

We recall that (A − λ)x = −y and hence

ĜλDy = DGλy − ĜλRGλy

which yields

DGλy = ĜλDy + ĜλRGλy, ∀y ∈ (λ − A)D. (6)

We have to show that the identity above holds for all y ∈ Dom(D).
We recall that there exist M > 0 and ω ≥ 0 such that

‖Tt‖L(B) ≤ Meωt,

‖T̂t‖L(B̂) ≤ Meωt

and hence, for λ > ω,

‖λGλ‖L(B) ≤ M/(λ − ω),

‖λĜλ‖L(B̂) ≤ M/(λ − ω).

Since Gλ is defined on D(⊆ Dom(D)), we can consider the graph norm
‖Gλy‖D := ‖DGλy‖B̂ + ‖Gλy‖B and we have, by (6),

‖Gλy‖D = ‖ĜλDy + ĜλRGλy‖B̂ + ‖Gλy‖B

≤ ‖Ĝλ‖L(B̂)‖Dy‖B̂ + ‖Ĝλ‖L(B̂)‖R‖L(Dom(D),B̂)‖Gλy‖D

+ ‖Gλ‖L(B)‖y‖B

≤ M

λ − ω
‖Dy‖B̂ +

M

λ − ω
‖R‖L(Dom(D),B̂)‖Gλy‖D +

M

λ − ω
‖y‖B.

Therefore
(

1 − M

λ − ω
‖R‖L(Dom(D),B̂)

)
‖Gλy‖D ≤ M

λ − ω
‖y‖D.
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Taking λ to be large enough, we can see that Gλ is bounded in Dom(D).
Here Gλ is defined on (λ−A)D. Due to the density of (λ−A)D in Dom(D),
we can see that Gλ is a bounded operator from Dom(D) into Dom(D) and
(4) holds for all x ∈ Dom(D).

Secondly we show (b)⇒(c). From the assumption, Gλ is a bounded
operator on Dom(D) for sufficiently large λ. Moreover {Gλ}λ satisfies the
resolvent equation on Dom(D). It remains to show that there exists a
strongly continuous semigroup on Dom(D) associated to {Gλ}λ. To show
this, we first show the strong continuity of {Gλ}λ. By the same argument
as above, ‖λGλ‖L(Dom(D)) is uniformly bounded for large λ. By (4), we
have, for x ∈ Dom(D),

‖λGλx − x‖D = ‖DλGλx − Dx‖B̂ + ‖λGλx − x‖B

= ‖λĜλDx + λĜλRGλx − Dx‖B̂ + ‖λGλx − x‖B

≤ 1
λ
‖λĜλ‖L(B̂)‖R‖L(Dom(D),B̂)‖λGλ‖L(Dom(D))‖x‖D

+ ‖λĜλDx − Dx‖B̂ + ‖λGλx − x‖B.

Clearly the right hand side of the equation above converges to 0 as λ → ∞
and hence the strong continuity of {Gλ} in Dom(D) follows.

We set Aμ = μAGμ = μ2Gμ − μ. Then Aμ is a bounded operator not
only on B but also on Dom(D). We also set Âμ = μÂĜμ. Then (4) yields

DAμx − ÂμDx = D(μ2Gμ − μx) − (μ2ĜμDx − μDx)

= μ2(DGμ − ĜμDx)

= μ2ĜμRGμx

= Rμx (7)

Here Rμ = μ2ĜμRGμ. It is easy to see that Rμ ∈ L(Dom(D), B̂) and the
operator norm of Rμ is uniformly bounded for large μ. Now we claim the
following identity.

DetAµx − etÂµDx =
∫ t

0

e(t−s)ÂµRμesAµxds, ∀x ∈ Dom(D). (8)

To see this, set

u(t) = DetAµx − etÂµDx −
∫ t

0

e(t−s)ÂµRμesAµxds.
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Then, using (7)

d

dt
u(t) = DAμetAµx − ÂμetÂµDx − RμetAµx −

∫ t

0

Âμe(t−s)ÂµRμesAµxds

= ÂμDetAµx + RμetAµx − ÂμetÂµDx − RμetAµx

− Âμ

∫ t

0

e(t−s)ÂµRμesAµxds

= Âμ

{
DetAµx − etÂµDx −

∫ t

0

e(t−s)ÂµRμesAµxds
}

= Âμu(t).

