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0. Introduction

The general theory of Dirichlet forms on locally compact state spaces has its origin in the
classical work by Beurling and Deny [6, 7] and has been developed deeply by Fukushima
[11] and Silverstein [20]. Recently various investigations on Dirichlet forms on infinite di-
mensional, and hence non-locally compact, topological vector spaces, and many attempts
to extend the general theory on locally compact spaces to such spaces have been made by
several authors. See [1, 2] and the references therein. In particular, on many topological
vector spaces, diffusion processes associated with Dirichlet forms have been constructed
([1, 16]). Moreover, symmetric Markov processes corresponding to Dirichlet forms on
separable metric spaces have been deeply studied in [2]. Once one obtains a symmetric
Markov process, the recent development of general theory of right processes (cf. [15, 19])
brings us to the world where the machineries of stochastic calculus and probabilistic po-
tential theory work. In this sense, most works on Dirichlet forms on non-locally compact
state spaces correspond to their probabilistic aspects. On the contrary, we devote a half
of the paper to the investigation of analytic aspects of Dirichlet forms on non-locally com-
pact spaces and we aim at unifying their analytic and probabilistic aspects. Our goal will
be to present a general theory of Dirichlet forms with non-locally compact state spaces,
following the celebrated work by Fukushima [11].

In the paper, we consider a Dirichlet form on a Lusinian separable metric space. A key
assumption we make is that the corresponding 1-capacity is tight. See Assumption (A.3) in
Section 1. Roughly speaking, this assumption means that the state space may be thought
of as a locally compact space from the point of view of Dirichlet forms. Moreover, since
most measures appearing in the study of Dirichlet forms (like measures of finite energy
integral, killing measures and so on) are dominated by the capacity, this assumption also
implies the tightness of families of such measures, which is a substitute for the fact that on
a locally compact space every positive linear functional on a space of bounded continuous
functions is realized by a measure. Hence we need not to identify the Dirichlet form with
the one on a compact metric space by using the compactification argument as in [1, 16].

In Section 1, we will fix the situation to deal with and make some preliminary ob-
servations on the domain of the Dirichlet form. Section 2 will be devoted to the study
of measures of finite energy integral, smooth measures, and a-potentials. In Section 3,
l-equilibrium potentials of Borel sets and the spectral synthesis will be studied. The
Beurling-Deny formula for Dirichlet forms on non-locally compact spaces will be estab-
lished in Section 4. The existence of the associated Hunt process, a brief review on the
associated probabilistic potential theory, and the unification of analytic and probabilis-
tic potential theoretical notions will be discussed in Section 5. In Section 6, we study
the local property and give a probabilistic interpretation of the Beurling-Deny formula.
That the stochastic calculus developed in [11] in the case of locally compact state space
remains valid in our situation will be seen in Section 7. After a long course of presenting
a general theory of Dirichlet forms with non-locally compact metric space, we will see in



Section 8 that the result in [13] on closable parts of pre-Dirichlet forms remains valid in
our situation. This gives rise to a lot of Dirichlet forms on non-locally compact spaces.

Another systematic study of a general theory of Dirichlet forms on non-locally compact
spaces will be found in the book [17] which Ma and Rockner are now preparing.

1. Preliminaries

Let X be a Lusinian separable metric space and B(X) be its topological Borel field. We
fix a probability measure m on (X, B(X)) such that supp|m| = X and a Dirichlet form
(€, F) on L*(X;m) with 1 € F.
For open G C X and any A C X, we define
Cap(G) = inf{&(u,u):ue Fandu>1m-ae onG}, (1.1)
Cap(A) = inf{Cap(G) : G is open and A C G},

where & (u,u) = E(u,u) + (u,u), and (u,v),, = [yuvdm. Then Cap is a Choquet
capacity :

Cap(UA,,) = sup Cap(A,,) and  Cap(NK,) = nf Cap(Ky,), (1.3)

for any increasing sequence {A4,} of subsets of X and any decreasing sequence {K,} of
compact subsets. Moreover C'ap enjoys that

Cap(UA,) <> Cap(4,), (1.4)

and, for any A € B(X),
Cap(A) = sup{Cap(K) : K C A, K is compact}. (1.5)

See [1, 11, 12].
Now we introduce the hypotheses assumed throughout the paper :

(A.1) FNCy(X) is dense in (F, &), where Cy(X) is the space of bounded continuous
functions on X,

(A.2) FNCy(X) separates the points of X,

(A.3) Cap(-) is tight: for any ¢ > 0, there exists a compact set K C X such that
Cap(X \ K) < e.

A statement depending on = € A is said to hold “q.e.” on A if it holds on A except
for a set of zero capacity with respect to C'ap. A function u : X — R is said to be quasi-
continuous if there is a decreasing sequence {G,} of open sets such that Cap(G,,) | 0 and
u is continuous on each X \ G,. As in [11, §3.1], we see that each u € F possesses a
quasi-continuous m-version «. Moreover,



Theorem 1.1. (i) For each open G C X, there is a unique e € F such that & (eq, eq) =
Cap(G),0<ég <1, and ézg =1 q.e. on G. Moreover, if w € F satisfies w = 1 m-a.e. on
G, then & (w, eq) = Cap(QG).

(ii) If {u,} is a Cauchy sequence in (F, &), then there is a subsequence {u,, } and quasi-
continuous u € F such that u,, — u q.e. and in (F,&).

(iii) If {u,} is a Cauchy sequence in (F,&;) and if quasi-continuous versions , of u,
converges to U, then u € F and u, — @ in (F,&).

In the remainder of this section, we investigate several properties of F following from
the assumptions. We first see that F N Cy(X) separates the compact sets and finite
measures in X;

Lemma 1.2. (i) Let K;, i = 1,2, be disjoint compact sets in X. Then there exists an
f € FNCy(X) such that (a) f =1 on Ky and =0 on K, and (b) 0 < f < 1.

(ii) If ; and v are finite measures on (X, B(X)) such that [y fdu = [y fdv, f € FNCy(X),
then u = v.

Proof. Let K; and K3 be disjoint compact sets. Choose g € C(X) such that g =1
on K; and = 0 on K. It follows from the Markov property that F N Cy(X) is a vector
lattice. Then, applying the Stone-Weierstrass theorem, we obtain an h € F N Cy(X)
with sup{|h(z) — g(x)| : © € K; U Ky} < 1/4. Tt is easy to see that the function
f=0V(2h—(1/2)) A 1 enjoys the property described in the first assertion.

To see the second assertion, let p and v be finite measures with [y fdu = [y fdv,
f € FNCy(X). Take € > 0 and g € C,(X) arbitrarily. Since X is Lusinian, there is a
compact set K such that u(X\ K) < e and v(X \ K) < e. Applying the Stone-Weierstrass
theorem again, we have an h € F N Cy(X) such that sup{|h(z) — g(z)| : z € K} < e.
Then we can easily conclude that

‘/ gdu—/ gdv
X X

where ||g]loc = sup{|g(z)| : * € X}. Letting £ | 0, we see that [y gdu = [y gdv for any
g € Cy(X), which means that = v. O

< e(u(X) + v(X) + 2[|g]l),

For u € L*(X;m), its support supp[u] is defined to be the support of the measure u-m.
We denote by F.,; the space of u € F with compact support. By virtue of Theorem 1.1,
we see that F, separates the closed sets in X in the following sense:

Lemma 1.3. Let F;, i = 1,2, be disjoint closed sets in X. Then there is a sequence
{un} C Fopr such that 0 < uy, < Upyq < 1,

u, =0 q.e. on F} and U, — 1 q.e. on F5.

Proof. By virtue of Assumption (A.3), we obtain an increasing sequence {K,} of
compact sets with Cap(X \ K,,) | 0. Without loss of generality, we may assume that
éx\k, — 0 q.e. By Lemma 1.2, there is an f,, € F N Cy(X) such that 0 < f,, <1, f, =1
on FiNK, and = 0 on F;NK,. Now it suffices to put u, = max{1—f;Vex\x, : 1 < j < n}.
O

We end this section with seeing that F, is dense in F.
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Lemma 1.4. For every u € F, there is a sequence {u,} C Fop such that supplu,| C
supplul, tn, — @ g, and in (F,&). If ||ullo < 00, then [Juy[lo < [Jtt]|oc-

Proof. Choose an increasing sequence { K, } of compact sets such that Cap(X\ K,,) <
n~2. Note that e, = éx\x, — 0 q.e. Put 0, = (—n) V (v An) and v, = (1 — €,)0,. It
is straightforward to see that supplv,] C supplu] and v, — @ q.e. Moreover, if we put
H ’ H51 = 81(', ')1/27 then we have

[onle, + llenlloc[Onlley + 10nllcollenle:
2lulle, +nCap(X \ K,)"?
2||ulle, + 1.

