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0. Introduction

The general theory of Dirichlet forms on locally compact state spaces has its origin in the
classical work by Beurling and Deny [6, 7] and has been developed deeply by Fukushima
[11] and Silverstein [20]. Recently various investigations on Dirichlet forms on infinite di-
mensional, and hence non-locally compact, topological vector spaces, and many attempts
to extend the general theory on locally compact spaces to such spaces have been made by
several authors. See [1, 2] and the references therein. In particular, on many topological
vector spaces, diffusion processes associated with Dirichlet forms have been constructed
([1, 16]). Moreover, symmetric Markov processes corresponding to Dirichlet forms on
separable metric spaces have been deeply studied in [2]. Once one obtains a symmetric
Markov process, the recent development of general theory of right processes (cf. [15, 19])
brings us to the world where the machineries of stochastic calculus and probabilistic po-
tential theory work. In this sense, most works on Dirichlet forms on non-locally compact
state spaces correspond to their probabilistic aspects. On the contrary, we devote a half
of the paper to the investigation of analytic aspects of Dirichlet forms on non-locally com-
pact spaces and we aim at unifying their analytic and probabilistic aspects. Our goal will
be to present a general theory of Dirichlet forms with non-locally compact state spaces,
following the celebrated work by Fukushima [11].

In the paper, we consider a Dirichlet form on a Lusinian separable metric space. A key
assumption we make is that the corresponding 1-capacity is tight. See Assumption (A.3) in
Section 1. Roughly speaking, this assumption means that the state space may be thought
of as a locally compact space from the point of view of Dirichlet forms. Moreover, since
most measures appearing in the study of Dirichlet forms (like measures of finite energy
integral, killing measures and so on) are dominated by the capacity, this assumption also
implies the tightness of families of such measures, which is a substitute for the fact that on
a locally compact space every positive linear functional on a space of bounded continuous
functions is realized by a measure. Hence we need not to identify the Dirichlet form with
the one on a compact metric space by using the compactification argument as in [1, 16].

In Section 1, we will fix the situation to deal with and make some preliminary ob-
servations on the domain of the Dirichlet form. Section 2 will be devoted to the study
of measures of finite energy integral, smooth measures, and α-potentials. In Section 3,
1-equilibrium potentials of Borel sets and the spectral synthesis will be studied. The
Beurling-Deny formula for Dirichlet forms on non-locally compact spaces will be estab-
lished in Section 4. The existence of the associated Hunt process, a brief review on the
associated probabilistic potential theory, and the unification of analytic and probabilis-
tic potential theoretical notions will be discussed in Section 5. In Section 6, we study
the local property and give a probabilistic interpretation of the Beurling-Deny formula.
That the stochastic calculus developed in [11] in the case of locally compact state space
remains valid in our situation will be seen in Section 7. After a long course of presenting
a general theory of Dirichlet forms with non-locally compact metric space, we will see in
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Section 8 that the result in [13] on closable parts of pre-Dirichlet forms remains valid in
our situation. This gives rise to a lot of Dirichlet forms on non-locally compact spaces.

Another systematic study of a general theory of Dirichlet forms on non-locally compact
spaces will be found in the book [17] which Ma and Röckner are now preparing.

1. Preliminaries

Let X be a Lusinian separable metric space and B(X) be its topological Borel field. We
fix a probability measure m on (X,B(X)) such that supp[m] = X and a Dirichlet form
(E ,F) on L2(X; m) with 1 ∈ F .

For open G ⊂ X and any A ⊂ X, we define

Cap(G) = inf{E1(u, u) : u ∈ F and u ≥ 1 m-a.e. on G }, (1.1)

Cap(A) = inf{Cap(G) : G is open and A ⊂ G}, (1.2)

where E1(u, u) = E(u, u) + (u, u)m and (u, v)m =
∫
X uvdm. Then Cap is a Choquet

capacity :

Cap(∪An) = sup
n

Cap(An) and Cap(∩Kn) = inf
n

Cap(Kn), (1.3)

for any increasing sequence {An} of subsets of X and any decreasing sequence {Kn} of
compact subsets. Moreover Cap enjoys that

Cap(∪An) ≤ ∑
n

Cap(An), (1.4)

and, for any A ∈ B(X),

Cap(A) = sup{Cap(K) : K ⊂ A, K is compact}. (1.5)

See [1, 11, 12].
Now we introduce the hypotheses assumed throughout the paper :

(A.1) F ∩ Cb(X) is dense in (F , E1), where Cb(X) is the space of bounded continuous
functions on X,

(A.2) F ∩ Cb(X) separates the points of X,

(A.3) Cap(·) is tight: for any ε > 0, there exists a compact set K ⊂ X such that
Cap(X \ K) < ε.

A statement depending on x ∈ A is said to hold “q.e.” on A if it holds on A except
for a set of zero capacity with respect to Cap. A function u : X → R is said to be quasi-
continuous if there is a decreasing sequence {Gn} of open sets such that Cap(Gn) ↓ 0 and
u is continuous on each X \ Gn. As in [11, §3.1], we see that each u ∈ F possesses a
quasi-continuous m-version ũ. Moreover,
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Theorem 1.1. (i) For each open G ⊂ X, there is a unique eG ∈ F such that E1(eG, eG) =
Cap(G), 0 ≤ ẽG ≤ 1, and ẽG = 1 q.e. on G. Moreover, if w ∈ F satisfies w = 1 m-a.e. on
G, then E1(w, eG) = Cap(G).
(ii) If {un} is a Cauchy sequence in (F , E1), then there is a subsequence {unk

} and quasi-
continuous u ∈ F such that unk

→ u q.e. and in (F , E1).
(iii) If {un} is a Cauchy sequence in (F , E1) and if quasi-continuous versions ũn of un

converges to ũ, then ũ ∈ F and un → ũ in (F , E1).

In the remainder of this section, we investigate several properties of F following from
the assumptions. We first see that F ∩ Cb(X) separates the compact sets and finite
measures in X;

Lemma 1.2. (i) Let Ki, i = 1, 2, be disjoint compact sets in X. Then there exists an
f ∈ F ∩ Cb(X) such that (a) f = 1 on K1 and = 0 on K2, and (b) 0 ≤ f ≤ 1.
(ii) If μ and ν are finite measures on (X,B(X)) such that

∫
X fdμ =

∫
X fdν, f ∈ F∩Cb(X),

then μ = ν.

Proof. Let K1 and K2 be disjoint compact sets. Choose g ∈ Cb(X) such that g = 1
on K1 and = 0 on K2. It follows from the Markov property that F ∩ Cb(X) is a vector
lattice. Then, applying the Stone-Weierstrass theorem, we obtain an h ∈ F ∩ Cb(X)
with sup{|h(x) − g(x)| : x ∈ K1 ∪ K2} < 1/4. It is easy to see that the function
f ≡ 0 ∨ (2h − (1/2)) ∧ 1 enjoys the property described in the first assertion.

To see the second assertion, let μ and ν be finite measures with
∫
X fdμ =

∫
X fdν,

f ∈ F ∩ Cb(X). Take ε > 0 and g ∈ Cb(X) arbitrarily. Since X is Lusinian, there is a
compact set K such that μ(X \K) < ε and ν(X \K) < ε. Applying the Stone-Weierstrass
theorem again, we have an h ∈ F ∩ Cb(X) such that sup{|h(x) − g(x)| : x ∈ K} < ε.
Then we can easily conclude that∣∣∣∣∫

X
gdμ −

∫
X

gdν

∣∣∣∣ ≤ ε(μ(X) + ν(X) + 2‖g‖∞),

where ‖g‖∞ = sup{|g(x)| : x ∈ X}. Letting ε ↓ 0, we see that
∫
X gdμ =

∫
X gdν for any

g ∈ Cb(X), which means that μ = ν. �

For u ∈ L2(X; m), its support supp[u] is defined to be the support of the measure u·m.
We denote by Fcpt the space of u ∈ F with compact support. By virtue of Theorem 1.1,
we see that Fcpt separates the closed sets in X in the following sense:

Lemma 1.3. Let Fi, i = 1, 2, be disjoint closed sets in X. Then there is a sequence
{un} ⊂ Fcpt such that 0 ≤ un ≤ un+1 ≤ 1,

ũn = 0 q.e. on F1 and ũn → 1 q.e. on F2.

Proof. By virtue of Assumption (A.3), we obtain an increasing sequence {Kn} of
compact sets with Cap(X \ Kn) ↓ 0. Without loss of generality, we may assume that
ẽX\Kn → 0 q.e. By Lemma 1.2, there is an fn ∈ F ∩ Cb(X) such that 0 ≤ fn ≤ 1, fn = 1
on F1∩Kn and = 0 on F2∩Kn. Now it suffices to put un = max{1−fj∨eX\Kj

: 1 ≤ j ≤ n}.
�

We end this section with seeing that Fcpt is dense in F .
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Lemma 1.4. For every u ∈ F , there is a sequence {un} ⊂ Fcpt such that supp[un] ⊂
supp[u], ũn → ũ q.e., and in (F , E1). If ‖u‖∞ < ∞, then ‖un‖∞ ≤ ‖u‖∞.

Proof. Choose an increasing sequence {Kn} of compact sets such that Cap(X\Kn) ≤
n−2. Note that en ≡ ẽX\Kn → 0 q.e. Put v̂n = (−n) ∨ (u ∧ n) and vn = (1 − en)v̂n. It
is straightforward to see that supp[vn] ⊂ supp[u] and ṽn → ũ q.e. Moreover, if we put
‖ · ‖E1 = E1(·, ·)1/2, then we have

‖vn‖E1 ≤ ‖v̂n‖E1 + ‖en‖∞‖v̂n‖E1 + ‖v̂n‖∞‖en‖E1

≤ 2‖u‖E1 + nCap(X \ Kn)1/2

≤ 2‖u‖E1 + 1.