This means that u(t) satisfies the following differential equation.

⎧⎨
⎩

d

dt
u(t) = Âμu(t),

u(0) = 0.

The uniqueness of the solution deduces u(t) ≡ 0 which proves (8). We
estimate the operator norm of etAµ on Dom(D). We first recall that
‖etÂµ‖L(B̂) ≤ Me2tω (see, e.g., [3, §2.3 (2.13)]) and hence

‖DetAµx‖B̂ ≤ ‖etÂµDx‖B̂ +
∥∥∥∥
∫ t

0

e(t−s)ÂµRμesAµxds

∥∥∥∥
B̂

≤ Me2tω‖Dx‖B̂

+
∫ t

0

Me2(t−s)ω‖Rμ‖L(Dom(D),B̂)‖esAµ‖L(Dom(D))‖x‖Dds

≤ Me2tω‖Dx‖B̂ + Me2tω‖Rμ‖L(Dom(D),B̂)

×
∫ t

0

e−2sω‖esAµ‖L(Dom(D))‖x‖Dds.

Combining this with ‖etAµx‖B ≤ Me2tω‖x‖B, we have

‖etAµx‖D = ‖DetAµx‖B̂ + ‖etAµx‖B

≤ Me2tω‖x‖D + Me2tω‖Rμ‖L(Dom(D),B̂)

×
∫ t

0

e−2sω‖esAµ‖L(Dom(D))‖x‖Dds.
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Then

e−2tω‖etAµ‖L(Dom(D))

≤ M + M‖Rμ‖L(Dom(D),B̂)

∫ t

0

e−2sω‖esAµ‖L(Dom(D))ds.

Now by the Gronwall lemma, we have

e−2tω‖etAµ‖L(Dom(D)) ≤ M exp{tM‖Rμ‖L(Dom(D),B̂)}.

The right hand side is independent of μ since ‖Rμ‖L(Dom(D),B̂) is uniformly
bounded with respect to μ. It is easy to see that there exists M̃ > 0, ω̃ ≥ 0
such that

‖etAµ‖L(Dom(D)) ≤ M̃eω̃t.

Denote the resolvent of Aμ by R(λ;Aμ). We also set R(λ;A) = Gλ. Now
we have, for λ ≥ ω̃,

‖R(λ;Aμ)n‖L(Dom(D)) ≤ M̃

(λ − ω̃)n
. (9)

On the other hand, it holds that (see e.g., [9, §1.7 (7.7)])

R(λ;Aμ) = (λ + μ)−1(μ − A)R
( μλ

μ + λ
; A

)

=
μ2

(μ + λ)2
R

( μλ

μ + λ
; A

)
− 1

μ + λ
.

Set κ = μλ
μ+λ . Then λ = μκ

μ−κ . (9) implies

∥∥∥∥
{(

μ

μ + λ

)2

R(κ; A) − 1
μ + λ

}n∥∥∥∥
L(Dom(D))

≤ M̃

(λ − ω̃)n
.

We fix κ and let μ → ∞. Then λ → κ and we have

‖R(κ; A)n‖L(Dom(D)) ≤ M̃

(κ − ω̃)n
.

By Hille-Yosida’s theorem, this leads that A generates (C0)-semigroup on
Dom(D) and further etAµ converges to the semigroup strongly as μ → ∞.
In addition, the convergence is uniform on a compact interval of t. The
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limit of {etAµ} in Dom(D) clearly coincides with {Tt}. We also note that
Rμ converges to R strongly as μ → ∞. Now, taking limit in (8), we have

DTt − T̂tDx =
∫ t

0

T̂t−sRTsxds, ∀x ∈ Dom(D)

which shows (c).
Lastly we show the implication (c)⇒(a). Let AD be the generator of

{Tt} on Dom(D). Clearly A is an extension of AD. We set D = Dom(AD).
Take x ∈ Dom(AD) and differentiate (5) in t at t = 0, and we have

DAx = ÂDx + Rx.

All properties in (a) are now clear.

We say that the defective intertwining property holds when one of (and
hence all of) conditions of the theorem above is fulfilled.