[onlle:

VAN VANRVA

Hence the Cesaro mean {u,} of a subsequence of {v,} converges to u in F.
The above construction also implies the second assertion. O

2. Measures of finite energy integral

A finite positive Borel measure on X is said to be of finite energy integral if there is a
constant C' > 0 such that

/X]u|du§0\/81(u,u) for any v € F N Cy(X).

We denote by Sy the totality of measures of finite energy integral. Since 1 € F, every
i € Sy is a finite measure and hence inner regular. For p € &y, a unique U,u € F is
determined by

Ea(Uapr,u) = / udp  uwe FNC(X),
b
where &, (u, u) = E(u, u) + a(u, u),. We call U,p the a-potential of y. We have

Theorem 2.1. The following conditions are equivalent to each other for uw € F and
a > 0.

(i) u is an a-potential.

(i) u is a-excessive : u > 0, e “Tyu < u m-a.e. for every t > 0.

(iii) u > 0, fGaipu < u m-a.e. for every 3 > 0.

(iv) Ea(u,v) > 0 for any v € F with v > 0 m-a.e.

(v) Ea(u,v) >0 for any v € F N Cy(X) with v > 0.

By Lemma 1.2, if u € F satisfies one of the above conditions, then there is a unique
we Sy with u = U,p.

Proof. The equivalence of (ii), (iii) and (iv) can be seen in exactly the same manner
as in [11, Proof of Theorem 3.2.1]. The implications (i) = (v), (iv) = (v) are trivial. The
implication (v) = (iv) follows from (A.1) and that every normal contraction operates on
€. Thus it suffices to show (ii) = (i).

Let g, = n(u—nGpiqu) and w, = g, -m. Note that G,g, — u weakly in F and hence

sup Ea(Gabn, Gagn) < 0.



In particular, p,(X) — E.(u, 1) and sup,, i, (X) < oo.
For an arbitrary but fixed e > 0, take a compact set K with Cap(X \ K) < e. Then,
by Theorem 1.1, we have

pn(X\K) < [ exiigudm
- ga(GagnyeX\K)
< VEa(Gagn Gagn)y[Ealex i, ex\i)
< VIV ay€u(Gagn, Gagn)y/Cap(X \ K).

Hence {y,} is tight and a subsequence {j,,} converges weakly to a finite Borel measure
pon X. Then, for any f € FNCy(X), we have

[ fdw = i [ fd,
X )7 JX
= hm ga(Gagnja f)
Jj—oo
= ga(u7 f)7

which means that p € Sy and u = Ugyp. O

Combining the above proof with Lemma 1.2, we obtain

Proposition 2.2. Let u € Fy and g, = n(Uypt—nGriaUnpt). Then, [ fg.dm — [y fdu
for any f € Cy(X) and G.g, converges to U,p weakly in F.

Now, as in [11, pp.70, 71|, we can conclude

Theorem 2.3. Let u € Sp.

(i) p(G) < \/El(Ulu, Ulu)\/C’ap(G) for any open G C X.

(ii) pv charges no set of zero capacity.

(iii) For every u € F and a > 0, u € L*(X; u) and it holds that

[ i = EaUapi, ).
X

We call a positive Borel measure p on X smooth if it satisfies the following conditions:

(S.1) p charges no set of zero capacity

(S.2) there exists an increasing sequence {F),} of compact sets such that

wu(Fy,) < oo, n=12,... (2.1
WX\ U,F,) =0, (2.2
lim Cap(K\ F,,) =0 for any compact K C X. (2.3)

We denote by S the family of all smooth measures. It follows from Assumption (A.3)
that © € S if and only if the conditions (S.1), (2.1), and the following condition (2.4) are
satisfied.

lim Cap(X \ F,,) =0. (2.4)



Lemma 2.4. Every finite Borel measure charging no set of zero capacity is smooth. In
particular, So C S.

Proof. By Assumption (A.3), there is an increasing sequence {K,} of compact sets
such that Cap(X \ K,,) | 0. It suffices to set F,, = K,,. O

Furthermore, any smooth measure is approximated by measures in Sy :

Theorem 2.5. y € S if and only if there exists an increasing sequence {F,} of closed
sets satisfying (2.2) and (2.3) and Ig, - p € Sp.

Proof. The “Only if” part can be seen in exactly the same manner as in [11, Proof
of Theorem 3.2.3].

To see the “if” part, let {F,} be an increasing sequence of closed sets satisfying (2.2)
and (2.3) and I, - € Sp. Let A be a Borel set such that Cap(A) = 0. By Theorem 2.3,
w(F, N A) = 0. Combining with (2.2), we have p(A) = 0. Thus (S.1) is satisfied.

By Assumption (A.3), there is an increasing sequence {K,} of compact sets with
Cap(X \ K,) | 0. Put F, = F, N K,. Since Cap(X \ U,K,) = 0, u(X \ U, K,,) = 0.
Hence N

(X \ U Fy)

=0.
Moreover, the subadditivity of Cap implies that (2.3) holds for F,,. Thus (S.2) is satisfied.
O

3. Equilibrium potentials

The function es obtained in Theorem 1.1 is called the 1-equilibrium potential of an open
set GG. In this section, we consider equilibrium potentials for Borel sets.

Lemma 3.1. For v € F and closed F' C X, the following conditions are equivalent.
(1) u = Uyp for some p € Sy with supplu] C F.
(ii) Eo(u,v) > 0 for any v € F with © > 0 q.e. on F.

Moreover, if F' is compact, then each of the above conditions is equivalent to
(iii) Ea(u,v) > 0 for any v € FNCy(X) withv > 0 on F.

Proof.  The implication (i) = (ii) follows from Theorem 2.3 (iii).

We now assume that (ii) is satisfied. By Theorem 2.1, there is a p € Sy such that
u = Uyp. Let K be a compact set with KNEF = (). Due to Lemma 1.3, there is a sequence
{gn} of quasi-continuous functions satisfying that

0<9,<1, g,=0qge. onF and 7T1q.e onK.

Since &,(u, g,) = 0, applying Theorem 2.3, we have

wK) < liminf/ gndp
X

n—oo

= liminf Ealu, gn) = 0.



Thus the implication (ii) = (i) has been shown.

Now suppose that F' is compact. The implication (ii) = (iii) is trivial. Suppose that
(iii) is satisfied. Taking advantage of Theorem 2.1, we have a u € Sy such that u = U, p.
Let K be a compact set with K N F = (). Due to Lemma 1.2, there is a g € F N Cp(X)
satisfying that

0<g<1l, g=0onF and =1on K.

Then,
W) < [ gan = Eu(u.g) =0,

and hence the implication (iii) = (i) has been seen. O
Consider now a B € B(X) and set
Lp={ueF:u>1q.e. on B}

Then Lz admits a unique element eg minimizing & (u, ) on Lg. We call eg the equilib-
rium potential of B. Moreover, eg is a unique element of F satisfying

ep =1 q.e. on B,
Ei(ep,v) >0 for any v € F with © > 0 g.e. on B. (3.2)

In particular, if w € F and = 1 q.e. on B, then & (eg,w) = & (ep,ep). Applying the
above lemma, we see that

eg = Uyvp for some vy € Sy with supp|vg] C B. (3.3)

vp is called the equilibrium measure of B. It has been seen by Fukushima and Kaneko
[12] that, for every B € B(X),

Cap(B) = & (ep,ep) = inf{& (u,u) : u € Lp}. (3.4)
Using the equilibrium potential, we can show

Theorem 3.2. For a Borel set B, the following conditions are equivalent.
(i) Cap(B) = 0.

(ii) (B) = 0 for any p € Sp.