Hence the Cesàro mean {un} of a subsequence of {vn} converges to u in F .
The above construction also implies the second assertion. �

2. Measures of finite energy integral

A finite positive Borel measure on X is said to be of finite energy integral if there is a
constant C > 0 such that∫

X
|u|dμ ≤ C

√
E1(u, u) for any u ∈ F ∩ Cb(X).

We denote by S0 the totality of measures of finite energy integral. Since 1 ∈ F , every
μ ∈ S0 is a finite measure and hence inner regular. For μ ∈ S0, a unique Uαμ ∈ F is
determined by

Eα(Uαμ, u) =
∫

X
udμ u ∈ F ∩ Cb(X),

where Eα(u, u) = E(u, u) + α(u, u)m. We call Uαμ the α-potential of μ. We have

Theorem 2.1. The following conditions are equivalent to each other for u ∈ F and
α > 0.
(i) u is an α-potential.
(ii) u is α-excessive : u ≥ 0, e−αtTtu ≤ u m-a.e. for every t > 0.
(iii) u ≥ 0, βGα+βu ≤ u m-a.e. for every β > 0.
(iv) Eα(u, v) ≥ 0 for any v ∈ F with v ≥ 0 m-a.e.
(v) Eα(u, v) ≥ 0 for any v ∈ F ∩ Cb(X) with v ≥ 0.

By Lemma 1.2, if u ∈ F satisfies one of the above conditions, then there is a unique
μ ∈ S0 with u = Uαμ.

Proof. The equivalence of (ii), (iii) and (iv) can be seen in exactly the same manner
as in [11, Proof of Theorem 3.2.1]. The implications (i) ⇒ (v), (iv) ⇒ (v) are trivial. The
implication (v) ⇒ (iv) follows from (A.1) and that every normal contraction operates on
E . Thus it suffices to show (ii) ⇒ (i).

Let gn = n(u−nGn+αu) and μn = gn ·m. Note that Gαgn → u weakly in F and hence

sup
n

Eα(Gαgn, Gαgn) < ∞.
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In particular, μn(X) → Eα(u, 1) and supn μn(X) < ∞.
For an arbitrary but fixed ε > 0, take a compact set K with Cap(X \ K) ≤ ε. Then,

by Theorem 1.1, we have

μn(X \ K) ≤
∫

X
eX\Kgndm

= Eα(Gαgn, eX\K)

≤
√
Eα(Gαgn, Gαgn)

√
Eα(eX\K , eX\K)

≤
√

1 ∨ α
√
Eα(Gαgn, Gαgn)

√
Cap(X \ K).

Hence {μn} is tight and a subsequence {μnj
} converges weakly to a finite Borel measure

μ on X. Then, for any f ∈ F ∩ Cb(X), we have∫
X

fdμ = lim
j→∞

∫
X

fdμnj

= lim
j→∞

Eα(Gαgnj
, f)

= Eα(u, f),

which means that μ ∈ S0 and u = Uαμ. �

Combining the above proof with Lemma 1.2, we obtain

Proposition 2.2. Let μ ∈ F0 and gn = n(Uαμ−nGn+αUαμ). Then,
∫
X fgndm → ∫

X fdμ
for any f ∈ Cb(X) and Gαgn converges to Uαμ weakly in F .

Now, as in [11, pp.70, 71], we can conclude

Theorem 2.3. Let μ ∈ S0.

(i) μ(G) ≤
√
E1(U1μ, U1μ)

√
Cap(G) for any open G ⊂ X.

(ii) μ charges no set of zero capacity.
(iii) For every u ∈ F and α > 0, ũ ∈ L1(X; μ) and it holds that∫

X
ũdμ = Eα(Uαμ, u).

We call a positive Borel measure μ on X smooth if it satisfies the following conditions:

(S.1) μ charges no set of zero capacity

(S.2) there exists an increasing sequence {Fn} of compact sets such that

μ(Fn) < ∞, n = 1, 2, . . . (2.1)

μ(X \ ∪nFn) = 0, (2.2)

lim
n

Cap(K \ Fn) = 0 for any compact K ⊂ X. (2.3)

We denote by S the family of all smooth measures. It follows from Assumption (A.3)
that μ ∈ S if and only if the conditions (S.1), (2.1), and the following condition (2.4) are
satisfied.

lim
n

Cap(X \ Fn) = 0. (2.4)
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Lemma 2.4. Every finite Borel measure charging no set of zero capacity is smooth. In
particular, S0 ⊂ S.

Proof. By Assumption (A.3), there is an increasing sequence {Kn} of compact sets
such that Cap(X \ Kn) ↓ 0. It suffices to set Fn = Kn. �

Furthermore, any smooth measure is approximated by measures in S0 :

Theorem 2.5. μ ∈ S if and only if there exists an increasing sequence {Fn} of closed
sets satisfying (2.2) and (2.3) and IFn · μ ∈ S0.

Proof. The “Only if” part can be seen in exactly the same manner as in [11, Proof
of Theorem 3.2.3].

To see the “if” part, let {Fn} be an increasing sequence of closed sets satisfying (2.2)
and (2.3) and IFn · μ ∈ S0. Let A be a Borel set such that Cap(A) = 0. By Theorem 2.3,
μ(Fn ∩ A) = 0. Combining with (2.2), we have μ(A) = 0. Thus (S.1) is satisfied.

By Assumption (A.3), there is an increasing sequence {Kn} of compact sets with
Cap(X \ Kn) ↓ 0. Put F̃n = Fn ∩ Kn. Since Cap(X \ ∪nKn) = 0, μ(X \ ∪nKn) = 0.
Hence

μ(X \ ∪nF̃n) = 0.

Moreover, the subadditivity of Cap implies that (2.3) holds for F̃n. Thus (S.2) is satisfied.
�

3. Equilibrium potentials

The function eG obtained in Theorem 1.1 is called the 1-equilibrium potential of an open
set G. In this section, we consider equilibrium potentials for Borel sets.

Lemma 3.1. For u ∈ F and closed F ⊂ X, the following conditions are equivalent.
(i) u = Uαμ for some μ ∈ S0 with supp[μ] ⊂ F .
(ii) Eα(u, v) ≥ 0 for any v ∈ F with ṽ ≥ 0 q.e. on F .

Moreover, if F is compact, then each of the above conditions is equivalent to
(iii) Eα(u, v) ≥ 0 for any v ∈ F ∩ Cb(X) with v ≥ 0 on F .

Proof. The implication (i) ⇒ (ii) follows from Theorem 2.3 (iii).
We now assume that (ii) is satisfied. By Theorem 2.1, there is a μ ∈ S0 such that

u = Uαμ. Let K be a compact set with K∩F = ∅. Due to Lemma 1.3, there is a sequence
{gn} of quasi-continuous functions satisfying that

0 ≤ gn ≤ 1, gn = 0 q.e. on F and ↑ 1 q.e. on K.

Since Eα(u, gn) = 0, applying Theorem 2.3, we have

μ(K) ≤ lim inf
n→∞

∫
X

gndμ

= lim inf
n→∞ Eα(u, gn) = 0.
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Thus the implication (ii) ⇒ (i) has been shown.
Now suppose that F is compact. The implication (ii) ⇒ (iii) is trivial. Suppose that

(iii) is satisfied. Taking advantage of Theorem 2.1, we have a μ ∈ S0 such that u = Uαμ.
Let K be a compact set with K ∩ F = ∅. Due to Lemma 1.2, there is a g ∈ F ∩ Cb(X)
satisfying that

0 ≤ g ≤ 1, g = 0 on F and = 1 on K.

Then,

μ(K) ≤
∫

X
gdμ = Eα(u, g) = 0,

and hence the implication (iii) ⇒ (i) has been seen. �

Consider now a B ∈ B(X) and set

LB = {u ∈ F : ũ ≥ 1 q.e. on B}.
Then LB admits a unique element eB minimizing E1(u, u) on LB. We call eB the equilib-
rium potential of B. Moreover, eB is a unique element of F satisfying

ẽB = 1 q.e. on B, (3.1)

E1(eB, v) ≥ 0 for any v ∈ F with ṽ ≥ 0 q.e. on B. (3.2)

In particular, if w ∈ F and = 1 q.e. on B, then E1(eB, w) = E1(eB, eB). Applying the
above lemma, we see that

eB = U1νB for some νB ∈ S0 with supp[νB] ⊂ B. (3.3)

νB is called the equilibrium measure of B. It has been seen by Fukushima and Kaneko
[12] that, for every B ∈ B(X),

Cap(B) = E1(eB, eB) = inf{E1(u, u) : u ∈ LB}. (3.4)

Using the equilibrium potential, we can show

Theorem 3.2. For a Borel set B, the following conditions are equivalent.
(i) Cap(B) = 0.
(ii) μ(B) = 0 for any μ ∈ S0.
(iii) μ(B) = 0 for any μ ∈ S00 ≡ {μ ∈ S0, ‖U1μ‖∞ < ∞}.

Proof. The equivalence of (i) and (ii) can be seen in the same way as [11, p.77].
Suppose that (iii) is fulfilled. Let μ ∈ S0 and Γn = {U1μ ≤ n}. Choose an increasing

sequence {Kn} of compact sets such that Cap(X \ Kn) ↓ 0. By Theorem 2.3,

μ(X \ ∪nKn) = 0. (3.5)

As in [11, p.77], if we put μn = (μ(Γn ∩ Kn)−1IΓn∩Kn) · μ, then μn ∈ S00. Moreover, by
(3.5),

μ(B) = lim μ(Γ ∩ Kn)μn(B) = 0

which shows the implication (iii) ⇒ (ii). �
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Consider an α-excessive function f ∈ F and an arbitrary set B ⊂ X. Define

Lf,B = {u ∈ F : ũ ≥ f̃ q.e. on B}.