We remark that the form (5) has already appeared in Yoshida [15]. State-
ment Theorem 2.1 (a) is complicated. Imposing additional conditions on
semigroups, we give a little simpler condition of the generator. To do
this, we suppose that Dom(A) ⊆ Dom(D) and there exists a dual (C0)-
semigroup {T̂ ∗

t } of {Tt}. We denote the generator of {T̂ ∗
t } by Â∗.

Theorem 2.2. Assume that Dom(A) ⊆ Dom(D) and there exists a dual
(C0)-semigroup {T̂ ∗

t }. Then the following conditions are equivalent.

(1) Dom(Â∗) ⊆ Dom(D∗) and

B〈Ax,D∗θ〉B∗ = B̂〈Dx, Â∗θ〉B̂∗ + B̂〈Rx, θ〉B̂∗ ,

∀x ∈ Dom(A), θ ∈ Dom(Â∗). (10)

(2) For sufficiently large λ,

DGλx = ĜλDx + ĜλRGλx, ∀x ∈ Dom(D).

Proof. We first show (1)⇒(2). For any x ∈ Dom(A) and θ ∈ Dom(Â∗),
we have

B〈(λ − A)x,D∗θ〉B∗ = B̂〈Dx, (λ − Â∗)θ〉B̂∗ − B̂〈Rx, θ〉B̂∗ .
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Set x = Gλy and θ = Ĝ∗
λξ for y ∈ Dom(D) and ξ ∈ B̂∗. Then we have

B〈ĜλDy, ξ〉B∗ = B〈y, D∗Ĝ∗
λξ〉B∗

= B〈DGλy, ξ〉B∗ − B〈RGλy, Ĝ∗
λξ〉B∗

= B〈DGλy, ξ〉B∗ − B〈ĜλRGλy, ξ〉B∗ .

Since ξ is arbitrary, we obtain

ĜλDy = DGλy − ĜλRGλy

which is the desired result.
We proceed to prove the converse (2)⇒(1). We first show Dom(Â∗) ⊆

Dom(D∗). Since Gλ(B) ⊆ Dom(D), the closed operator S = DGλ : B → B̂
is bounded by the closed graph theorem. Similarly V = RGλ is a bounded
operator from B into B̂. Hence, for x ∈ Dom(D), θ ∈ B̂∗,

B〈x, S∗θ〉B∗ = B̂〈Sx, θ〉B̂∗

= B̂〈DGλx, θ〉B̂∗

= B̂〈ĜλDx, θ〉B̂∗ + B̂〈ĜλRGλx, θ〉B̂∗

= B̂〈Dx, Ĝ∗
λθ〉B̂∗ + B〈x, V ∗Ĝ∗

λθ〉B∗ .

Setting θ = (λ − Â∗)ξ for ξ ∈ Dom(Â∗), we get

B̂〈Dx, ξ〉B̂∗ = 〈x, S∗(λ − Â∗)ξ〉B∗ − B〈x, V ∗ξ〉B∗ ∀x ∈ Dom(D) (11)

which implies ξ ∈ Dom(D∗) and

D∗ξ = S∗(λ − Â∗)ξ − V ∗ξ.

Further, by putting x = (λ − A)y, y ∈ Dom(A) in (11),

B〈(λ − A)y,D∗ξ〉B∗ = B̂〈S(λ − A)y, (λ − Â∗)ξ〉B̂∗ − B̂〈V (λ − A)y, ξ〉B̂∗

= B̂〈DGλ(λ − A)y, (λ − Â∗)ξ〉B̂∗

− B̂〈RGλ(λ − A)y, ξ〉B̂∗

= B̂〈Dy, (λ − Â∗)ξ〉 − 〈Ry, ξ〉B̂∗

which is (10). This completes the proof.

In the theorem above, the equation (10) is required to hold on the whole
spaces of Dom(A) and Dom(Â∗) but it is enough to assume it on dense
subspaces as follows:
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Theorem 2.3. Under the same assumption of Theorem 2.2, the follow-
ing two conditions are equivalent.

(a) There exists dense subspaces D ⊆ Dom(A) and D̂ ⊆ Dom(Â∗) such
that D̂ ⊆ Dom(D∗) and

B〈Ax,D∗θ〉B∗ = B̂〈Dx, Â∗θ〉B̂∗ + B̂〈Rx, θ〉B̂∗ , ∀x ∈ D, θ ∈ D̂. (12)

(b) For sufficiently large λ,

DGλx = ĜλDx + ĜλRGλx, ∀x ∈ Dom(D).