(iii) p(B) = 0 for any p € Soo = { € So, |U1p1l00 < 00}

Proof. The equivalence of (i) and (ii) can be seen in the same way as [11, p.77].
Suppose that (iii) is fulfilled. Let p € Sp and I';, = {U;n < n}. Choose an increasing
sequence {K,} of compact sets such that Cap(X \ K,,) | 0. By Theorem 2.3,

(X \ U K,) = 0. (3.5)

As in [11, p.77], if we put p, = (u(Tp N K,) ', k., ) - i1, then p, € Spp. Moreover, by
(3.5),
p(B) = lim pu(I' 0 Ky pn(B) = 0

which shows the implication (iii) = (ii). O



Consider an a-excessive function f € F and an arbitrary set B C X. Define
Lip={ucF:u>fqe onB}

Then L;p admits a unique element fp minimizing & (u,u) on Lrp. We call fg the
a-reduced function of f on B. Moreover, fg is a unique element of F satisfying

fB = f q.e. on B .
EalfB,v) >0 for any v € F with © > 0 q.e. on B. (3.7)

Applying Lemma 3.1, we see that
fe=U,w  for some v € S with supp[v] C B. (3.8)
As in [11, pp.78, 79], we have
Lemma 3.3. Let B be a Borel set. Define
Fx\p={u € F:u=0q.e onB}
and HB be its orthogonal complement in (F,&,):
F=Fx\p®HE.
Then, f = (f — fB) + fp represents the corresponding orthogonal decomposition.

In connection with the space HZ, we finally prove a theorem on the spectral synthesis.
An open set G is said to be an a-regular set of u € F if

Ealu,v) =0 for v € F with supplv] C G.
Lemma 3.4. Let v € F. If G; and G5 are both a-regular sets of u, then so is G; U Gb.
Proof. By virtue of Lemma 1.4, it suffices to show
Ealu,v) =0 for any bounded v € F, with supp[v] C G1 U Gb. (3.9)

Take a bounded v € F.,; with K = supplv] C G; UG5. Choose open sets G} and G} such
that o
KCcG UG, and G;CG;, i=1,2.

We set K1 = K\ G, and Ky = K \ G|. By Lemma 1.2, there is a ¢ € F N Cy(X)
such that 0 < ¢ < 1 and ¢ = 1 on K; and = 0 on K. Then ¢v, (1 -9 e F,
supplpv] C K NG C Gy and supp|(1 — ¢)v] C Go. Hence we have

ga(ua U) = ga(u7 ¢U) + ga(u7 (1 - ¢)U) =0,
which completes the proof. O

We define the a-spectrum o, (u) as the complement of the largest a-regular open set
of u.



Lemma 3.5. Let p € Sy. Then o,(Uyp) = supp|p].

Proof. Let v € F satisty supp[v] C X \ supp[p]. Then o = 0 q.e. on supp|u]. By
Theorem 2.3, we have
Ea(Unpt,v) =0

Thus X \ supp[p] is an a-regular set of U,p and
supp[p] D 0a(Uap).

We now suppose that supp[u] \ oo (Uaspt) # 0. Choose open sets Gy, i = 1,2, such that
GiNsupplp] # 0, GiNoa(Uap) =0, Gy D 04(Uapt), and G; NGy = 0. By Lemma 1.3,
there exists a sequence {¢, } C F such that ¢, = 0 q.e. on G5 and — 1 q.e. on G;. Since

supplp,] C X\ Gy C X \ 04(Unp),

we have

1(G)

IN

lim inf / dndys

n X
= lin}linfé’awn,Ua,u)
~ 0

which contradicts to that Gy N supplu] # 0. Thus we obtain the identity

SUPP[N] = aa(Ua )

Lemma 3.6. Let G C X be open and W& be the closure of {u € F : o,(u) C G} in
(F,&). Then W& = HE.

Proof. The inclusion W& C HS is immediate consequence of the definition of o, (u).
The converse inclusion can be seen in exactly the same way as in [11, Proof of Lemma 3.3.4].
O

We are now prepared to repeat the argument used in [11, pp.80, 90] and obtain

Theorem 3.7. Let F be a closed set and W = {u € F : 0,(u) C F}. Then W' =HE.
In particular, each uw € F can be approximated in (F,E,) by finite linear combinations of
a-potentials of measures in Sy supported by o, (u).

4. Beurling-Deny formula

The aim of this section is to establish the following Beurling-Deny formula.



Theorem 4.1. The Dirichlet form £ can be expressed for u,v € F as follows:
E(u,v) = E9(u,v) (4.1)
+ (a(x) —a(y))(0(x) — v(y))J (dedy) + /X w(z)o(z)k(dz).

XxX\D
In this expression, £ is a symmetric form satisfying
EO(u,v) =0 (4.2)

for u,v € F such that v =constant on a neighborhood of supp|u], J is a o-finite symmetric
measure on X x X \ D, D being the diagonal set of X x X, satisfying J(X x A) = 0 if
Cap(A) =0, and k € Sy.

Such £©), J, and k are determined uniquely by £ and every normal contraction oper-
ates on £,

The Proof will be broken into several steps, each being a lemma. In the sequel, we fix
an increasing sequence {K,} of compact sets with Cap(X \ K,) | 0 and a decreasing
sequence {e,} of positive numbers such that &, | 0. Define

KM ={(z,y) € K, x K,, : d(z,y) > €, }, (4.3)
where d denotes the metric on X.

Lemma 4.2. Lett > 0. There exists a finite symmetric Borel measure o, on X x X such
that, for u,v € L*(X;m), (u®v)(z,y) = u(z)v(y) € LY(X x X;0;) and

1
(T, m:/ ® vdo,.
t(tuv) XXXu vdoy

Moreover, it holds that

1 1

L T, ), = (#(x) — a(y) Pou(drdy) + (12,1~ T

2 JJxxx

Proof. 'The second assertion is an immediate consequence of the first.
To see the first assertion, set

B(A, B) = %(TtIA,IB)m.

By [9, Theorem II1.74], there exists a Borel finite measure o, on X x X such that §(A, B) =
0i(A x B). Since the Markov property implies that o(X x B) < m(B)/t, we obtain the
desired conclusion. a

Lemma 4.3. Let E be a separable metric space and F' be its closed subset. If a sequence
{pn} of finite measures on E converges weakly to a measure v on E and if its restriction
w|F on F does to a measure £ on F', then v(A) > £(AN F) for any Borel subset of E.
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Proof. 1t is easily seen that

[ tau= [ fleds for fe GyE), 120,
E F

Hence, for open G C E, we have u(G) > £(G'N F), which implies the desired inequality.
O

Lemma 4.4. There is a symmetric Borel measure J on X x X\ D such that J(X xA) =0
if Cap(A) =0, and

E(u,v) = -2 w(z)o(y)J (dedy) (4.4)

XxX\D
for u,v € F with supplu] N supp[v] = 0.

Proof. Let M§”) = 0¢| . We first show that

sup u,(fn)(K(")) < 00. (4.5)
¢

To do this, let U,(z) be the &, /6-neighborhood of = € X. There exist 2™,y € K,,
1=1,..., N, such that
KO € Uy Un() x Un(™).

It is easily seen that U, (z\™) N U, (y{™) = 0. By Lemma 1.2, there are ¢\") € F N Cy(X),
i=1,...,N,suchthat 0 < ¢\ <1, ¢\ =1 0n K, NU,(2™) and = 0 on K, N U, (y\™).
Set £ = (3¢ —2) v 0 and ¢™ = (1 —36) v 0. Since £, ¢™ € F N Cy(X) and
their supports are disjoint for ¢ = 1,..., N, it holds

p (KO0 U ) < U™ < [ 7@ gMdoy
XxX
1 n n n
= L - 0,
L) o) oy Lo ) ) )
;(thi - i )m ?(Ttgi -9 9 )m

VEUr 1MWew™. o).