Then Lf,B admits a unique element fB minimizing E1(u, u) on Lf,B. We call fB the
α-reduced function of f on B. Moreover, fB is a unique element of F satisfying

f̃B = f̃ q.e. on B (3.6)

Eα(fB, v) ≥ 0 for any v ∈ F with ṽ ≥ 0 q.e. on B. (3.7)

Applying Lemma 3.1, we see that

fB = Uαν for some ν ∈ S0 with supp[ν] ⊂ B. (3.8)

As in [11, pp.78, 79], we have

Lemma 3.3. Let B be a Borel set. Define

FX\B = {u ∈ F : ũ = 0 q.e. on B}

and HB
α be its orthogonal complement in (F , Eα):

F = FX\B ⊕HB
α .

Then, f = (f − fB) + fB represents the corresponding orthogonal decomposition.

In connection with the space HB
α , we finally prove a theorem on the spectral synthesis.

An open set G is said to be an α-regular set of u ∈ F if

Eα(u, v) = 0 for v ∈ F with supp[v] ⊂ G.

Lemma 3.4. Let u ∈ F . If G1 and G2 are both α-regular sets of u, then so is G1 ∪ G2.

Proof. By virtue of Lemma 1.4, it suffices to show

Eα(u, v) = 0 for any bounded v ∈ Fcpt with supp[v] ⊂ G1 ∪ G2. (3.9)

Take a bounded v ∈ Fcpt with K ≡ supp[v] ⊂ G1 ∪G2. Choose open sets G′
1 and G′

2 such
that

K ⊂ G′
1 ∪ G′

2, and G′
i ⊂ Gi, i = 1, 2.

We set K1 = K \ G′
2 and K2 = K \ G′

1. By Lemma 1.2, there is a φ ∈ F ∩ Cb(X)
such that 0 ≤ φ ≤ 1 and φ = 1 on K1 and = 0 on K2. Then φv, (1 − φ)v ∈ F ,
supp[φv] ⊂ K ∩ G′

1 ⊂ G1 and supp[(1 − φ)v] ⊂ G2. Hence we have

Eα(u, v) = Eα(u, φv) + Eα(u, (1 − φ)v) = 0,

which completes the proof. �

We define the α-spectrum σα(u) as the complement of the largest α-regular open set
of u.
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Lemma 3.5. Let μ ∈ S0. Then σα(Uαμ) = supp[μ].

Proof. Let v ∈ F satisfy supp[v] ⊂ X \ supp[μ]. Then ṽ = 0 q.e. on supp[μ]. By
Theorem 2.3, we have

Eα(Uαμ, v) = 0

Thus X \ supp[μ] is an α-regular set of Uαμ and

supp[μ] ⊃ σα(Uαμ).

We now suppose that supp[μ] \ σα(Uαμ) �= ∅. Choose open sets Gi, i = 1, 2, such that
G1 ∩ supp[μ] �= ∅, G1 ∩ σα(Uαμ) = ∅, G2 ⊃ σα(Uαμ), and G1 ∩ G2 = ∅. By Lemma 1.3,
there exists a sequence {φn} ⊂ F such that φn = 0 q.e. on G2 and → 1 q.e. on G1. Since

supp[φn] ⊂ X \ G2 ⊂ X \ σα(Uαμ),

we have

μ(G1) ≤ lim inf
n

∫
X

φndμ

= lim inf
n

Eα(φn, Uαμ)

= 0

which contradicts to that G1 ∩ supp[μ] �= ∅. Thus we obtain the identity

supp[μ] = σα(Uαμ).

�

Lemma 3.6. Let G ⊂ X be open and W G
α be the closure of {u ∈ F : σα(u) ⊂ G} in

(F , Eα). Then W G
α = HG

α .

Proof. The inclusion W G
α ⊂ HG

α is immediate consequence of the definition of σα(u).
The converse inclusion can be seen in exactly the same way as in [11, Proof of Lemma 3.3.4].
�

We are now prepared to repeat the argument used in [11, pp.80, 90] and obtain

Theorem 3.7. Let F be a closed set and W F
α = {u ∈ F : σα(u) ⊂ F}. Then W F

α = HF
α .

In particular, each u ∈ F can be approximated in (F , Eα) by finite linear combinations of
α-potentials of measures in S0 supported by σα(u).

4. Beurling-Deny formula

The aim of this section is to establish the following Beurling-Deny formula.
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Theorem 4.1. The Dirichlet form E can be expressed for u, v ∈ F as follows:

E(u, v) = E (c)(u, v) (4.1)

+
∫

X×X\D
(ũ(x) − ũ(y))(ṽ(x) − ṽ(y))J(dxdy) +

∫
X

ũ(x)ṽ(x)k(dx).

In this expression, E (c) is a symmetric form satisfying

E (c)(u, v) = 0 (4.2)

for u, v ∈ F such that v =constant on a neighborhood of supp[u], J is a σ-finite symmetric
measure on X × X \ D, D being the diagonal set of X × X, satisfying J(X × A) = 0 if
Cap(A) = 0, and k ∈ S0.

Such E (c), J , and k are determined uniquely by E and every normal contraction oper-
ates on E (c).

The Proof will be broken into several steps, each being a lemma. In the sequel, we fix
an increasing sequence {Kn} of compact sets with Cap(X \ Kn) ↓ 0 and a decreasing
sequence {εn} of positive numbers such that εn ↓ 0. Define

K(n) = {(x, y) ∈ Kn × Kn : d(x, y) ≥ εn}, (4.3)

where d denotes the metric on X.

Lemma 4.2. Let t > 0. There exists a finite symmetric Borel measure σt on X ×X such
that, for u, v ∈ L2(X; m), (u ⊗ v)(x, y) ≡ u(x)v(y) ∈ L1(X × X; σt) and

1

t
(Ttu, v)m =

∫
X×X

u ⊗ vdσt.

Moreover, it holds that

1

t
(u − Ttu, u)m =

1

2

∫
X×X

(ũ(x) − ũ(y))2σt(dxdy) +
1

t
(u2, 1 − Tt1)m.

Proof. The second assertion is an immediate consequence of the first.
To see the first assertion, set

β(A, B) =
1

t
(TtIA, IB)m.

By [9, Theorem III.74], there exists a Borel finite measure σt on X×X such that β(A, B) =
σt(A × B). Since the Markov property implies that σ(X × B) ≤ m(B)/t, we obtain the
desired conclusion. �

Lemma 4.3. Let E be a separable metric space and F be its closed subset. If a sequence
{μn} of finite measures on E converges weakly to a measure ν on E and if its restriction
μ|F on F does to a measure ξ on F , then ν(A) ≥ ξ(A ∩ F ) for any Borel subset of E.
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Proof. It is easily seen that∫
E

fdμ ≥
∫

F
f |Fdξ for f ∈ Cb(E), f ≥ 0.

Hence, for open G ⊂ E, we have μ(G) ≥ ξ(G ∩ F ), which implies the desired inequality.
�

Lemma 4.4. There is a symmetric Borel measure J on X×X\D such that J(X×A) = 0
if Cap(A) = 0, and

E(u, v) = −2
∫

X×X\D
ũ(x)ṽ(y)J(dxdy) (4.4)

for u, v ∈ F with supp[u] ∩ supp[v] = ∅.

Proof. Let μ
(n)
t = σt|K(n). We first show that

sup
t

μ
(n)
t (K(n)) < ∞. (4.5)

To do this, let Un(x) be the εn/6-neighborhood of x ∈ X. There exist x
(n)
i , y

(n)
i ∈ Kn,

i = 1, . . . , N , such that
K(n) ⊂ ∪N

i=1Un(x
(n)
i ) × Un(y

(n)
i ).

It is easily seen that Un(x
(n)
i )∩Un(y

(n)
i ) = ∅. By Lemma 1.2, there are φ

(n)
i ∈ F ∩Cb(X),

i = 1, . . . , N , such that 0 ≤ φ
(n)
i ≤ 1, φ

(n)
i = 1 on Kn ∩Un(x

(n)
i ) and = 0 on Kn ∩Un(y

(n)
i ).

Set f
(n)
i = (3φ

(n)
i − 2) ∨ 0 and g

(n)
i = (1 − 3φ

(n)
i ) ∨ 0. Since f

(n)
i , g

(n)
i ∈ F ∩ Cb(X) and

their supports are disjoint for i = 1, . . . , N , it holds

μ
(n)
t (K(n) ∩ (Un(x

(n)
i ) × Un(y

(n)
i )) ≤

∫
X×X

f
(n)
i ⊗ g

(n)
i dσt

=
1

t
(Ttf

(n)
i − f

(n)
i , g

(n)
i )m

≤
√

1

t
(Ttf

(n)
i − f

(n)
i , f

(n)
i )m

√
1

t
(Ttg

(n)
i − g

(n)
i , g

(n)
i )m

≤
√
E(f

(n)
i , f

(n)
i )

√
E(g

(n)
i , g

(n)
i ),

which implies (4.5).

Since K(n) is compact, for some tj ↓ 0, μ
(n)
tj converges to a finite symmetric Borel

measure μ(n) on K(n). We next observe

μ(n)(K(n) ∩ (X × A)) = 0 if Cap(A) = 0. (4.6)

In fact, take a decreasing sequence {Gk} of open sets such that Gk ⊃ A and Cap(Gk) ↓ 0.
Then we have

μ(n)(K(n) ∩ (X × Gk)) ≤ lim inf
j

μ
(n)
tj (K(n) ∩ (X × Gk)). (4.7)
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On the other hand, we obtain

lim sup
j

μ
(n)
tj (K(n) ∩ (X × Gk)) ≤ lim sup

j

∫ ∑
i

f
(n)
i ⊗ (g

(n)
i eGk

)dσtj

= lim sup
j

∑
i

1

tj
(Ttjf

(n)
i − f

(n)
i , g

(n)
i eGk

)m

= −
N∑

i=1

E(f
(n)
i , g

(n)
i eGk

).