Proof. (b)⇒(a) is clear from Theorem 2.2. We show the converse
(a)⇒(b). From (12),

B〈(λ − A)x,D∗θ〉B∗ = B̂〈Dx, (λ − Â∗)θ〉B̂∗ − B̂〈Rx, θ〉B̂∗ ,

∀x ∈ D, ∀θ ∈ D̂. (13)

Since D is dense in Dom(A), the identity above holds for all x ∈ Dom(A).
In particular, putting x = Gλy, y ∈ Dom(D),

B̂〈Dy, θ〉B̂∗ = B〈y, D∗θ〉B∗ = B̂〈DGλy, (λ − Â∗)θ〉B̂∗ − B̂〈RGλy, θ〉B̂∗ .

Again, by the density of D̂ in Dom(Â∗), we have for any θ ∈ Dom(Â∗),

B̂〈Dy, θ〉B̂∗ = B̂〈DGλy, (λ − Â∗)θ〉B̂∗ − B̂〈RGλy, θ〉B̂∗

= B〈y, (DGλ)∗(λ − Â∗)θ〉B∗ − B〈y, (RGλ)∗θ〉B∗ ,

∀y ∈ Dom(D).

This implies θ ∈ Dom(D∗). Now the rest is the same as in Theorem 2.2.

3. DEFECTIVE INTERTWINING PROPERTY II:
HILBERT SPACE CASE

In this section, we discuss semigroups on Hilbert spaces. Let {Tt} and
{T̂t} be (C0)-semigroups on Hilbert spaces H and Ĥ . The generators of
{Tt} and {T̂t} are denoted by A and Â, respectively. We assume that they
are bounded from below in the following sense: there exists ω ≥ 0 such
that

(Ax,x)H ≥ −ω|x|2H ,

(Âθ, θ)Ĥ ≥ −ω|θ|2
Ĥ
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Hence A−ω and Â−ω generate contraction semigroups. We further assume
that they satisfy the weak sector condition. We denote the associated
quadratic form by E and Ê , e.g.,

E(x, y) = −(Ax, y)H ∀x ∈ Dom(A), ∀y ∈ Dom(E).

We fix δ > ω and set

Eδ(x, y) = E(x, y) + δ(x, y)H .

Then F = Dom(E) is a Hilbert space with the inner product

(x, y)F =
1
2

{
Eδ(x, y) + Eδ(y, x)

}
. (14)

Here denotes the complex conjugation. By the weak sector condition,
E is a bounded sesqui-linear form on F × F , i.e., there exists a constant
C > 0 such that

|E(x, y)| ≤ C(x, x)1/2
F (y, y)1/2

F .

Similarly we define

Êδ(θ, η) = Ê(θ, η) + δ(θ, η)Ĥ

and a Hilbert space F̂ = Dom(Ê) with the inner product

(θ, η)F̂ =
1
2

{
Êδ(θ, η) + Êδ(η, θ)

}
. (15)

H∗ denotes the set of all conjugate linear continuous functional on H .
F∗ can be defined similarly, i.e., the set of all conjugate linear continuous
functional on F . Clearly H∗ ⊆ F∗ and, by the Riesz theorem, we can
identify H∗ with H . Hence we have a triplet F ⊆ H ⊆ F∗. Moreover
A can be extended to a bounded linear operator from F onto F∗ and
generates a (C0)-semigroup {T̃t} on F∗ (see Tanabe [14, §2.2]). We denote
the generator by A

∼
.

Similarly we can define a triplet F̂ ⊆ Ĥ ⊆ F̂∗ and Â
∼

: F̂ → F̂∗ which
is an extension of Â. The semigroup generated by Â

∼
is denoted by {T̂ ∼

t }.
The associated resolvent is denoted by Ĝ

∼
λ .

Suppose also that we are given a closed operator D from H into Ĥ
satisfying Dom(A) ⊆ Dom(D). Now we consider the following defective
intertwining property

DA = ÂD + R. (16)

Contrary to the previous section, we assume that
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(B.1) R is a bounded linear operator from Dom(D) into F̂∗.