IN

IN

which implies (4.5).
(n)

Since K™ is compact, for some t; 10, ,ut? converges to a finite symmetric Borel

measure 1™ on K™ . We next observe
pM(KM A (X x A) =0 if Cap(A) = 0. (4.6)

In fact, take a decreasing sequence {Gy} of open sets such that Gy D A and Cap(Gy,) | 0.
Then we have

pM(K (X % Gy)) < liminf ™ (K™ 0 (X x Gy)). (4.7)
J
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On the other hand, we obtain

limsupugl)([((”) N(X x Gy)) < hmsup/Zf( g eGk)dO't

J

= limjsupz E(Ttgfzn _ fi(n)’gi(n)egk)m

Since g™

k — o0o. We therefore have

, e, are bounded, it is straightforward to see that gi(n)

eg, — 0 weakly in F as

hm lim sup 4, )(K(") N(X xGg)=0 (4.8)
J
Hence, letting £ tend to infinity in (4.7), we obtain (4.6).

Let u,v € F be bounded. Then we may assume that their quasi-continuous ver-
sions @, 0 are also bounded. Choose a decreasing sequence {G}.} of open sets such that
Cap(Gy) | 0 and @, 0 are both continuous on each X \ G. For each k, by Uryson’s theo-
rem, there are uy, vy, € Cp(X) such that up = @ and vy = 0 on X \ Gy, and ||ug|co < [|4]|0o
and ||vg|lco < ||7||oo. Then, we have

|/ o (ddy) — /K L @)o(y)u (drdy)|
/(n) |a(2)0(y) — u(@)vi(y )|Mt )(dxdy)
/mn) [a(x)o(y) —Uk( Yo (y)| ™ (dady)

1 [ u@u)u drdy) = [ wd@)oly)n® (dady)
< 4HuHooHvHoo( ><K<“> N (X % G) + u™ (K™ N (X % Gy)))
1 [ ua ) dedy) = [ w@)on(y)n® (dady)|
Thus it follows from (4.7) and (4.8) that
lim [ ()i (dady) = [ a(@)o(y)ut (dedy) (4.9)
Jj JKM®) K®)
This yields that
[, i@ dedy) = tim [ )iy (dedy) (4.10)
K i JK®
1
= lim— (th Uy V)
it
= —&(u,v)

for u,v € F such that supplul, supp[v] C K, and d(supp|u], supp[v]) > &,.
We now finish the construction of J. By the diagonal argument, for some ¢; | 0, each
(1/2)04,| ) converges weakly to a finite symmetric Borel measure J, on K™ as j — oo.
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(We will use *J,” for ‘1™ in the above observation.) Setting J,,((X x X\ D)\ K™) =0,
we may regard J,, as a measure on X X X \ D. By Lemma 4.3, it holds

Jnt1(A) > J(A) for A e B(X x X\ D).
We define a Borel measure on X x X \ D by
J(A) = lim Jn(A).

It is obvious that J is symmetric and J(X x B) =0 if Cap(B) = 0.

We finally show that (4.4) holds. To do this, take u,v € F with supplu] N supp[v] = 0.
By Lemma 1.4, we may assume that u, v € F.,: and are bounded and nonnegative. Choose
no such that d(supplu], supp[v]) > eny. Let u, = u(l — ex\k,) and v, = v(1 — ex\k,)-
Then, i, — @, 0, — © q.e. and weakly in F, and supp[u, ® v,,] C K™ for n,m > ny.
Hence, by (4.10),

1
/ i ® TmdJ = lim Wy @ U Ty = — =& (1, V).
XxX\D kE JXxX\D 2

Letting n, m — oo, we obtain (4.4). a

Lemma 4.5. There exists a k € S such that 1(1 — T;1) - m — k weakly on X and

1
lim = (42,1 — Ty, = / @dk  forue F. (4.11)
tl0 ¢ X

Proof. We set
1
By Lemma 4.2,
1
/ u?dk; < g(u—Ttu,u)mTE(u,u) ast ] 0 forue F. (4.12)
X

It follows from (4.12) with 1 and ex\k, substituted for u that sup, k;(X) < oo and {k;}
is tight. If kg is the limit of a converging subsequence {k;, }, then

X J tj /

for every f € FNCy(X). Thus, by Lemma 1.2, there exists a unique finite Borel measure
k to which k; converges weakly as t | 0. By (4.12), it holds

/ wdk < E(u,u) for u € F N Cy(X). (4.13)
b

Hence k € .

Let uw € F. There exists a sequence {u,,} C F N Cy(X) such that u,, — a, q.e.
and in F as m — oo, where u, = (—n) V (u A n). By Theorem 2.3 and (4.13), we obtain
[x @2dk < E(up, uy,). Letting n — oo,

/ @dk < E(u,u)  ue F. (4.14)
X
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It is straightforward to see that, for every v € F N Cy(X),

lull o) — 1 22|

< lu = vl 2w + 1w = vller + M|U||L2(X;kt) - ||U||L2(X;lc)‘

Combining this with (4.12) and (4.14), we obtain (4.11). O

Lemma 4.6. There exists a symmetric form £ as stated in Theorem 4.1.

Proof. Let u € F be bounded. By Lemmas 4.2, 4.5 and (4.9), we have

E(u,u) = hjrn; XXX\K(")(a(:E) _ a(y))QOtj(dxdy)
+/XXx\D(ﬂ($) — i(y))* Jn(dzdy) +/Xa2(x)k(dx)_

Letting n — oo, we obtain

E(u,u) = lim lim 1 (ﬂ(x) — a(y))’oy, (dzdy)

i 2 Jxxx\K®

n /X o ) = () ) + / k(da).

By the monotone convergence theorem, for every u € F, it holds that

() = typlimtim s [ (Gaa) = s (9)Por (dody
+ /X o () = ) (dady) + / k(da),

where uy = (=M) V (u A M). Thus, by setting

£ (u,v) = limlim lim =
M

nog2 XxX\K(m(aM(x) — apr(y)) (0 (2) — O (y))on, (dady),

we obtain a symmetric form £ satisfying (4.1) and (4.2). Moreover, every normal
contraction operates on this £(°). O

Lemma 4.7. J is o-finite.

Proof. As was seen in the proof of Lemma 4.4, for each n, there are f™, ¢\ €
FNCy(X)and N = N(n) € N such that I;ew < 3N, fi(n) ® gi(n). Hence

N
KO <3 [ 0607 = 23 60 d) < o
i=17X

Obviously J(X x X \ U,K™) = 0. Thus, .J is o-finite. O
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Lemma 4.8. The decomposition (4.1) is unique.

Proof. Since [y udk = E(u, 1) for u € F N Cy(X), the uniqueness of k follows from
Lemma 1.2.
Note that
/ i@ odJ = —2€(u,v) (4.15)
XxX\D

for u,v € F with supplu] N supp[v] = . Let K be a compact set in X and § > 0. If
we set K(0) = {(z,y) € K x K : d(z,y) > ¢}, then by using (4.15), Lemma 1.2, and
the argument similar to that in the proof of Lemma 4.4, we can conclude the uniqueness
of J on K(§). Since every compact set in X x X \ D is covered by such K(4) and X is
Lusinian, we have the uniqueness of J. O

In the case of locally compact state spaces, two approaches to the Beurling-Deny
formula are known ; one is analytic and the other is probabilistic. The above approach
that we employed for the Dirichlet form on a general metric space (which may not be
locally compact) is the analytic one. As will be seen in Section 7, the stochastic calculus
related to the Dirichlet form can be developed in the present situation. Then, by repeating
the argument in [14], we can establish the Beurling-Deny formula in the probabilistic way.

5. Hunt processes

We have been studying Dirichlet forms from the analytic point of view. We now proceed
to the probabilistic investigation of them.

We continue to assume the hypotheses (A.1)—(A.3). Then, combining [11, Chapter6]
and [2], we can conclude

Theorem 5.1. There exists a Hunt process M = (2, M, Xy, P,) on X associated with
(€, F): for any Borel measurable, bounded u : X — R and t > 0,

(Thu)(z) = B, [u(Xy)] for m-a.e. x € X, (5.1)
where E, stands for the expectation with respect to P,.