Since g
(n)
i , eGk

are bounded, it is straightforward to see that g
(n)
i eGk

→ 0 weakly in F as
k → ∞. We therefore have

lim
k

lim sup
j

μ
(n)
tj (K(n) ∩ (X × Gk)) = 0 (4.8)

Hence, letting k tend to infinity in (4.7), we obtain (4.6).
Let u, v ∈ F be bounded. Then we may assume that their quasi-continuous ver-

sions ũ, ṽ are also bounded. Choose a decreasing sequence {Gk} of open sets such that
Cap(Gk) ↓ 0 and ũ, ṽ are both continuous on each X \Gk. For each k, by Uryson’s theo-
rem, there are uk, vk ∈ Cb(X) such that uk = ũ and vk = ṽ on X \Gk and ‖uk‖∞ ≤ ‖ũ‖∞
and ‖vk‖∞ ≤ ‖ṽ‖∞. Then, we have

|
∫

K(n)
ũ(x)ṽ(y)μ

(n)
tj (dxdy) −

∫
K(n)

ũ(x)ṽ(y)μ(n)(dxdy)|

≤
∫

K(n)
|ũ(x)ṽ(y) − uk(x)vk(y)|μ(n)

tj (dxdy)

+
∫

K(n)
|ũ(x)ṽ(y) − uk(x)vk(y)|μ(n)(dxdy)

+|
∫

K(n)
uk(x)vk(y)μ

(n)
tj (dxdy) −

∫
K(n)

uk(x)vk(y)μ(n)(dxdy)|
≤ 4‖ũ‖∞‖ṽ‖∞(μ

(n)
tj (K(n) ∩ (X × Gk)) + μ(n)(K(n) ∩ (X × Gk)))

+|
∫

K(n)
uk(x)vk(y)μ

(n)
tj (dxdy) −

∫
K(n)

uk(x)vk(y)μ(n)(dxdy)|.

Thus it follows from (4.7) and (4.8) that

lim
j

∫
K(n)

ũ(x)ṽ(y)μ
(n)
tj (dxdy) =

∫
K(n)

ũ(x)ṽ(y)μ(n)(dxdy). (4.9)

This yields that∫
K(n)

ũ(x)ṽ(y)μ(n)(dxdy) = lim
j

∫
K(n)

ũ(x)ṽ(y)μ
(n)
tj (dxdy) (4.10)

= lim
j

1

tj
(Ttju − u, v)m

= −E(u, v)

for u, v ∈ F such that supp[u], supp[v] ⊂ Kn and d(supp[u], supp[v]) ≥ εn.
We now finish the construction of J . By the diagonal argument, for some tj ↓ 0, each

(1/2)σtj |K(n) converges weakly to a finite symmetric Borel measure Jn on K(n) as j → ∞.
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(We will use ‘Jn’ for ‘1
2
μ(n)’ in the above observation.) Setting Jn((X×X \D)\K(n)) = 0,

we may regard Jn as a measure on X × X \ D. By Lemma 4.3, it holds

Jn+1(A) ≥ Jn(A) for A ∈ B(X × X \ D).

We define a Borel measure on X × X \ D by

J(A) = lim
n

Jn(A).

It is obvious that J is symmetric and J(X × B) = 0 if Cap(B) = 0.
We finally show that (4.4) holds. To do this, take u, v ∈ F with supp[u]∩supp[v] = ∅.

By Lemma 1.4, we may assume that u, v ∈ Fcpt and are bounded and nonnegative. Choose
n0 such that d(supp[u], supp[v]) ≥ εn0. Let un = u(1 − eX\Kn) and vn = v(1 − eX\Kn).
Then, ũn → ũ, ṽn → ṽ q.e. and weakly in F , and supp[un ⊗ vm] ⊂ K(n) for n, m > n0.
Hence, by (4.10),∫

X×X\D
ũn ⊗ ṽmdJ = lim

k

∫
X×X\D

ũn ⊗ ṽmdJk = −1

2
E(un, vm).

Letting n, m → ∞, we obtain (4.4). �

Lemma 4.5. There exists a k ∈ S0 such that 1
t
(1 − Tt1) · m → k weakly on X and

lim
t↓0

1

t
(u2, 1 − Tt1)m =

∫
X

ũ2dk for u ∈ F . (4.11)

Proof. We set

kt =
1

t
(1 − Tt1) · m.

By Lemma 4.2,∫
X

u2dkt ≤ 1

t
(u − Ttu, u)m ↑ E(u, u) as t ↓ 0 for u ∈ F . (4.12)

It follows from (4.12) with 1 and eX\Kn substituted for u that supt kt(X) < ∞ and {kt}
is tight. If k0 is the limit of a converging subsequence {ktj}, then∫

X
fdk0 = lim

j

1

tj
(f, 1 − Ttj1)m = E(f, 1)

for every f ∈ F ∩Cb(X). Thus, by Lemma 1.2, there exists a unique finite Borel measure
k to which kt converges weakly as t ↓ 0. By (4.12), it holds∫

X
u2dk ≤ E(u, u) for u ∈ F ∩ Cb(X). (4.13)

Hence k ∈ S0.
Let u ∈ F . There exists a sequence {unm} ⊂ F ∩ Cb(X) such that unm → ũn q.e.

and in F as m → ∞, where un = (−n) ∨ (u ∧ n). By Theorem 2.3 and (4.13), we obtain∫
X ũ2

ndk ≤ E(un, un). Letting n → ∞,∫
X

ũ2dk ≤ E(u, u) u ∈ F . (4.14)
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It is straightforward to see that, for every v ∈ F ∩ Cb(X),∣∣∣‖u‖L2(X;kt) − ‖ũ‖L2(X;k)

∣∣∣
≤ ‖u − v‖L2(X;kt) + ‖u − v‖L2(X;k) +

∣∣∣‖v‖L2(X;kt) − ‖v‖L2(X;k)

∣∣∣
Combining this with (4.12) and (4.14), we obtain (4.11). �

Lemma 4.6. There exists a symmetric form E (c) as stated in Theorem 4.1.

Proof. Let u ∈ F be bounded. By Lemmas 4.2, 4.5 and (4.9), we have

E(u, u) = lim
j

1

2

∫
X×X\K(n)

(ũ(x) − ũ(y))2σtj (dxdy)

+
∫

X×X\D
(ũ(x) − ũ(y))2Jn(dxdy) +

∫
X

ũ2(x)k(dx).

Letting n → ∞, we obtain

E(u, u) = lim
n

lim
j

1

2

∫
X×X\K(n)

(ũ(x) − ũ(y))2σtj (dxdy)

+
∫

X×X\D
(ũ(x) − ũ(y))2J(dxdy) +

∫
X

ũ2(x)k(dx).

By the monotone convergence theorem, for every u ∈ F , it holds that

E(u, u) = lim
M

lim
n

lim
j

1

2

∫
X×X\K(n)

(ũM(x) − ũM(y))2σtj (dxdy)

+
∫

X×X\D
(ũ(x) − ũ(y))2J(dxdy) +

∫
X

ũ2(x)k(dx),

where uM = (−M) ∨ (u ∧ M). Thus, by setting

E (c)(u, v) = lim
M

lim
n

lim
j

1

2

∫
X×X\K(n)

(ũM(x) − ũM(y))(ṽM(x) − ṽM(y))σtj (dxdy),

we obtain a symmetric form E (c) satisfying (4.1) and (4.2). Moreover, every normal
contraction operates on this E (c). �

Lemma 4.7. J is σ-finite.

Proof. As was seen in the proof of Lemma 4.4, for each n, there are f
(n)
i , g

(n)
i ∈

F ∩ Cb(X) and N = N(n) ∈ N such that IK(n) ≤ ∑N
i=1 f

(n)
i ⊗ g

(n)
i . Hence

J(K(n)) ≤
N∑

i=1

∫
X

f
(n)
i ⊗ g

(n)
i dJ = −2

N∑
i=1

E(f
(n)
i , g

(n)
i ) < ∞.

Obviously J(X × X \ ∪nK(n)) = 0. Thus, J is σ-finite. �
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Lemma 4.8. The decomposition (4.1) is unique.

Proof. Since
∫
X udk = E(u, 1) for u ∈ F ∩ Cb(X), the uniqueness of k follows from

Lemma 1.2.
Note that ∫

X×X\D
ũ ⊗ ṽdJ = −2E(u, v) (4.15)

for u, v ∈ F with supp[u] ∩ supp[v] = ∅. Let K be a compact set in X and δ > 0. If
we set K(δ) = {(x, y) ∈ K × K : d(x, y) ≥ δ}, then by using (4.15), Lemma 1.2, and
the argument similar to that in the proof of Lemma 4.4, we can conclude the uniqueness
of J on K(δ). Since every compact set in X × X \ D is covered by such K(δ) and X is
Lusinian, we have the uniqueness of J . �

In the case of locally compact state spaces, two approaches to the Beurling-Deny
formula are known ; one is analytic and the other is probabilistic. The above approach
that we employed for the Dirichlet form on a general metric space (which may not be
locally compact) is the analytic one. As will be seen in Section 7, the stochastic calculus
related to the Dirichlet form can be developed in the present situation. Then, by repeating
the argument in [14], we can establish the Beurling-Deny formula in the probabilistic way.

5. Hunt processes

We have been studying Dirichlet forms from the analytic point of view. We now proceed
to the probabilistic investigation of them.

We continue to assume the hypotheses (A.1)–(A.3). Then, combining [11, Chapter6]
and [2], we can conclude

Theorem 5.1. There exists a Hunt process M = (Ω,M, Xt, Px) on X associated with
(E ,F): for any Borel measurable, bounded u : X → R and t > 0,

(Ttu)(x) = Ex[u(Xt)] for m-a.e. x ∈ X, (5.1)

where Ex stands for the expectation with respect to Px.