We have the following theorem.

Theorem 3.1. We assume that Dom(A) ⊆ Dom(D) and (B.1). Then
the following three statements are equivalent to each other.

(a) Dom(Â∗) ⊆ Dom(D∗) and

(Ax,D∗θ)H = (Dx, Â∗θ)Ĥ + F̂∗(Rx, θ)F̂
∀x ∈ Dom(A),∀θ ∈ Dom(Â∗). (17)

(b) For sufficiently large λ,

DGλx = ĜλDx + Ĝ
∼
λRGλx, ∀x ∈ Dom(D). (18)

(c) {Tt} is a (C0)-semigroup on Dom(D) and the following holds:

DTt = T̂tDx +
∫ t

0

T̂
∼
t−sRTsxds, ∀x ∈ Dom(D).

Here the integral is the limit of Riemann sum in F̂∗.

Proof. We do not need to prove this theorem since {T̂ ∼
t } is a (C0)-

semigroup in F̂∗. {Tt} and {T̂ ∼
t } satisfy the conditions of Theorem 2.1.

The difference is that we have to show (17) for x ∈ Dom(A) and θ ∈
Dom((Â

∼
)∗) = F̂ . But this follows from Theorem 2.3 (a) because Dom(Â∗)

is dense in F̂ .

As in Theorem 2.3, it is sufficient to assume that the equation (17) holds
on a dense domain of Dom(A) and Dom(Â). In fact, if we assume that
F̂ ⊆ Dom(D∗), we can relax the condition (1). Before that, we prepare the
following proposition. This proposition also plays an essential role in the
next section.

Proposition 3.1. Assume that the defective intertwining property holds
and F ⊆ Dom(D). Then the following two statements are equivalent to
each other.

(a) D∗ : F̂ → H is bounded, i.e., F̂ ⊆ Dom(D∗).
(b) D : Dom(A) → F̂ is bounded, i.e., D Dom(A) ⊆ F̂ .
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Proof. We first show (a)⇒(b). Take any x ∈ Dom(A) and set

Φ(θ) = −(Ax,D∗θ)H + λ(Dx, θ)Ĥ + F̂∗(Rx, θ)F̂ , θ ∈ F̂ .

From the assumption (a), D∗ : F̂ → H is bounded and hence Φ: F̂ → C

is also bounded. Then the Lax-Milgram theorem yields that there exists
η ∈ F̂ such that

Φ(θ) = Êλ(η, θ).

If θ ∈ Dom(Â), then

(η, (λ − Â)∗θ)Ĥ = Êλ(η, θ)
= Φ(θ)
= −(Ax,D∗θ)H + λ(Dx, θ)Ĥ + F̂∗(Rx, θ)F̂
= −(Dx, Â∗θ)Ĥ − F̂∗(Rx, θ)F̂

+ λ(Dx, θ)Ĥ + F̂∗(Rx, θ)F̂ (∵ (17))

= (Dx, (λ − Â∗)θ)Ĥ .

Since (λ − Â∗)Dom(Â∗) = Ĥ , we have η = Dx. This means Dx ∈ F̂ and
hence (b) follows.

Conversely we assume (b). We note that operators Gλ : H → Dom(A)
and Ĝ

∼
λ : F̂∗ → F̂ are bounded. Combining this with (b), we see that

S = DGλ − Ĝ
∼
λRGλ : H → F̂ is bounded. Take any x ∈ Dom(D) and

θ ∈ F̂ .

(Dx, θ)Ĥ = F̂∗(Dx, Ĝ∗
λ(λ − Â∗)θ)F̂

= F̂ (ĜλDx, (λ − Â∗)θ)F̂∗

= F̂ ((DGλ + Ĝ
∼
λRĜλ)x, (λ − Â∗)θ)F̂∗

= F̂ (Sx, (λ − Â∗)θ)F̂∗

= (x, S∗(λ − Â∗)θ)H (∵ S∗ : F̂∗ → H∗ is bounded)

which implies θ ∈ Dom(D∗). Thus we have F̂ ⊆ Dom(D∗).

Now we are ready to prove the following theorem.

Theorem 3.2. We assume the condition of Theorem 3.1 and F̂ ⊆
Dom(D∗). Then the following statements are equivalent to each other.