Also see [17]. Thus we have a symmetric Hunt process M. Its transition function is
denoted by {p:,t > 0} and the resolvent {R,,a > 0} of M is defined by

R.(z,E) = /OO e “'py(z, E)dt.
0

We now recall several notions of smallness of sets related to M. A point x is said to
be a regular point of a nearly Borel set B if P.(0p > 0) = 0, where

op =inf{t > 0: X, € B}. (5.2)

The totality of the reqular points of B is denoted by B". A set A is said to be finely open
if the set X \ A is thin at each x € A, i.e., there is a nearly Borel set B = B(z) such
that x ¢ B" and B D X \ A. We say a set A is thin if it is contained in a nearly Borel
set B with B" = (). A is said to be semi-polar if it is contained in a countable union of
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thin sets. If A C B for a nearly Borel set B such that P,(op < c0) =0 for any = € X,
then A is called polar. A set N is called exceptional if there is a Borel set N D N such
that P,(o5 < 00) = 0, where P,(-) = [y P.(-)m(dx). We say that a set N is properly
exceptional if it is Borel and X \ N is M-invariant: P,(X;, X;— € (X \ N)a, t >0) =1
for any # € X \ N, where A is the death point of M that is joined as an isolated point.

Taking advantage of recent general results in the potential theory on Markov processes
(right processes), we can recover the assertions in [11, §4.2] on the relationship among
the above notions of smallness. All results can be found in [15], however, for the sake of
completeness, we summarily state as a theorem:

Theorem 5.2. (i) A nearly Borel, finely open, m-negligible set is exceptional.

(ii) A set is exceptional if and only if it is contained in a properly exceptional set.

(iii) Any semi-polar set is exceptional.

(vi) Let {u,} be a decreasing sequence of a-excessive function with respect to py:u, > 0
and e “pyu,, < u, on X. Iflim, u,, = 0 m-a.e., then u = 0 except for an exceptional set.

We now identify the above notions with those analytic ones in the proceeding sections.
Theorem 5.3. A set N is exceptional if and only if Cap(N) = 0.

Proof. Tt suffices to notice that we can choose a decreasing sequence { A,,} of open sets

for relatively compact open sets in [11, Proof of Theorem 4.3.1], because Cap(X) < oc.
O

We now investigate the quasi-continuity. As usual, every Borel measurable function
f: X — Ris extended to Xao = X U{A} by setting f(A) = 0.

Theorem 5.4. (i) If u is quasi-continuous, then there is a properly exceptional set N
such that u is Borel measurable on X \ N and

P, (u(X}) is right continuous and limgy; u(X;) = w(X,—) for any t > 0) =1,

for any x € X \ N.

(ii) Let u € F. Suppose that there is a nearly Borel exceptional set N such that X \ N
is finely open and u is nearly Borel and finely continuous on X \ N. Then, u is quasi-
continuous.

Proof.  To show (i), we follow [11, Proof of Theorem 4.3.2].

Let {A,} be a decreasing sequence of open sets such that Cap(A,) | 0 and wu is
continuous on each X \ A,,. By virtue of Assumption (A.3), we may assume that each
X \ A, is compact.

Using Theorem 5.2 (iv), as in [11, Proof of Theorem 4.3.2], we can show that there
exists a properly exceptional set N such that

Px(li}lnaAn:oo)zl re X\ N

Then the assertion follows from the continuity of w on each X \ A, and the compactness
of X'\ A,.
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The assertion (ii) can be seen in the same way as in [11, Proof of Theorem 4.3.2]. O

By this observation, we can make clear the relationship between {7;} (resp. {G.})
and {p;} (resp. {R,}). Indeed, repeating the argument in [11, Proof of Theorem 4.3.3]
with Cy(X) for Cy(X), we obtain

Theorem 5.5. For any nonnegative universally measurable function u € L*(X;m),
(i) pru is a quasi-continuous version of Tyu, t > 0,
(ii) Rou is a quasi-continuous version of Gu, o > 0.

Furthermore, the argument in [11, pp.106-110] also works in our situation and bears:
Theorem 5.6. Let B € B(X). Define
pp(r) = Es[e™77],  pp(r) = Ex[e™?"], and  Hiu(w) = Ele " u(X,,)],

where o = inf{t > 0: X; € B}. Then

(i) pk and pl are both quasi-continuous version of eg,

(i) for v € F, HPu is a quasi-continuous version of Pysu, where Pys the orthogonal
projection of F onto HE. (For the definition of HZ, see Section 3.)

6. Continuity, killing, and jumps of sample paths

As in the previous sections, we consider the Dirichlet form (€, F) satisfying (A.1)—(A.3)
and the associated Hunt process M. The Dirichlet form (£, F) is said to possess the local
property if £(u,v) = 0 for u,v € F such that supplu] N supp[v] = 0. We have

Theorem 6.1. The following conditions are equivalent to each other.
(i) (€, F) possesses the local property.
(ii) For any open set G C X, the hitting distribution

Hf\G(x, dy) = E,[e”7x\¢; Xox € dy|
is concentrated on the boundary 0G, q.e. x € G.
(iii) There exists a properly exceptional set N such that
P, (X is continuous in t € [0,()) =1 r e X\N, (6.1)

where ( is the life time of M.
Proof.  We first show the implication (i) = (ii). Let G C X be open. We set
G,={re X :d(z,G)<1/n} and F,=X\G,

By Lemma 1.3, for each n, there exists a sequence {u,x} C Fepe such that 0 < @, <1
q.e., Upr = 0 q.e. on Gy, and U, — 1 q.e. on F), as k — oc.

Let P be the orthogonal projection of F onto Fo = {u € F : 4 =0 q.e. on X \ G},
where F is thought of as the Hilbert space equipped with the inner product &,. Since
supplunk] C X \ Gap, it follows from the local property that

Ea(Pung, v) = Ea(tng, Pv) = Eq(ting,v) =0 v € Fa.
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Hence Puyr = 0 q.e. on X. Applying Theorem 5.6 (ii), we have
HX\CG(z) = 0 for q.e. x € G.

By Theorems 5.2 and 5.3, there is a properly exceptional set N such that u,, = 0 on
Gon \' N, tipr, — 1 on F, \ N, and HX\%{,,;, = 0 on G\ N. Then we have

HX\T () < lim H\Cu(x) =0 ze€G\N.
Now letting n — oo, we obtain

«

H\T\g(x) =0 ze€G\N.

Thus (ii) follows from (i).

We next assume that (ii) holds. Let u,v € F satisfy supp[u]Nsupplv] = 0. Without loss
of generality, we may assume that u is nonnegative. We set G = {z € X : d(z, supp|u]) >
d(z, supp[v])}. Obviously, G is open, contains supp(v], and supp[u]NG = ). Since Pv = v,

E(u,v) = Ey(u,v) = Eu(Pu, ). (6.2)

On the other hand, it follows from Theorem 5.6 that

Pulz) = a(z) — /8 LU HY @, dy) =0 qe G

Hence Pu = 0 q.e. on X. Combining with (6.2), we have €(u,v) = 0. Thus (i) follows.
The implication (iii) = (ii) is trivial and the converse implication (ii) = (iii) can be
seen in the same way as in [11, p.114]. O

We now proceed to the probabilistic interpretation of the measures k and J obtained
in Theorem 4.1. In the following, we occasionally denote the integral of a function v with
respect to a positive measure pu by < u,v > or <w,u>. Moreover, Ej., stands for the
integration with respect to the measure [y h(x)P,(-)m(dz). As [11, Lemma 4.5.2], we
have

Proposition 6.2. (i) For any nonnegative Borel measurable f,h: X — R, and t > 0,

Bunl (X ¢ <t = [ < fhpih>ds. (6.3)

(i) For a > 0 and nonnegative f € Cy(X), E [e™* f(X,_)] is a quasi-continuous version
of the potential U,(f - k).

We now investigate J. Let G be an arbitrary but fixed open set in X. Define the
kernel RS (z, E) by

RS(e, ) = B[ [ Tp(X,)d],

0

where 7¢ = ox\g. It is known [15] that {RY, a > 0} is an m-symmetric kernel and
Dynkin’s formula holds;

R.f = RS f+H 5 R.f for nonnegative Borel f,
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where {R,} is the resolvent kernel of M. Combining this with Theorems 5.5 and 5.6, we
have

EL(REF,0) = (f,0)m for any v € Fg. (6.4)

Let Mg be the part of M on G, i.e., Mg = (X&, P,)seq, where X& = X, for t < 7¢
and = A for t > 7¢. Obviously { RS} is the resolvent kernel of M. Hence it follows from
(6.4) that

Lemma 6.3. Define the part (Eg, Fg) of (€,F) on G by
Ea(u,v) = E(u,v) u,v € Fg.
Then Mg, is associated with the Dirichlet form (Eq, Fg).