Also see [17]. Thus we have a symmetric Hunt process M. Its transition function is
denoted by {pt, t > 0} and the resolvent {Rα, α > 0} of M is defined by

Rα(x,E) =
∫ ∞

0
e−αtpt(x,E)dt.

We now recall several notions of smallness of sets related to M. A point x is said to
be a regular point of a nearly Borel set B if Px(σB > 0) = 0, where

σB = inf{t > 0 : Xt ∈ B}. (5.2)

The totality of the regular points of B is denoted by Br. A set A is said to be finely open
if the set X \ A is thin at each x ∈ A, i.e., there is a nearly Borel set B = B(x) such
that x �∈ Br and B ⊃ X \ A. We say a set A is thin if it is contained in a nearly Borel
set B with Br = ∅. A is said to be semi-polar if it is contained in a countable union of
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thin sets. If A ⊂ B for a nearly Borel set B such that Px(σB < ∞) = 0 for any x ∈ X,
then A is called polar. A set N is called exceptional if there is a Borel set Ñ ⊃ N such
that Pm(σ

Ñ
< ∞) = 0, where Pm(·) =

∫
X Px(·)m(dx). We say that a set N is properly

exceptional if it is Borel and X \ N is M-invariant: Px(Xt, Xt− ∈ (X \ N)Δ, t ≥ 0) = 1
for any x ∈ X \ N , where Δ is the death point of M that is joined as an isolated point.

Taking advantage of recent general results in the potential theory on Markov processes
(right processes), we can recover the assertions in [11, §4.2] on the relationship among
the above notions of smallness. All results can be found in [15], however, for the sake of
completeness, we summarily state as a theorem:

Theorem 5.2. (i) A nearly Borel, finely open, m-negligible set is exceptional.
(ii) A set is exceptional if and only if it is contained in a properly exceptional set.
(iii) Any semi-polar set is exceptional.
(vi) Let {un} be a decreasing sequence of α-excessive function with respect to pt:un ≥ 0
and e−αtptun ≤ un on X. If limn un = 0 m-a.e., then u = 0 except for an exceptional set.

We now identify the above notions with those analytic ones in the proceeding sections.

Theorem 5.3. A set N is exceptional if and only if Cap(N) = 0.

Proof. It suffices to notice that we can choose a decreasing sequence {An} of open sets
for relatively compact open sets in [11, Proof of Theorem 4.3.1], because Cap(X) < ∞.
�

We now investigate the quasi-continuity. As usual, every Borel measurable function
f : X → R is extended to XΔ = X ∪ {Δ} by setting f(Δ) = 0.

Theorem 5.4. (i) If u is quasi-continuous, then there is a properly exceptional set N
such that u is Borel measurable on X \ N and

Px(u(Xt) is right continuous and lims↑t u(Xs) = u(Xt−) for any t ≥ 0) = 1,

for any x ∈ X \ N .
(ii) Let u ∈ F . Suppose that there is a nearly Borel exceptional set N such that X \ N
is finely open and u is nearly Borel and finely continuous on X \ N . Then, u is quasi-
continuous.

Proof. To show (i), we follow [11, Proof of Theorem 4.3.2].
Let {An} be a decreasing sequence of open sets such that Cap(An) ↓ 0 and u is

continuous on each X \ An. By virtue of Assumption (A.3), we may assume that each
X \ An is compact.

Using Theorem 5.2 (iv), as in [11, Proof of Theorem 4.3.2], we can show that there
exists a properly exceptional set N such that

Px(lim
n

σAn = ∞) = 1 x ∈ X \ N.

Then the assertion follows from the continuity of u on each X \ An and the compactness
of X \ An.

16



The assertion (ii) can be seen in the same way as in [11, Proof of Theorem 4.3.2]. �

By this observation, we can make clear the relationship between {Tt} (resp. {Gα})
and {pt} (resp. {Rα}). Indeed, repeating the argument in [11, Proof of Theorem 4.3.3]
with Cb(X) for C0(X), we obtain

Theorem 5.5. For any nonnegative universally measurable function u ∈ L2(X; m),
(i) ptu is a quasi-continuous version of Ttu, t > 0,
(ii) Rαu is a quasi-continuous version of Gαu, α > 0.

Furthermore, the argument in [11, pp.106-110] also works in our situation and bears:

Theorem 5.6. Let B ∈ B(X). Define

p1
B(x) = Ex[e

−σB ], ṗ1
B(x) = Ex[e

−σ̇B ], and HB
α u(x) = Ex[e

−ασBu(XσB
)],

where σ̇B = inf{t ≥ 0 : Xt ∈ B}. Then
(i) p1

B and ṗ1
B are both quasi-continuous version of eB,

(ii) for u ∈ F , HB
α ũ is a quasi-continuous version of PHB

α
u, where PHB

α
the orthogonal

projection of F onto HB
α . (For the definition of HB

α , see Section 3.)

6. Continuity, killing, and jumps of sample paths

As in the previous sections, we consider the Dirichlet form (E ,F) satisfying (A.1)–(A.3)
and the associated Hunt process M. The Dirichlet form (E ,F) is said to possess the local
property if E(u, v) = 0 for u, v ∈ F such that supp[u] ∩ supp[v] = ∅. We have

Theorem 6.1. The following conditions are equivalent to each other.
(i) (E ,F) possesses the local property.
(ii) For any open set G ⊂ X, the hitting distribution

HX\G
α (x, dy) = Ex[e

−ασX\G ; XσX\G
∈ dy]

is concentrated on the boundary ∂G, q.e. x ∈ G.
(iii) There exists a properly exceptional set N such that

Px(Xt is continuous in t ∈ [0, ζ)) = 1 x ∈ X \ N, (6.1)

where ζ is the life time of M.

Proof. We first show the implication (i) ⇒ (ii). Let G ⊂ X be open. We set

Gn = {x ∈ X : d(x, G) < 1/n} and Fn = X \ Gn

By Lemma 1.3, for each n, there exists a sequence {unk} ⊂ Fcpt such that 0 ≤ ũnk ≤ 1
q.e., ũnk = 0 q.e. on G2n, and ũnk → 1 q.e. on Fn as k → ∞.

Let P be the orthogonal projection of F onto FG ≡ {u ∈ F : ũ = 0 q.e. on X \ G},
where F is thought of as the Hilbert space equipped with the inner product Eα. Since
supp[unk] ⊂ X \ G2n, it follows from the local property that

Eα(Punk, v) = Eα(unk,Pv) = Eα(unk, v) = 0 v ∈ FG.
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Hence Punk = 0 q.e. on X. Applying Theorem 5.6 (ii), we have

HX\G
α ũnk(x) = 0 for q.e. x ∈ G.

By Theorems 5.2 and 5.3, there is a properly exceptional set N such that ũnk = 0 on
G2n \ N , ũnk → 1 on Fn \ N , and HX\G

α ũnk = 0 on G \ N . Then we have

HX\G
α IFn(x) ≤ lim

k
HX\G

α unk(x) = 0 x ∈ G \ N.

Now letting n → ∞, we obtain

HX\G
α IX\G(x) = 0 x ∈ G \ N.

Thus (ii) follows from (i).
We next assume that (ii) holds. Let u, v ∈ F satisfy supp[u]∩supp[v] = ∅. Without loss

of generality, we may assume that u is nonnegative. We set G = {x ∈ X : d(x, supp[u]) >
d(x, supp[v])}. Obviously, G is open, contains supp[v], and supp[u]∩G = ∅. Since Pv = v,

E(u, v) = Eα(u, v) = Eα(Pu, v). (6.2)

On the other hand, it follows from Theorem 5.6 that

Pu(x) = ũ(x) −
∫

∂G
ũ(y)HX\G

α (x, dy) = 0 q.e. x ∈ G.

Hence Pu = 0 q.e. on X. Combining with (6.2), we have E(u, v) = 0. Thus (i) follows.
The implication (iii) ⇒ (ii) is trivial and the converse implication (ii) ⇒ (iii) can be

seen in the same way as in [11, p.114]. �

We now proceed to the probabilistic interpretation of the measures k and J obtained
in Theorem 4.1. In the following, we occasionally denote the integral of a function v with
respect to a positive measure μ by < μ, v > or < v, μ >. Moreover, Eh·m stands for the
integration with respect to the measure

∫
X h(x)Px(·)m(dx). As [11, Lemma 4.5.2], we

have

Proposition 6.2. (i) For any nonnegative Borel measurable f, h : X → R, and t > 0,

Eh·m[f(Xζ−); ζ ≤ t] =
∫ t

0
<fk, psh> ds. (6.3)

(ii) For α > 0 and nonnegative f ∈ Cb(X), Ex[e
−αζf(Xζ−)] is a quasi-continuous version

of the potential Uα(f · k).

We now investigate J . Let G be an arbitrary but fixed open set in X. Define the
kernel RG

α (x,E) by

RG
α (x,E) = Ex[

∫ τG

0
IE(Xt)dt],

where τG = σX\G. It is known [15] that {RG
α , α > 0} is an m-symmetric kernel and

Dynkin’s formula holds;

Rαf = RG
α f + HG

α Rαf for nonnegative Borel f,
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where {Rα} is the resolvent kernel of M. Combining this with Theorems 5.5 and 5.6, we
have

Eα(RG
α f, v) = (f, v)m for any v ∈ FG. (6.4)

Let MG be the part of M on G, i.e., MG = (XG
t , Px)x∈G, where XG

t = Xt for t < τG

and = Δ for t ≥ τG. Obviously {RG
α} is the resolvent kernel of MG. Hence it follows from

(6.4) that

Lemma 6.3. Define the part (EG,FG) of (E ,F) on G by

EG(u, v) = E(u, v) u, v ∈ FG.

Then MG is associated with the Dirichlet form (EG,FG).

Unfortunately the Dirichlet form EG does not satisfy Assumptions (A.1)–(A.3). However,
this form plays a key role in the investigation of J .