(a) There exist a dense subspace D ⊆ Dom(A) and a dense subspace
D̂ ⊆ Dom(Ê) such that DD ⊆ Dom(Ê) and

(Ax,D∗θ)H = −Ê(Dx, θ) + F̂∗(Rx, θ)F̂ , ∀x ∈ D, ∀θ ∈ D̂. (19)
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(b) For sufficiently large λ,

DGλx = ĜλDx + Ĝ∼
λ RGλx, ∀x ∈ Dom(D). (20)

Proof. To show (b)⇒(a), take D = Dom(A), D̂ = Dom(Ê). DD ⊆
Dom(Ê) follows from the previous proposition.

Conversely we assume (a). Since D̂ is dense in Ê , (19) holds for x ∈ D
and θ ∈ F̂ . If, in particular, θ ∈ Dom(Â), then it follows that

(Ax,D∗θ)H = (Dx, Â∗θ)Ĥ + F̂∗(Rx, θ)F̂ , x ∈ D.

The density of D in Dom(A) deduces that the equation above holds for all
x ∈ Dom(A). Now, by Theorem 3.1, we have (b)

A natural expression of the defective intertwining property is of the form
(16). But it is rather difficult to give the definite region. When R is
bounded, we can give a region where (16) holds as follows.

Proposition 3.2. Under the assumptions of Proposition 3.1, we ad-
ditionally suppose one of (and hence both of) properties (1) and (2) of
Proposition 3.1. We further assume that R is bounded. Then, for any
x ∈ Dom(A2), we have Dx ∈ Dom(Â), ÂDx ∈ Dom(Ê) and the following
identity holds.

ÂDx = DAx − Rx. (21)

Proof. Take any x ∈ Dom(A2). We first show Dx ∈ Dom(Â). It follows
from Proposition 3.1 that Dx ∈ Dom(Ê). Hence, for θ ∈ Dom(Â∗),

Ê(Dx, θ) = −(Dx, Â∗θ)
= −(Ax,D∗θ) + (Rx, θ) (∵ Theorem 3.1 (a))
= −(DAx, θ) + (Rx, θ).

Clearly this identity holds for all θ ∈ Dom(Ê) and the right hand side is
continuous in θ with respect to the Ĥ-norm since R is bounded. This yields
that Dx ∈ Dom(Â) and ÂDx = DAx − Rx.

In the case R = 0, the proposition above can be extended to the higher
order case.
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Proposition 3.3. Assume assumptions of Proposition 3.2 and R = 0.
Then, for any x ∈ Dom(An), we have Dx ∈ Dom(Ân−1), Ân−1Dx ∈
Dom(Ê) and the following identities hold:

Ân−1Dx = DAn−1x,

Ê(Ân−1Dx, θ) = −(Anx,D∗θ), ∀θ ∈ Dom(Ê).

Proof. We prove them by the induction on n. The case n = 1 is nothing
but Proposition 3.1.

Assuming the case n, we will prove them for n + 1. So let us suppose
x ∈ Dom(An+1). Set y = Ax. We can use the assumption of induction
since y ∈ Dom(An). Hence we have Dy ∈ Dom(Ân−1), Ân−1Dy ∈ Dom(Ê)
and it holds that

Ân−1Dy = DAn−1y. (22)

Since x ∈ Dom(A2), we have by virtue of Proposition 3.2,

ÂDx = DAx = Dy ∈ Dom(Ân−1)

which implies Dx ∈ Dom(Ân). Further

ÂnDx = Ân−1ÂDx = Ân−1Dy ∈ Dom(Ê).

Thus we have obtained ÂnDx ∈ Dom(Ê). Therefore

ÂnDx = Ân−1Dy

= DAn−1y (∵ (22))
= DAnx.

Now, for any θ ∈ Dom(Ê),

Ê(ÂnDx, θ) = Ê(Ân−1Dy, θ)
= −(Any, D∗θ) (the assumption of induction)

= −(An+1x,D∗θ).

Thus we have obtained the case n + 1.

4. GENERATOR DOMAIN
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In this section, we see that we can determine the generator domain using
the defective intertwining property.

Let the notations be the same as in the previous section. We further
assume

(B.2) E(x, y) = (Dx,Dy)Ĥ .