Unfortunately the Dirichlet form Eg does not satisfy Assumptions (A.1)—(A.3). However,
this form plays a key role in the investigation of J.
Take a v € F such that supp[v] N G = () and define

Ju(dx) = 2l(z) [ 5(y)J (ddy).
For every u € Fg, it holds that
/G aldJ, = —E(|u],v) < E(v, v)Y2E (u, u)'2.
Since £ = £ on Fg, there exists a Ung € F¢g such that
/Gade = EenlUS T, u) = EJUSTpou)  u€ Fo
By Theorems 4.1 and 5.6, we obtain
Ealv — HX\Gy u) = —£,(US J,, u) u € Fg,

and hence v — HX\®y = —U%J,. In particular, for any nonnegative Borel i vanishing
outside of G,

Epmle™ f(X,0)] = 2 / REh ® vdJ. (6.5)

This formula is strengthened as follows.

Proposition 6.4.
(i) For any bounded Borel measurable functions f, g, h > 0 such that supp|f]|, supp[h] C G
and supplg] N G = 0,

Bnlf (Xeg)g(Xo)ire < 1) =2 [

[ n(@) f(@)g(y)I (dudy) | ds,

where {p“} is the transition function of Mg.
(i) E.le 2 f(X,5-)9(Xr)] on G is a quasi-continuous version of US(fJ,) for a > 0,
f,g € F with supp[f] C G and supp[g] NG = 0.
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Proof. (ii) is a consequence of (i) and Theorem 5.4.
To see (i), first suppose that f,g € F and are bounded, and h = RSH for some
bounded h' € Fg. Then, as in [11, p.119], we obtain

Bunlf (Xeo )o(Xeohira 1] = i [ GEh, foupng)mds
= /Ohrlln(fps hupt/ng_g)mds

. /té’(fpfh,g)ds

- [ [form o]

The assertion for general f, g, h, follows by applying the monotone class theorem. a

7. Stochastic calculus

Let X, m, (£,F), and M = (Q, M, X}, P,) be as before. A real valued function A;(w),
t >0, w €, is called an additive functional (abbreviated to AF) if it is a perfect additive
functional in the ordinary sense but with respect to the restricted Hunt process My,
N being a properly exceptional set which depends on A in general. For details, see [11,
§5.1]. Two AF’s A! and A? are said to be equivalent if for each t > 0 P,(A} = A?) =1
qe. x € X. A positive continuous AF (PCAF in abbreviation) means a nonnegative
continuous AF and the totality of all PCAF’s is denoted by A7.
As in [11, §5.1], we can establish

Theorem 7.1. The family of all equivalent classes of AT and S are in one to one corre-
spondence specified by the following relation:

1
1}}1%1 ?Ehm[(f ’ A)t] :<f ' :uah>7 A€ Ajv JUBS 87

for any ~y-excessive h(y > 0) and Borel measurable f > 0, where (f - A); = [¢ f(X,)dA,.
Moreover, if p € Sy, then U(f - 1) = [3° et f(X;)dA; is a quasi-continuous version of
the 1-potential Uy(f - p1).

Proof. In the argument in [11, §5.1] in order to see the above relationship, the locally
compactness of the state space is used only in the proof of Lemma 5.1.6. So what we
have to do is to see that the assertion of [11, Lemma 5.1.6] holds in our situation, i.e. to
show the equivalence of the following three conditions for an increasing sequence { F,,} of
closed sets:

(i) Cap(K \ F,) | 0 for every compact K C X,
(if) Cap(X\ F,) L0

(iii) Pp(lim, ox\p, < ()=0q.e. z € X.
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The implication (i) = (ii) is a consequence of Assumption (A.3) and the converse impli-
cation (ii) = (i) is trivial.

To see the equivalence of (i) and (iii), recall that p,(z) = E,[e”?X\Fx] is a quasi-
continuous version of ex\p,. Hence p, — 0 q.e. if Cap(X \ F,,) | 0, which means the
implication (ii) = (iii) holds. By the bounded convergence theorem, p, — 0 q.e. if (iii)
holds. On the other hand, since & (py, — Py Pn — Pm) = |Cap(X \ F,) — Cap(X \ F.,,)|,
{pn} is a Cauchy sequence in F. Thus the implication (iii) = (ii) is verified. O

For AF’s A, B, we set
o1
e(A, B) = lglrg EEm[AtBt]a e(A) =e(AA),

and, for u € F, we define an AF A by
AM = (X)) — a(Xo).

Then, by Lemma 4.5, we have

e(AM) = &(u,u) — %/ a*dk.

X
We now consider the space M of AF’s M with E,[M;] = 0 and E,[M?] < oo q.e., t > 0,
M= {M € M :e(M) < oo}, and the space N, of continuous AF’s N such that e(N) =0
and F,[|N¢|] < oo q.e., t > 0. Every M €M determines a unique < M >€ AT such that
E.[<M >, = E,[M}?] q.e.,t > 0. Asin [11, §5.2, 5.3], we obtain the following assertions.
(AF.i) M is a real Hilbert space with inner product e(-, ).

(AF.ii) For any Cauchy sequence {M™} CM, there is a unique M €M and a sub-
sequence M ™) such that e(M™ — M) — 0 and for qe. z € X, P.(limy MM =
M; uniformly on any finite interval of t) = 1.

(AF.iii) For each u € F, there is a unique (M NI eM xN, such that Al =
MM 4 N and it holds

1
(M) = E(u,u) - /X a2dk.

(AF.iv) Let u € Fy(= {w € F : wis bounded}). If we denote by gy~ the smooth
measure associated with M, then it holds that

/X Fdpicus = 28 (uf,u) — E(u2, f)

for any f € Fy.
(AF.v) For AF A and u € F, the following three conditions are equivalent:

(a) A= NV,
(b) A €N, and E,[A] = pia(z) — u(z) qe. x € X, t >0,
(c) A e N, limy)o E,[A:] = 0 q.e., and limyjg Eyn[A] = —E(u,v) for v € F.
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(AF.vi) The following two conditions are equivalent to each other for u € F:

(i) N is a continuous AF of bounded variation,

(ii) there exist smooth measures v and v? such that &(u,v) =< (v! — v?)|g,,0 > for

any v € Fp,, k = 1,2,..., where {F}} is an increasing sequence of closed set with
Cap(X\ Fy) | 0Oand I, -1 €8y, i=1,2,k=1,2,....

In the remainder of this section, we see that the stochastic calculus related to the
Dirichlet form discussed in [11, §5.4] remains valid in our situation. In the sequel, £, J,
and k denote the ones appearing in the Beurling-Deny formula (Theorem 4.1).

For u,v € F, we define

H<upv> = §(M<u+v> — H<u> — ,U<u>)-

It is easily seen that, for u,v, f € F,

/X fdu<u,v> =E(uf,v) —Ewf,u) — E(uv, f) (7.1)

tim [ ) = @) 0) = H@) e, dym(da) - <anf k>

Then we have

Lemma 7.2. For u,v, f € F;, it holds that

/ .]Fd:u<u2,v> - 2/ fad,u<u,v> (72>
X X

=2 (a(y) — a(x))*(0(y) — 0(2)) f () (dwdy)— <@0f k> .

XxX\D

Proof. By (7.1), we have

LHS of (7.2) = lirn1 (a(y) — a(z))*(9(y) — 6(x))f(x)pt(x, dy)m(dz)— <@ f k> .

t10 t Jxxx

Choose an increasing sequence { K, } of compact sets such that Cap(X \ K,,) | 0 and ©
is continuous on each K,. Then there is a decreasing sequence {e,} of positive numbers
such that €, | 0 and

[0(y) — o(x)] < if z,y € K,, and d(z,y) < &,.