Take a v ∈ F such that supp[v] ∩ G = ∅ and define

Jv(dx) = 2IG(x)
∫

ṽ(y)J(dxdy).

For every u ∈ FG, it holds that∫
G
|ũ|dJv = −E(|u|, v) ≤ E(v, v)1/2E(u, u)1/2.

Since EG = E on FG, there exists a UG
α Jv ∈ FG such that∫

G
ũdJv = EG,α(UG

α Jv, u) = Eα(UG
α Jv, u) u ∈ FG.

By Theorems 4.1 and 5.6, we obtain

Eα(v − HX\G
α v, u) = −Eα(UG

α Jv, u) u ∈ FG,

and hence v − HX\G
α v = −UG

α Jv. In particular, for any nonnegative Borel h vanishing
outside of G,

Eh·m[e−ατGf(XτG
)] = 2

∫
RG

α h ⊗ vdJ. (6.5)

This formula is strengthened as follows.

Proposition 6.4.
(i) For any bounded Borel measurable functions f, g, h ≥ 0 such that supp[f ], supp[h] ⊂ G
and supp[g] ∩ G = ∅,

Eh·m[f(XτG−)g(XτG
); τG ≤ t] = 2

∫ t

0

[∫
pG

s h(x)f(x)g(y)J(dxdy)
]
ds,

where {pG
t } is the transition function of MG.

(ii) Ex[e
−ατGf(XτG−)g(XτG

)] on G is a quasi-continuous version of UG
α (fJg) for α > 0,

f, g ∈ F with supp[f ] ⊂ G and supp[g] ∩ G = ∅.
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Proof. (ii) is a consequence of (i) and Theorem 5.4.
To see (i), first suppose that f, g ∈ F and are bounded, and h = RG

α h′ for some
bounded h′ ∈ FG. Then, as in [11, p.119], we obtain

Eh·m[f(XτG−)g(XτG
); τG ≤ t] = lim

n

n

t

∫ t

0
(pG

s h, fpt/ng)mds

=
∫ t

0
lim

n
(fpG

s h, pt/ng − g)mds

= −
∫ t

0
E(fpG

s h, g)ds

= 2
∫ t

0

[∫
(fpG

s h) ⊗ gdJ
]
ds.

The assertion for general f, g, h, follows by applying the monotone class theorem. �

7. Stochastic calculus

Let X, m, (E ,F), and M = (Ω,M, Xt, Px) be as before. A real valued function At(ω),
t > 0, ω ∈ Ω, is called an additive functional (abbreviated to AF) if it is a perfect additive
functional in the ordinary sense but with respect to the restricted Hunt process MX\N ,
N being a properly exceptional set which depends on A in general. For details, see [11,
§5.1]. Two AF’s A1 and A2 are said to be equivalent if for each t > 0 Px(A

1
t = A2

t ) = 1
q.e. x ∈ X. A positive continuous AF (PCAF in abbreviation) means a nonnegative
continuous AF and the totality of all PCAF’s is denoted by A+

c .
As in [11, §5.1], we can establish

Theorem 7.1. The family of all equivalent classes of A+
c and S are in one to one corre-

spondence specified by the following relation:

lim
t↓0

1

t
Eh·m[(f · A)t] =<f · μ, h>, A ∈ A+

c , μ ∈ S,

for any γ-excessive h(γ > 0) and Borel measurable f ≥ 0, where (f · A)t =
∫ t
0 f(Xs)dAs.

Moreover, if μ ∈ S0, then U1
A(f ·μ) =

∫ ∞
0 e−tf(Xt)dAt is a quasi-continuous version of

the 1-potential U1(f · μ).

Proof. In the argument in [11, §5.1] in order to see the above relationship, the locally
compactness of the state space is used only in the proof of Lemma 5.1.6. So what we
have to do is to see that the assertion of [11, Lemma 5.1.6] holds in our situation, i.e. to
show the equivalence of the following three conditions for an increasing sequence {Fn} of
closed sets:

(i) Cap(K \ Fn) ↓ 0 for every compact K ⊂ X,

(ii) Cap(X \ Fn) ↓ 0,

(iii) Px(limn σX\Fn < ζ)=0 q.e. x ∈ X.

20



The implication (i) ⇒ (ii) is a consequence of Assumption (A.3) and the converse impli-
cation (ii) ⇒ (i) is trivial.

To see the equivalence of (ii) and (iii), recall that pn(x) ≡ Ex[e
−σX\Fn ] is a quasi-

continuous version of eX\Fn . Hence pn → 0 q.e. if Cap(X \ Fn) ↓ 0, which means the
implication (ii) ⇒ (iii) holds. By the bounded convergence theorem, pn → 0 q.e. if (iii)
holds. On the other hand, since E1(pn − pm, pn − pm) = |Cap(X \ Fn) − Cap(X \ Fm)|,
{pn} is a Cauchy sequence in F . Thus the implication (iii) ⇒ (ii) is verified. �

For AF’s At, Bt, we set

e(A, B) = lim
t↓0

1

2t
Em[AtBt], e(A) = e(A, A),

and, for u ∈ F , we define an AF A[u] by

A
[u]
t = ũ(Xt) − ũ(X0).

Then, by Lemma 4.5, we have

e(A[u]) = E(u, u)− 1

2

∫
X

ũ2dk.

We now consider the space M of AF’s M with Ex[Mt] = 0 and Ex[M
2
t ] < ∞ q.e., t > 0,

◦M≡ {M ∈ M : e(M) < ∞}, and the space Nc of continuous AF’s N such that e(N) = 0

and Ex[|Nt|] < ∞ q.e., t > 0. Every M ∈ ◦M determines a unique <M >∈ A+
c such that

Ex[<M >t] = Ex[M
2
t ] q.e., t > 0. As in [11, §5.2, 5.3], we obtain the following assertions.

(AF.i)
◦M is a real Hilbert space with inner product e(·, ·).

(AF.ii) For any Cauchy sequence {M (n)} ⊂ ◦M, there is a unique M ∈ ◦M and a sub-

sequence M (nk) such that e(M (n) − M) → 0 and for q.e. x ∈ X, Px(limk M
(nk)
t =

Mt uniformly on any finite interval of t) = 1.

(AF.iii) For each u ∈ F , there is a unique (M [u], N [u]) ∈ ◦M ×Nc such that A[u] =
M [u] + N [u], and it holds

e(M [u]) = E(u, u)− 1

2

∫
X

ũ2dk.

(AF.iv) Let u ∈ Fb(≡ {w ∈ F : w is bounded}). If we denote by μ<u> the smooth
measure associated with M [u], then it holds that∫

X
f̃dμ<u> = 2E(uf, u)− E(u2, f)

for any f ∈ Fb.
(AF.v) For AF A and u ∈ F , the following three conditions are equivalent:

(a) A = N [u],

(b) A ∈ Nc and Ex[At] = ptũ(x) − ũ(x) q.e. x ∈ X, t > 0,

(c) A ∈ Nc, limt↓0 Ex[At] = 0 q.e., and limt↓0 Ev·m[At] = −E(u, v) for v ∈ F .
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(AF.vi) The following two conditions are equivalent to each other for u ∈ F :

(i) N [u] is a continuous AF of bounded variation,

(ii) there exist smooth measures ν1 and ν2 such that E(u, v) =< (ν1 − ν2)|Fk
, ṽ > for

any v ∈ FFk
, k = 1, 2, . . ., where {Fk} is an increasing sequence of closed set with

Cap(X \ Fk) ↓ 0 and IFk
· νi ∈ S0, i = 1, 2, k = 1, 2, . . ..

In the remainder of this section, we see that the stochastic calculus related to the
Dirichlet form discussed in [11, §5.4] remains valid in our situation. In the sequel, E (c), J ,
and k denote the ones appearing in the Beurling-Deny formula (Theorem 4.1).

For u, v ∈ F , we define

μ<u,v> =
1

2
(μ<u+v> − μ<u> − μ<u>).

It is easily seen that, for u, v, f ∈ Fb,∫
X

f̃dμ<u,v> = E(uf, v) − E(vf, u) − E(uv, f) (7.1)

= lim
t↓0

1

t

∫
X×X\D

(ũ(y) − ũ(x))(ṽ(y) − ṽ(x))f̃(x)pt(x, dy)m(dx)+ <ũṽf̃ , k> .

Then we have

Lemma 7.2. For u, v, f ∈ Fb, it holds that∫
X

f̃dμ<u2,v> − 2
∫

X
f̃ ũdμ<u,v> (7.2)

= 2
∫

X×X\D
(ũ(y) − ũ(x))2(ṽ(y) − ṽ(x))f̃(x)J(dxdy)− <ũ2ṽf̃ , k> .

Proof. By (7.1), we have

LHS of (7.2) = lim
t↓0

1

t

∫
X×X

(ũ(y) − ũ(x))2(ṽ(y) − ṽ(x))f̃(x)pt(x, dy)m(dx)− <ũ2ṽf̃ , k> .

Choose an increasing sequence {Kn} of compact sets such that Cap(X \ Kn) ↓ 0 and ṽ
is continuous on each Kn. Then there is a decreasing sequence {εn} of positive numbers
such that εn ↓ 0 and

|ṽ(y) − ṽ(x)| ≤ 1

n
if x, y ∈ Kn and d(x, y) < εn.

Now we set

K(n) = {(x, y) ∈ Kn × Kn : d(x, y) ≥ εn}
Gn = X \ Kn.