Therefore E is symmetric and the generator A is given by

A = −D∗D. (23)

But the symmetry of Ê is not required.

Theorem 4.1. Assume (B.1), (B.2) and the defective intertwining prop-
erty between A and Â. We further assume D∗ ∈ L(F̂ ; H). Then x ∈
Dom(A) if and only if x ∈ F and Dx ∈ F̂ . Moreover the following equality
holds:

(Ax,Ax)H = Ê(Dx,Dx) − F̂∗(Rx,Dx)F̂ ∀x ∈ Dom(A). (24)

Proof. Suppose x ∈ F and Dx ∈ F̂ . Since we have assumed F̂ ⊆
Dom(D∗) and A = −D∗D, we have x ∈ Dom(A). The reversed implication
is nothing but the Proposition 3.1. The equation (24) is easily obtained by
setting θ = Dx in (19).

We can also extend the theorem above to the higher order case as follows.

Theorem 4.2. Assume all assumptions of Theorem 4.1 and R = 0.
Then x ∈ Dom(An) if and only if Dx ∈ Dom(Ân−1) and Ân−1Dx ∈
Dom(Ê). In this case, the following equality holds:

Ân−1Dx = DAn−1x. (25)

Proof. The sufficiency of x ∈ Dom(An) is already proved in Proposi-
tion 3.3. We prove the necessity by the induction on n.

Assuming the case n, we will show it for n + 1. So we suppose Dx ∈
Dom(Ân) and ÂnDx ∈ Dom(Ê). Since these relations holds for n − 1, we
have x ∈ Dom(An) by the assumption of induction. Therefore D∗ÂnDx is
well-defined since Dom(Ê) ⊆ Dom(D∗).
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Now let us take any z ∈ Dom(A).

(D∗ÂnDx, z) = (ÂnDx,Dz)

= (ÂÂn−1Dx,Dz)

= (D∗(Ân−1Dx), Az) (∵ Theorem 3.1 (a))

= (D∗(DAn−1x), Az)
= (Anx,Az).

Since the left hand side is continuous in z with respect to the H-norm,
this yields Anx ∈ Dom(A). Thus we have proved the result for n + 1.

As an example, we consider a Schrödinger operator of the form A = Δ−V
on R

d. Here V is a scalar potential. We assume that V is bounded from
below. Our aim is to give a characterization of the domain Dom(Δ − V ).
Here we regard Δ−V as a self-adjoint operator on L2(Rd). It is well-known
that f ∈ L2(Rd) belongs to Dom(Δ−V ) if and only if (Δ−V )f ∈ L2(Rd)
in the sense of distribution.

We give a different characterization. To apply Theorem 4.1, we have
to introduce another semigroup acting on 1-forms on Rd. Let T ∗Rd be
the cotangent bundle of Rd and we denote the all L2-sections of T ∗Rd by
L2Γ(T ∗

R
d), i.e., L2Γ(T ∗

R
d) is the set of all square integrable 1-forms. We

define an operator Â on L2Γ(T ∗Rd) by

Â = Δ − V.

Â has the same form as A = Δ − V but it acts on 1-forms: a 1-form θ is
regarded as an Rd-valued function θ = (θ1, . . . , θd) and Â acts component-
wisely, i.e.,

Âθ = (Aθ1, . . . , Aθd).

So we have the following defective intertwining property:

∇Af = ∇(Δf − V f)
= ∇Δf − V ∇f − f∇V

= Â∇f + Rf

where R is defined by

Rf = −f∇V. (26)
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Here the identity above holds for f ∈ C∞
0 (Rd). But C∞

0 (Rd) is a core for
the operator A and we can apply Theorem 3.2; the defective intertwining
property in our sense holds.

The associated quadratic forms with A and Â are given by

E(f, g) =
∫

Rd

(∇f,∇g) dx +
∫

Rd

V fg dx,

Ê(θ, η) =
∫

Rd

(∇θ,∇η) dx +
∫

Rd

V (θ, η) dx.