1
n
Now we set

KM — {(z,y) € K, x K, : d(z,y) > e, }

As was seen in the proof of Lemma 4.4, for some decreasing sequence {t;} of positive
numbers with ¢; | 0, each (1/2t;)p,, (v, dy)m(dz)|x ) converges weakly to a Borel measure
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J, on K™ and lim, J,, = J. We then decompose as

% Xxx(a(y) —a(x))*(0(y) — () f(2)pe(x, dy)m(dz) = L,(t) + 1L, () 4 L, (t),
L)~ )2000) — ) F@ e dpymio)

IL,(t) = % PR (ily) — @(x))2(5(y) — () f(z)pe(, dy)m(dz),

1L, (t) = . (a(y) — a(2))*(0(y) — 0(x)) f(x)p (x, dy)m(dz).

t XX X\KnxKp

As in the proof of Lemma 4.4, we obtain

lim Tim T,,(#;) = 2 (aly) — a(x))*(0(y) — o(2)) f (x) ] (dwdy).

n—00 j—oc0 XxX\D
Let vy(dxdy) = (1/t)(u(y) — a(x))?*ps(z, dy)m(dx). It then follows that
1
L (0] < 2l (X x X)
L, ()] < 2[[vlloo | Flloors (X < Gn).
By Lemma 4.2, 14(X x X) < 2&(u, u) and hence

lim lim IL,(¢) = 0.

n—oo t|0
Moreover we have
1 5 N -
(X xGp) < p (a(y) — a(x))*eq, (y)pi(z, dy)m(dz)
XxX
1

= A(w’eq, . pil)m — 2(peu, ue, )m + (u*, prec, Jm}

—

= —{—(veq,. 1 = p)m + 2(u — pu, ueg, )m — (U, e, — PG, )m}

~+

— = <@’éq,, k> +2E(u,ueq,) — E(u? eq,) ast | 0.
Since ég, , Ufq, , 1*€q, — 0 q.e. and weakly in F, it holds that

lim lim IIL,(¢) = 0.

n—o0 t|0
The proof is completed. O

Let j\c/[ [l be the continuous part of M™ and /i<u> be the smooth measure associated
with <]\Zl W > TIf we set

C 1 C C C
Heyp>= §{M<u+v> — Peys — Peys

then, as in [14], we can conclude from Lemma 7.2 that the following derivation property
of fi_,~ holds.
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Theorem 7.3. For u,v,w € Fy, it holds that

c c c
'U’<uv,w>: u- M<v,w> +0- lu’<u,w> .

Now repeating the argument in [11, §5.4], we can show the following assertions on the
stochastic calculus.
(sc.i) For uy,...,u, € F, and ® € C*(R"), it holds that

C n aq) C
Hcp(u),o>= Z . (W) ey, v~ for any v € Fy, (7.3)

i=1

where u = (ug, ..., uy,).

(sc.ii) For uy,...,u, € F and ® € C}(R"™)(= the space of all continuously differentiable
bounded functions with bounded derivatives), the identity (7.3) remains valid.

(sc.iii) For each M € My ={M € M : popy~(X) < oo} and f € L*(X; pcps>), there

exists a unique f - M E/\O/l such that

e(f- M, L) 2/ Dperrrs(dz) L eM, (7.4)

where ponrr> = (1/2){pt<prsr> — H<mrs> — fi<r>}. Moreover, the mapping f — f- M is
an isometry of L*(X; u<ys) to (M, 2e).
(sc.iv) For uy,...,u, € F, and ® € CY(R"), ®(u) € F, and satisfies that

M e znj
(sc.v) For uy,...,u, € F and ® € C}(R"), the identity (7.3) remains valid.

(sc.vi) If either (i) uy,...,u, € F, and ® € CYR") or (i) uy,...,u, € F and ® €
CH(R™), then it holds that

)- g [l (7.5)

5(0)(@( Z /Xaxz 8I] )d/i<ui7u].>. (7.6)

8. Closable parts of pre-Dirichlet forms

Throughout this section, in addition to Assumptions (A.1)-(A.3), we assume the existence
of a subalgebra C C F N Cy(X) such that

(C.1) 1 €C, Cisdensein F, and a countable subset of C separates the points of X,

(C.2) for each € > 0, there is a function 5. : R — [—¢, 1+¢] such that 0 < 5.(t) — [:(s) <
t—s,t>s, 6.(t) =t 0<t<1,and fB.(u) € C whenever u € C.

(C.3) for some 6 >0 and a > 0, F5(t) = fBs(—a), t < —a, and = fs(a), t > a.

A pre-Dirichlet form (A, C) is by definition a nonnegative definite symmetric bilinear
form on C x C with A(fB.(u),f:(u)) < A(u,u) for u € C, e > 0. Let u € FM(=the
space of finite Borel measures on X). A pre-Dirichlet form is said to be closable on
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LA(X; p) if A(up,u,) — 0 whenever {u,} is A-Cauchy and u,, — 0 in L*(X;u). (€,0C),
the restriction of £ on C x C, is a pre-Dirichlet form closable on L?(X;m). As was seen in
[13, §6], for each u € FM, there exists a unique pre-Dirichlet form closable on L*(X; p),
say (£ C), which is maximal in the sense that if a pre-Dirichlet form (A, C) closable on
L*(X; p) is dominated by (€,C), i.e. A(u,u) < E(u,u), u € C, then (A, C) is dominated
by (£ C). We call (£ C) the closable part of (£,C) on L?(X;u). In this section,
we aim at establishing a characterization of £ analogous to [13] and showing the
tightness of the capacity associated with E%®).

We first recall the extended Dirichlet space (£, F.). We say u € F, if there is an &-
Cauchy sequence {u,} C F with u,, — u m-a.e. £ on F is extended to F,, again denoted
by &, as E(u,u) = lim,, £(un, u,). We have

Lemma 8.1. (i) Let u € F.. Denoting Rz the resolvent of the Hunt process M associated
with &, define og(dxdy) = BRg(x, dy)m(dx), sg(x) = fR(z, X), and

_B

2 Jxxx

£%(u,u) (u(2) = uly)*os(dady) + 5 | u(@)*(1 = ss(@))m(da).

Then & (u,u) = limgoo £ (u, u).
(ii) Every normal contraction operates on (€, F,).
(iii) F = F. 0 L*(X; m).

(iv) Every u € F. admits a quasi-continuous m-modification.

Proof. The first three assertions can be seen in the same way as in [11, Lemma 1.5.4].
To see (iv), it suffices to note that, for every u € F, and n > 1, (—n) V (u An) € F and
admits a quasi-continuous m-version. O

In what follows, u € F,. is always assumed to be quasi-continuous. For a finely closed
Borel set F' and u € F,, define

Pru(r) = Ey[u(X,,)].
Oshima [18] has shown that

Lemma 8.2. Foru € F,,

(i) Pfu € F,, is quasi-continuous, and enjoys P¥u = P¥(PFu) q.e.,
(ii) E(PFu,v) =0 for v € F., bounded and = 0 q.e. on F,

(iii) E(PFu, PFu) < E(u,u).

We now proceed to the review on time changed processes. Let v € SN FM (v # 0)
and A" be the associated PCAF. We set

FvJ={r € X\ N: PJ[A! >0, t > 0] =1}, (8.1)

where N is an exceptional set of A”. Using [19, (64.2)] instead of [8, V(3.9)], as in [11,
Lemma 5.5.1], we can conclude that

Flv] C Slv] = supplv] and  v(S[v]\ F[v]) =0. (8.2)
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Setting 77 = inf{s > 0 : AY > t}, the time changed process M) by A" is given by
Mitch() — (XTtD7 P,) (8.3)

and is a v-symmetric standard process on F[v]. We denote by (£!h*) Ftch(*)) the Dirichlet

form on L?(F[v];v) associated with M) Tt has been seen by Fitzsimmons [10] that
FlehW) = Ly € LX(F[V);v) : u = v|pp) v-a.e. for some v € F, with Py = v q.e.}
EFM) (v ey, v]ppy) = E(PT o, PEM) - for v € F, with PPy = v qee.

By (8.2), we may think of (£¢h*) Fth()) as a Dirichlet form on L?(S[v]; v). In this case,
we write (€Y, F¥). Now we can show the regularity of F.

Lemma 8.3. Let C¥ = {u|g): u € C}. Then C¥ C F¥, and is dense in F".

Proof. Let v € C. Since F[v]\ F[v]" is semipolar (cf. [19, 8]), by Theorems 5.2 and
5.3, we have
v =Py q.e. and v-a.e. on Fv|. (8.4)

Combining this with Lemma 8.2, we have v|g},) € F".