As was seen in the proof of Lemma 4.4, for some decreasing sequence {tj} of positive
numbers with tj ↓ 0, each (1/2tj)ptj (x, dy)m(dx)|K(n) converges weakly to a Borel measure
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Jn on K(n) and limn Jn = J . We then decompose as

1

t

∫
X×X

(ũ(y) − ũ(x))2(ṽ(y) − ṽ(x))f̃(x)pt(x, dy)m(dx) = In(t) + IIn(t) + IIIn(t),

In(t) =
1

t

∫
K(n)

(ũ(y) − ũ(x))2(ṽ(y) − ṽ(x))f̃(x)pt(x, dy)m(dx),

IIn(t) =
1

t

∫
Kn×Kn\K(n)

(ũ(y) − ũ(x))2(ṽ(y) − ṽ(x))f̃(x)pt(x, dy)m(dx),

IIIn(t) =
1

t

∫
X×X\Kn×Kn

(ũ(y) − ũ(x))2(ṽ(y) − ṽ(x))f̃(x)pt(x, dy)m(dx).

As in the proof of Lemma 4.4, we obtain

lim
n→∞ lim

j→∞
In(tj) = 2

∫
X×X\D

(ũ(y) − ũ(x))2(ṽ(y) − ṽ(x))f̃(x)J(dxdy).

Let νt(dxdy) = (1/t)(ũ(y) − ũ(x))2pt(x, dy)m(dx). It then follows that

|IIn(t)| ≤ 1

n
‖f‖∞νt(X × X)

|IIIn(t)| ≤ 2‖v‖∞‖f‖∞νt(X × Gn).

By Lemma 4.2, νt(X × X) ≤ 2E(u, u) and hence

lim
n→∞ lim

t↓0
IIn(t) = 0.

Moreover we have

νt(X × Gn) ≤ 1

t

∫
X×X

(ũ(y) − ũ(x))2ẽGn(y)pt(x, dy)m(dx)

=
1

t
{(u2eGn , pt1)m − 2(ptu, ueGn)m + (u2, pteGn)m}

=
1

t
{−(u2eGn , 1 − pt1)m + 2(u − ptu, ueGn)m − (u2, eGn − pteGn)m}

→ − <ũ2ẽGn , k> +2E(u, ueGn) − E(u2, eGn) as t ↓ 0.

Since ẽGn , ũẽGn , ũ2ẽGn → 0 q.e. and weakly in F , it holds that

lim
n→∞ lim

t↓0
IIIn(t) = 0.

The proof is completed. �

Let
c

M [u] be the continuous part of M [u], and
c
μ<u> be the smooth measure associated

with <
c

M [u] >. If we set

c
μ<u,v>=

1

2
{ c
μ<u+v> − c

μ<u> − c
μ<v>},

then, as in [14], we can conclude from Lemma 7.2 that the following derivation property

of
c
μ<u> holds.
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Theorem 7.3. For u, v, w ∈ Fb, it holds that

c
μ<uv,w>= ũ· c

μ<v,w> +ṽ· c
μ<u,w> .

Now repeating the argument in [11, §5.4], we can show the following assertions on the
stochastic calculus.
(sc.i) For u1, . . . , un ∈ Fb and Φ ∈ C1(Rn), it holds that

c
μ<Φ(u),v>=

n∑
i=1

∂Φ

∂xi
(u)· c

μ<ui,v> for any v ∈ Fb, (7.3)

where u = (u1, . . . , un).
(sc.ii) For u1, . . . , un ∈ F and Φ ∈ C1

b (Rn)(≡ the space of all continuously differentiable
bounded functions with bounded derivatives), the identity (7.3) remains valid.
(sc.iii) For each M ∈ M1 ≡ {M ∈ M : μ<M>(X) < ∞} and f ∈ L2(X; μ<M>), there

exists a unique f · M ∈ ◦M such that

e(f · M, L) =
1

2

∫
X

f(x)μ<M,L>(dx) L ∈ ◦M, (7.4)

where μ<M,L> = (1/2){μ<M+L> − μ<M> − μ<L>}. Moreover, the mapping f �→ f · M is

an isometry of L2(X; μ<M>) to (
◦M, 2e).

(sc.iv) For u1, . . . , un ∈ Fb and Φ ∈ C1(Rn), Φ(u) ∈ Fb and satisfies that

c

M
[Φ(u)] =

n∑
i=1

∂Φ

∂xi
(u)· c

M
[ui]. (7.5)

(sc.v) For u1, . . . , un ∈ F and Φ ∈ C1
b (Rn), the identity (7.3) remains valid.

(sc.vi) If either (i) u1, . . . , un ∈ Fb and Φ ∈ C1(Rn) or (ii) u1, . . . , un ∈ F and Φ ∈
C1

b (Rn), then it holds that

E (c)(Φ(u),Φ(u)) =
1

2

n∑
i,j=1

∫
X

∂Φ

∂xi
(u)

∂Φ

∂xj
(u)d

c
μ<ui,uj> . (7.6)

8. Closable parts of pre-Dirichlet forms

Throughout this section, in addition to Assumptions (A.1)-(A.3), we assume the existence
of a subalgebra C ⊂ F ∩ Cb(X) such that

(C.1) 1 ∈ C, C is dense in F , and a countable subset of C separates the points of X,

(C.2) for each ε > 0, there is a function βε : R → [−ε, 1+ε] such that 0 ≤ βε(t)−βε(s) ≤
t − s, t ≥ s, βε(t) = t, 0 ≤ t ≤ 1, and βε(u) ∈ C whenever u ∈ C.

(C.3) for some δ > 0 and a > 0, βδ(t) = βδ(−a), t ≤ −a, and = βδ(a), t ≥ a.

A pre-Dirichlet form (A, C) is by definition a nonnegative definite symmetric bilinear
form on C × C with A(βε(u), βε(u)) ≤ A(u, u) for u ∈ C, ε > 0. Let μ ∈ FM(≡the
space of finite Borel measures on X). A pre-Dirichlet form is said to be closable on
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L2(X; μ) if A(un, un) → 0 whenever {un} is A-Cauchy and un → 0 in L2(X; μ). (E , C),
the restriction of E on C ×C, is a pre-Dirichlet form closable on L2(X; m). As was seen in
[13, §6], for each μ ∈ FM, there exists a unique pre-Dirichlet form closable on L2(X; μ),
say (E cls(μ), C), which is maximal in the sense that if a pre-Dirichlet form (A, C) closable on
L2(X; μ) is dominated by (E , C), i.e. A(u, u) ≤ E(u, u), u ∈ C, then (A, C) is dominated
by (E cls(μ), C). We call (E cls(μ), C) the closable part of (E , C) on L2(X; μ). In this section,
we aim at establishing a characterization of E cls(μ) analogous to [13] and showing the
tightness of the capacity associated with E cls(μ).

We first recall the extended Dirichlet space (E ,Fe). We say u ∈ Fe if there is an E-
Cauchy sequence {un} ⊂ F with un → u m-a.e. E on F is extended to Fe, again denoted
by E , as E(u, u) = limn E(un, un). We have

Lemma 8.1. (i) Let u ∈ Fe. Denoting Rβ the resolvent of the Hunt process M associated
with E , define σβ(dxdy) = βRβ(x, dy)m(dx), sβ(x) = βR(x,X), and

Eβ(u, u) =
β

2

∫
X×X

(u(x) − u(y))2σβ(dxdy) + β
∫

X
u(x)2(1 − sβ(x))m(dx).

Then E(u, u) = limβ↑∞ Eβ(u, u).
(ii) Every normal contraction operates on (E ,Fe).
(iii) F = Fe ∩ L2(X; m).
(iv) Every u ∈ Fe admits a quasi-continuous m-modification.

Proof. The first three assertions can be seen in the same way as in [11, Lemma 1.5.4].
To see (iv), it suffices to note that, for every u ∈ Fe and n ≥ 1, (−n) ∨ (u ∧ n) ∈ F and
admits a quasi-continuous m-version. �

In what follows, u ∈ Fe is always assumed to be quasi-continuous. For a finely closed
Borel set F and u ∈ Fe, define

PF u(x) = Ex[u(XσF
)].

Oshima [18] has shown that

Lemma 8.2. For u ∈ Fe,
(i) PF u ∈ Fe, is quasi-continuous, and enjoys PF u = PF (PF u) q.e.,
(ii) E(PFu, v) = 0 for v ∈ Fe, bounded and = 0 q.e. on F ,
(iii) E(PF u,PFu) ≤ E(u, u).

We now proceed to the review on time changed processes. Let ν ∈ S ∩ FM (ν �= 0)
and Aν be the associated PCAF. We set

F [ν] = {x ∈ X \ N : Px[A
ν
t > 0, t > 0] = 1}, (8.1)

where N is an exceptional set of Aν . Using [19, (64.2)] instead of [8, V(3.9)], as in [11,
Lemma 5.5.1], we can conclude that

F [ν] ⊂ S[ν] ≡ supp[ν] and ν(S[ν] \ F [ν]) = 0. (8.2)
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Setting τ ν
t = inf{s > 0 : Aν

s > t}, the time changed process Mtch(ν) by Aν is given by

Mtch(ν) = (Xτν
t
, Px) (8.3)

and is a ν-symmetric standard process on F [ν]. We denote by (E tch(ν),F tch(ν)) the Dirichlet
form on L2(F [ν]; ν) associated with Mtch(ν). It has been seen by Fitzsimmons [10] that

F tch(ν) = {u ∈ L2(F [ν]; ν) : u = v|F [ν] ν-a.e. for some v ∈ Fe with PF [ν]v = v q.e.}
E tch(ν)(v|F [ν], v|F [ν]) = E(PF [ν]v,PF [ν]v) for v ∈ Fe with PF [ν]v = v q.e.

By (8.2), we may think of (E tch(ν),F tch(ν)) as a Dirichlet form on L2(S[ν]; ν). In this case,
we write (Eν ,Fν). Now we can show the regularity of Fν .

Lemma 8.3. Let Cν = {u|S[ν] : u ∈ C}. Then Cν ⊂ Fν , and is dense in Fν .