Since V is bounded from below, there exists δ > 0 such that Eδ = E +δ( , )
and Êδ = Ê + δ( , ) are non-negative definite. We take ω > δ and fix it.
We denote the domain of E by F and the domain of Ê by F̂ . To ensure
the boundedness of R : F → F̂∗, we assume the following condition for the
potential V :

|∇V | ≤ C(V+ + 1). (27)

Here V+ is the positive part of V . The boundedness of R can be seen as

|(Rf, θ)| =
∫

Rd

(f∇V, θ)dx

≤ C

∫
Rd

(V+ + 1)|f ||θ|dx

≤ C

{∫
Rd

(V+ + 1)|f |2dx

}1/2{∫
Rd

(V+ + 1)|θ|2dx

}1/2

≤ C′Eω(f, f)1/2Êω(θ, θ)1/2.

This means that R is a bounded operator from F into F̂∗. Now we can
apply Theorem 4.1 to obtain the following theorem.

Theorem 4.3. Assume that V is continuously differentiable, bounded
from below and satisfies (27). Then

Dom(Δ − V ) = {f ∈ L2;∇f,∇2f, V f ∈ L2}. (28)

Proof. First suppose f ∈ Dom(Δ − V ). We notice that ∇∗ is a mi-
nus divergence operator and hence Dom(∇∗) ⊆ Dom(Ê). Now, applying
Theorem 4.1, we have ∇f ∈ Dom(Ê) and hence ∇2f ∈ L2 which leads
Δf ∈ L2. On the other hand, it holds that (Δ − V )f ∈ L2 and it follows
that V f ∈ L2.
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Conversely, suppose that f,∇2f, V f ∈ L2. Then, clearly (Δ−V )f ∈ L2

which implies f ∈ Dom(Δ − V ). This completes the proof.

Remark 4. 1. This result is known when V is a polynomial (see, Gui-
bourg [4], Shen [10].)1

(28) is equivalent to Dom(Δ − V ) = Dom(Δ) ∩ Dom(V ). Under this
condition, Ichinose-Tamura [5] proved the norm convergence of Trotter-
Kato product formula. Our case include, e.g., the case V (x) = ex as a
special case.

We can discuss similar problem on a Riemannian manifold. In this case,
the space is curved and so an effect of curvature comes in. Let M be a com-
plete Riemannian manifold and we denote the Laplace-Beltrami operator
by Δ and the Ricci curvature by Ric. We assume that Ric is bounded from
below and define a bilinear form QRic on the space of square integrable
differential 1-forms by

QRic(θ, η) =
∫

M

(Ric θ, η)dx

where dx denote the Riemannian volume. Suppose we are given a scalar
function V which satisfies the same condition (27). Then we have the
following theorem.

Theorem 4.4. The following equalities hold:

Dom(Δ − V ) = Dom(Δ) ∩ Dom(V )

= Dom(∇2) ∩ Dom(V )

= {f ∈ L2;
√
|V | + 1∇f,∇2f, V f ∈ L2} ∩ Dom(QRic).

Proof. Set A = Δ − V and Â = −dd∗ − d∗d − V . Here d is the
exterior differentiation and d∗ is its dual. Â is acting on square integrable
differential 1-forms. Using the Weitzenböck formula, the associated bilinear
forms are given by

E(f, g) =
∫

M

(∇f,∇g)dx, Ê(θ, η) =
∫

M

(∇θ,∇η)dx +
∫

M

(Ric θ, η)dx +
∫

M

(V θ, η)dx.

In this case, the defective intertwining property takes the following form:

∇A = Â∇−∇V.

1The author thanks Professor T. Ichinose who taught the author the references.
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Take any f ∈ Dom(Δ). Then, by Theorem 4.1, it holds that ∇f ∈ Dom(Ê),
i.e., ∇2f ∈ L2,

√|V | + 1∇f ∈ L2 and ∇f ∈ Dom(QRic).
Conversely, for any f ∈ Dom(∇2) ∩ Dom(V ), it is easy to see that f ∈

Dom(Δ). In fact, Δf is nothing but the trace of ∇2f . Therefore it follows
that f ∈ Dom(Δ − V ).

The remaining equalities are easy.

The interesting point of the theorem above is that for any f ∈ Dom(Δ),
it holds that

∫
M

(Ric∇f,∇f)dx < ∞ no matter how large Ric is.

Remark 4. 2. The argument above works even in infinite dimensional
space, e.g., an abstract Wiener space. In this case, we replace the Laplacian
with the Ornstein-Uhlenbeck operator.
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