Next let v € F”. We may assume that u is bounded. Choose vy € F. N L*(X;v)
with PFMuy = vy q.e. and vo|pp) = u. Define v = (—[Juflos) V (vo A ||lu]|oo). Then, by
Lemma 8.1, v € F and moreover we have

u=PMy|p, =0 v-ae. (8.5)

Choose u? € C such that u — v q.e. and in F, and put u, = |[u|leB1(ul /]|t ). Then
{u,} is uniformly bounded, and u,, — v q.e. and in F. Hence, by Lemma 8.2,
gly(un|5[l/} — U, un|S[V} - U)

= (P, — PFWy, PPy, — PFVIY) 4 (uy, — u, uy — ),

< E(up — v, up — ) + (U — uy upy —u), — 0,
which implies the denseness of C¥ in F". O

Every u € FM is decomposed as
= po + p1 1o € S and py = Iy - p for some exceptional set N. (8.6)

See [13, Lemma 2.1]. If uo # 0, we then define a pre-Dirichlet form closable on L?(X; )
by
EM(u,u) = EM (U gpue]> Ul s7u0)) ueC,

and if g = 0 then £# = 0. We are now ready to state the main result of this section.

Theorem 8.4. Let u € FM satisty S[u| = X. Then

(j) (5M7C) = (gcls(u)’c)‘

(i) The capacity associated with the closure of (£ C) on L*(X; ) is tight.

(iii) If Cap(X \ F|uo]) = 0, then (€,C) is closable on L*(X; ) and the closure is realized
by a Hunt process M* = (X}', P*) such that
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(a) “the law of X! under P}'” = “the law of X w0 under P,” forz € X\ N,
(b) PHX} =z, fort >0] =1 for x € N,

where MH° = (XTtuo,Px) is the time changed process by A", and N is an exceptional
Borel set such that py = Iy - p and X \ N C Flup.

For the proof, we first mention that under Assumptions (C.1)-(C.3) compact sets are
separated in the stronger sense than Lemma 1.2.

Lemma 8.5. For any disjoint compact sets K1 and K5, there exist a decreasing sequence
{G,} of open sets and a sequence {f,} C C such that N,G, = K;, Gy N Ky = {,
0<f.<1l,and f, =1 o0n K; and =0 on X \ G,,.

Proof. Due to (C.1), we may assume that there exists a D C C such that D is a
Q-algebra and separates the points of X. Let D be its closure in Cy(X). By Gelfand’s
representation theorem, there is a compact metric space X such that (i) X is imbedded
in X densely and continuously and (ii) the restriction to X gives rise to an isomorphism
from C(X) to D.

Note that K; and K, are also compact in X. Hence there are a sequence {g,} C C(X)
and a decreasing sequence {G’,} of open sets in X such that N,G!, = K;, G} N Ky = 0,
0<g,<l,andg,=1on K;and=0o0n X \G/,. Let G, = XNG’,. Choose f' € D with

I (gnlx) = filloo < 1/4, and set f = {55 (4a(f;, = (1/2))) = Bs(=a)}/{Bs(a) — Bs(—a)}. Tt
is easy to see that {f,} and {G,} satisfy the desired properties. O

By this lemma, we obtain the following representation of Cap.
Lemma 8.6. For every compact K C X, it holds that
Cap(K) = inf{& (u,u) :u € C and > 1 on K}.
Proof.  Choose {u,} C C such that u, > 1 on K and
E(Uup,uy) | I(K) =inf{& (u,u) :ueCand >1on K}.

Set u;, = Bi/n(un). Then, & (uy,u;,) | I(K) and u;, — w in F for some u € F. By
Theorem 1.1, we have

u=1 q.e. on K. (8.7)
If vel and >0 on K, then
Er(u+ lv,u + lv) = lim & (u), + lv,u; + lv) > I(K) = & (u,u).
n n k n n
Hence we have
E(u,v) >0 forveC withv >0on K. (8.8)

Now let w € F N Cy(X) satisfy w > 0 on X. Choose {w,} C C converging to
w in F and define w), = ||w||{(1/n) + Bi/n(wn/||w|l)}. Then, it is easily seen that
sup,, &1(w),, w),) < co. Hence the Cesaro mean w! of a subsequence of {w/,} converges to
w in F. By virtue of (8.8), we have

&1 (u, w) =lim & (u, wy) > 0.
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Thus
u=Up for some p € Sp. (8.9)

Take a compact set F' with FNK = (). By Lemma 8.5, we obtain a nonnegative f € C
such that f =1 on F' and = 0 on K. We then have

u(F) < [ fdp= &, f) =0,

Thus supp|u| C K. By Lemma 3.1 and (8.7), we have u = ek. O

These lemmas implies that the following assertion on traps, obtained in [13], also holds
in our situation.

Lemma 8.7. Let m' € FM and (€', F') be another Dirichlet form on L*(X;m’) with
C C F'. Assume that &' (u,u) < E(u,u), uw € C. Then for any exceptional Borel set N,

1
G (Iyu) = —Iyu, m'-a.e. foru e L*(X;m’), (8.10)
o

where {G' } is the resolvent of £'.

Proof. Since X is Lusinian, it suffices to show (8.10) in the case where N = K,
u = I for some exceptional compact set K. By Lemmas 8.5 and 8.6, there exist sequences
{gn}, {wr} C C and a decreasing sequence {Gy} of open sets such that (i) g, > 1 on K
and &1(gn,gn) — 0asn — oo, (i) 0 <wg <1, wx =1 on K and = 0 outside of Gy, and
(iii) NGy = K. Repeating the argument in [13, Proof of Lemma 4.1] with g,, w, and G
there replaced by the above g,, w, and Gy, respectively, and letting k& — oo, we obtain
the desired conclusion. We omit the details. O

Proof of Theorem 8.4. 'The third assertion follows from the first and Lemma 8.7. For
the detailed argument, see [13].

To see the first assertion, let (A,C) be a pre-Dirichlet form closable on L?(X;u),
which is dominated by (&,C). It follows from Lemma 8.7 that (A, C) is also closable on
L*(X; pp). See [13, Lemma 4.2].

Take u € C. By Lemma 8.2, then PFlly € F, is bounded and

EF(u,u) = E(PFoly, pFloly),

Choose a uniformly bounded sequence {u,,} C C such that u, — PFlHly q.e. and in F.
Since po € S, by (8.4), u, — u in L*(X; ug). On the other hand, A being dominated by
&, {u,} is an A-Cauchy sequence. Thus the closability of A on L*(X; o) implies that

A(u,u) = lim A(t, un) < li7rln5(un,un) = &M (u,u).

Thus the proof of the first assertion is complete.

To see the second assertion, we denote by (£, F*) the closure of (E#,C)(= (£ C))
on L?(X;u), and by Capt(-) the associated capacity. Since X is Lusinian, by virtue of
(A.3), we can choose an increasing sequence { K, } of compact sets in X such that

Cap(X\K,) 10 and  u(N\K,)|O0. (8.11)
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Let e, be the l-equilibrium potential of X \ K,,. It then follows from Lemma 8.7 that
en - Ix\w € F* and EM(en - Ix\wv, en - Ix\n) < E(en,en). (8.12)

Indeed, choose a uniformly bounded sequence {u,;} of elements of C satisfying that u,; —
en as j — oo in F and q.e. Then Lemma 8.7 implies that

Unpj * IX\N c Fu,

gu(unj : IX\Nyunj : IX\N) = gu(unjyunj) < 5(Unj, Unj)‘
(cf. [13, Proof of Lemma 4.2]). Note that ji9 = p|x\n. Then, since jio is an element of S,
Up; - Ix\n — €, - Ix\n p-a.e. Hence we obtain (8.12).

Applying Lemma 8.7 again, we see that Iy € F* and E#(I4,14) = 0 for any Borel set
A C N. Let

Up = €y ° IX\N + IN\Kn

It follows from (8.12) that v, — 0 in F*. Since e, = 1 q.e. on X \ K, v, > 1 p-a.e. on
X \ K,,. Thus we obtain

Cap" (X \ K,,) < &' (vn,v,) 1 0,
which completes the proof of the second assertion. O

After completing the paper, we noticed [3] and [4]. In [3], Albeverio-Ma considered the
local property, which we discussed in Section 6. In [4], Albeverio-Ma-Rockner obtained
the Beurling-Deny formula for quasi-regular Dirichlet forms. Their proof is completely
different from ours in Section 4.
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