Proof. Let v ∈ C. Since F [ν] \ F [ν]r is semipolar (cf. [19, 8]), by Theorems 5.2 and
5.3, we have

v = PF [ν]v q.e. and ν-a.e. on F [ν]. (8.4)

Combining this with Lemma 8.2, we have v|S[ν] ∈ Fν .
Next let u ∈ Fν . We may assume that u is bounded. Choose v0 ∈ Fe ∩ L2(X; ν)

with PF [ν]v0 = v0 q.e. and v0|F [ν] = u. Define v = (−‖u‖∞) ∨ (v0 ∧ ‖u‖∞). Then, by
Lemma 8.1, v ∈ F and moreover we have

u = PF [ν]v|F [ν] = v ν-a.e. (8.5)

Choose u0
n ∈ C such that u0

n → v q.e. and in F , and put un = ‖u‖∞β1(u
0
n/‖u‖∞). Then

{un} is uniformly bounded, and un → v q.e. and in F . Hence, by Lemma 8.2,

Eν
1 (un|S[ν] − u, un|S[ν] − u)

= E(PF [ν]un − PF [ν]v,PF [ν]un − PF [ν]v) + (un − u, un − u)ν

≤ E(un − v, un − v) + (un − u, un − u)ν → 0,

which implies the denseness of Cν in Fν . �

Every μ ∈ FM is decomposed as

μ = μ0 + μ1 μ0 ∈ S and μ1 = IN · μ for some exceptional set N. (8.6)

See [13, Lemma 2.1]. If μ0 �= 0, we then define a pre-Dirichlet form closable on L2(X; μ)
by

Eμ(u, u) = Eμ0(u|S[μ0], u|S[μ0]), u ∈ C,

and if μ0 = 0 then Eμ ≡ 0. We are now ready to state the main result of this section.

Theorem 8.4. Let μ ∈ FM satisfy S[μ] = X. Then
(i) (Eμ, C) = (E cls(μ), C).
(ii) The capacity associated with the closure of (E cls(μ), C) on L2(X; μ) is tight.
(iii) If Cap(X \ F [μ0]) = 0, then (E , C) is closable on L2(X; μ) and the closure is realized
by a Hunt process Mμ = (Xμ

t , P μ
x ) such that
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(a) “the law of Xμ
• under P μ

x ” = “the law of Xτ
μ0• under Px” for x ∈ X \ N ,

(b) P μ
x [Xμ

t = x, for t ≥ 0] = 1 for x ∈ N ,

where Mμ0 = (Xτ
μ0
t

, Px) is the time changed process by Aμ0 , and N is an exceptional

Borel set such that μ1 = IN · μ and X \ N ⊂ F [μ0].

For the proof, we first mention that under Assumptions (C.1)-(C.3) compact sets are
separated in the stronger sense than Lemma 1.2.

Lemma 8.5. For any disjoint compact sets K1 and K2, there exist a decreasing sequence
{Gn} of open sets and a sequence {fn} ⊂ C such that ∩nGn = K1, G1 ∩ K2 = ∅,
0 ≤ fn ≤ 1, and fn = 1 on K1 and = 0 on X \ Gn.

Proof. Due to (C.1), we may assume that there exists a D ⊂ C such that D is a
Q-algebra and separates the points of X. Let D be its closure in Cb(X). By Gelfand’s
representation theorem, there is a compact metric space X such that (i) X is imbedded
in X densely and continuously and (ii) the restriction to X gives rise to an isomorphism
from C(X) to D.

Note that K1 and K2 are also compact in X. Hence there are a sequence {gn} ⊂ C(X)
and a decreasing sequence {G′

n} of open sets in X such that ∩nG′
n = K1, G′

1 ∩ K2 = ∅,
0 ≤ gn ≤ 1, and gn = 1 on K1 and = 0 on X \G′

n. Let Gn = X∩G′
n. Choose f ′

n ∈ D with
‖ (gn|X)− f ′

n‖∞ < 1/4, and set fn = {βδ (4a(f ′
n − (1/2)))−βδ(−a)}/{βδ(a)−βδ(−a)}. It

is easy to see that {fn} and {Gn} satisfy the desired properties. �

By this lemma, we obtain the following representation of Cap.

Lemma 8.6. For every compact K ⊂ X, it holds that

Cap(K) = inf{E1(u, u) : u ∈ C and ≥ 1 on K}.
Proof. Choose {un} ⊂ C such that un ≥ 1 on K and

E1(un, un) ↓ I(K) ≡ inf{E1(u, u) : u ∈ C and ≥ 1 on K}.
Set u′

n = β1/n(un). Then, E1(u
′
n, u′

n) ↓ I(K) and u′
n → u in F for some u ∈ F . By

Theorem 1.1, we have
ũ = 1 q.e. on K. (8.7)

If v ∈ C and ≥ 0 on K, then

E1(u +
1

n
v, u +

1

n
v) = lim

k
E1(u

′
k +

1

n
v, u′

k +
1

n
v) ≥ I(K) = E1(u, u).

Hence we have
E1(u, v) ≥ 0 for v ∈ C with v ≥ 0 on K. (8.8)

Now let w ∈ F ∩ Cb(X) satisfy w ≥ 0 on X. Choose {wn} ⊂ C converging to
w in F and define w′

n = ‖w‖∞{(1/n) + β1/n(wn/‖w‖∞)}. Then, it is easily seen that
supn E1(w

′
n, w

′
n) < ∞. Hence the Cesàro mean w′′

n of a subsequence of {w′
n} converges to

w in F . By virtue of (8.8), we have

E1(u, w) = lim
n

E1(u, w′′
n) ≥ 0.
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Thus
u = U1μ for some μ ∈ S0. (8.9)

Take a compact set F with F ∩K = ∅. By Lemma 8.5, we obtain a nonnegative f ∈ C
such that f = 1 on F and = 0 on K. We then have

μ(F ) ≤
∫

X
fdμ = E1(u, f) = 0.

Thus supp[μ] ⊂ K. By Lemma 3.1 and (8.7), we have u = eK . �

These lemmas implies that the following assertion on traps, obtained in [13], also holds
in our situation.

Lemma 8.7. Let m′ ∈ FM and (E ′,F ′) be another Dirichlet form on L2(X; m′) with
C ⊂ F ′. Assume that E ′(u, u) ≤ E(u, u), u ∈ C. Then for any exceptional Borel set N ,

G′
α(INu) =

1

α
INu, m′-a.e. for u ∈ L2(X; m′), (8.10)

where {G′
α} is the resolvent of E ′.

Proof. Since X is Lusinian, it suffices to show (8.10) in the case where N = K,
u = IK for some exceptional compact set K. By Lemmas 8.5 and 8.6, there exist sequences
{gn}, {wk} ⊂ C and a decreasing sequence {Gk} of open sets such that (i) gn ≥ 1 on K
and E1(gn, gn) → 0 as n → ∞, (ii) 0 ≤ wk ≤ 1, wk = 1 on K and = 0 outside of Gk, and
(iii) ∩kGk = K. Repeating the argument in [13, Proof of Lemma 4.1] with gn, w, and G
there replaced by the above gn, wk and Gk, respectively, and letting k → ∞, we obtain
the desired conclusion. We omit the details. �

Proof of Theorem 8.4. The third assertion follows from the first and Lemma 8.7. For
the detailed argument, see [13].

To see the first assertion, let (A, C) be a pre-Dirichlet form closable on L2(X; μ),
which is dominated by (E , C). It follows from Lemma 8.7 that (A, C) is also closable on
L2(X; μ0). See [13, Lemma 4.2].

Take u ∈ C. By Lemma 8.2, then PF [μ0]u ∈ F , is bounded and

Eμ(u, u) = E(PF [μ0]u,PF [μ0]u).

Choose a uniformly bounded sequence {un} ⊂ C such that un → PF [μ0]u q.e. and in F .
Since μ0 ∈ S, by (8.4), un → u in L2(X; μ0). On the other hand, A being dominated by
E , {un} is an A-Cauchy sequence. Thus the closability of A on L2(X; μ0) implies that

A(u, u) = lim
n

A(un, un) ≤ lim
n

E(un, un) = Eμ(u, u).

Thus the proof of the first assertion is complete.
To see the second assertion, we denote by (Eμ,Fμ) the closure of (Eμ, C)(= (E cls(μ), C))

on L2(X; μ), and by Capμ(·) the associated capacity. Since X is Lusinian, by virtue of
(A.3), we can choose an increasing sequence {Kn} of compact sets in X such that

Cap(X \ Kn) ↓ 0 and μ(N \ Kn) ↓ 0. (8.11)
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Let en be the 1-equilibrium potential of X \ Kn. It then follows from Lemma 8.7 that

en · IX\N ∈ Fμ and Eμ(en · IX\N , en · IX\N) ≤ E(en, en). (8.12)

Indeed, choose a uniformly bounded sequence {unj} of elements of C satisfying that unj →
en as j → ∞ in F and q.e. Then Lemma 8.7 implies that

unj · IX\N ∈ Fμ,

Eμ(unj · IX\N , unj · IX\N ) = Eμ(unj, unj) ≤ E(unj, unj).

(cf. [13, Proof of Lemma 4.2]). Note that μ0 = μ|X\N . Then, since μ0 is an element of S,
unj · IX\N → en · IX\N μ-a.e. Hence we obtain (8.12).

Applying Lemma 8.7 again, we see that IA ∈ Fμ and Eμ(IA, IA) = 0 for any Borel set
A ⊂ N . Let

vn ≡ en · IX\N + IN\Kn.

It follows from (8.12) that vn → 0 in Fμ. Since en = 1 q.e. on X \ Kn, vn ≥ 1 μ-a.e. on
X \ Kn. Thus we obtain

Capμ(X \ Kn) ≤ Eμ
1 (vn, vn) ↓ 0,

which completes the proof of the second assertion. �

After completing the paper, we noticed [3] and [4]. In [3], Albeverio-Ma considered the
local property, which we discussed in Section 6. In [4], Albeverio-Ma-Röckner obtained
the Beurling-Deny formula for quasi-regular Dirichlet forms. Their proof is completely
different from ours in Section 4.
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