
DIFFERENTIAL CALCULUS
ON A BASED LOOP GROUP

Ichiro SHIGEKAWA

Department of Mathematics, Graduate School of Science, Kyoto University,
Kyoto 606-01, Japan

Dedicated to Professor Shinzo Watanabe on his 60th birthday

We discuss differential calculus on a based loop group. The calculus on a submani-
fold of the Wiener space was well-developed. In the paper we transfer it to a based
loop group through an Itô map.

1 Introduction

In this paper, we develop a differential calculus on the path space and the
based loop space of a Lie group. Loop groups received much attention by
many researchers recently ([15] [8] [24] [25] [17] [19] . . . ). On the other hand,
the calculus on a submanifold of the Wiener space was also developed by
many authors, e.g., Airault-Malliavin [7], Airault [6], Airault-Van Biesen [9],
Van Biesen [31]. In the case of loop groups, there exist natural isomorphisms
between submanifolds of the Wiener space and loop spaces. We can connect
the calculus on the submanifold of the Wiener space to that on the based loop
space. The isomorphism is given by the Itô map. We calculate the Lie bracket
and the Ricci curvature on the based loop group.

The organization of this paper is as follows. In the section 2, we develop
the calculus on the path space of a Lie group. We show that the divergence of
an adapted vector field is the stochastic integral. In the section 3, we discuss
the based loop group. The explicit forms of the second fundamental form
and the Ricci curvature are given. We will give a sufficient condition for the
spectral gap on the based loop group.

2 Path space of a group

In order to fix notation, we introduce necessary notions. Let G be a connected
compact d-dimensional Lie group and we denote the unit element by e. We
denote the set of all left invariant vector fields by g that is called the Lie algebra
of G. g is sometimes identified with T (G)e. We fix an Ad(G)-invariant inner
product (·|·)g in g. We fix a constant T > 0 and denote the G-valued path
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space on [0, T ] by

PG := {γ : [0, T ]→G ; γ is continuous and γ0 = e}. (1)

PG has a natural group structure as follows: for γ, ξ ∈ PG, define γξ ∈ PG
by

(γξ)t = γtξt.

Moreover, we denote the based loop space of G as follows

ΩG := {γ : [0, T ]→G ; γ is continuous and γ0 = γT = e}.
It is easy to see that ΩG is a normal subgroup of PG and PG/ΩG ∼= G.

We take an orthonormal basis {X1,X2, . . . ,Xd} of g. We consider the
following stochastic differential equation on G:

{
dγt =

d∑
i=1

Xi(γt)◦dBi
t,

γ0 = e

(2)

where (B1
t , . . . , B

d
t )t∈[0,T ] is a d-dimensional Brownian motion, and ◦ stands

for the Stratonovich symmetric stochastic integral. In the sequel, following
the custom, we omit the summation sign for repeated indices appearing once
at the top and once at the bottom. Setting Bt = Bi

tXi, (Bt) is a Brownian
motion on g. The above stochastic differential equation is rewritten in matrix
notation as follows: {

dγt = γt◦dBt,

γ0 = e.
(3)

(Bt) induces a measure on the path space Pg, which is called the Wiener
measure and is denoted by PW . There exists the unique strong solution to
(3), i.e., there exists a measurable function I : Pg → PG such that γ = I(B)
is the unique solution to (3). We call this map I the Itô map. We denote the
image measure of PW under I by µ. Then (Pg, PW ) ∼= (PG,µ) as measure
spaces. We sometimes regard a function on (PG,µ) as a function on (Pg, PW ).

The solution to (3) is called a left Brownian motion on G. We may regard
(γt) as a right Brownian motion on G. To see this, we need another Brownian
motion (bt) that is defined by

bt =
∫ t

0

Ad(γs)dBs. (4)

Here the integral is the Itô stochastic integral. It is easy to see that (bt) is a
Brownian motion on g, since the inner product (·|·)g is Ad(G)-invariant.
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Proposition 2.1 We have

bt =
∫ t

0

Ad(γs)dBs =
∫ t

0

Ad(γs)◦dBs. (5)

Proof. We use the matrix notation with respect to the basis {X1, . . . ,Xd}.
Note that

Ad(γt)ij◦dB
j
t = Ad(γt)ijdB

j
t +

1
2
〈dAd(γt)ij , dB

j
t 〉

where 〈·, ·〉 denotes the quadratic variation. Hence it is enough to show

〈dAd(γt)ij , dB
j
t 〉 = 0.

Since (γt) is the solution to (2), (Ad(γt)) satisfies the following system of
stochastic differential equations:

dAd(γt)ij = Ad(γt)ikad(Xl)kj ◦dB
l
t.

Therefore

〈dAd(γt)ij , dB
j
t 〉 = 〈Ad(γt)ikad(Xl)kj ◦dB

l
t, dB

j
t 〉

= 〈Ad(γt)ikad(Xl)kj dB
l
t, dB

j
t 〉

=
d∑

j=1

Ad(γt)ikad(Xj)kj dt

=
d∑

j,k=1

Ad(γt)ik([Xj ,Xj ]|Xk)g

= 0.

This completes the proof.

Now we easily have

Bt =
∫ t

0

Ad(γ−1
s )dbs =

∫ t

0

Ad(γ−1
s )◦dbs. (6)

Therefore we can rewrite (3) as

dγt = γt◦dBt = γt◦(Ad(γ−1
t )◦dbt) = γtγ

−1
t ◦dbtγt = ◦dbtγt.

This shows that (γt) is a right Brownian motion on G.
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The Cameron-Martin space H ⊆ Pg is defined by

H = {h ∈ Pg : h is absolutely continuous and ḣ ∈ L2([0, T ]→g)}.

Here ḣ denotes the Radon-Nikodym derivative of h. The inner product in H
is defined as follows:

(h|k)H :=
∫ T

0

(ḣ(t)|k̇(t))gdt.

For h ∈ H we define a one-parameter subgroup {ϕu;u ∈ R} of PG as
follows:

ϕu(t) = exp{uh(t)},
where exp: g → G is the exponential map. {ϕ(u)} defines a one-parameter
transformation group on PG as

Φu(γ) = ϕuγ.

Finally, we can obtain a vector field Xh as an infinitesimal transformation of
{Φu}, i.e.,

Xhf(γ) =
d

du
f(Φu(γ))

∣∣∣
u=0

for f ∈ FC∞(PG),

where FC∞(PG) is a set of all functions f : PG → R of the form

f(γ) = F (γt1 , . . . , γtn), 0 < t1 < · · · < tn ≤ T, F ∈ C∞(Gn).

Notice that Xh is a right invariant vector field. We set

T (PG)γ := {Xh
γ ;h ∈ H}.

We regard T (PG)γ as a tangent space of PG at γ, and so the tangent bundle
is defined by

T (PG) =
⋃

γ∈PG

T (PG)γ .

Since T (PG)γ is isomorphic to H, we sometimes identify T (PG)γ with H in
the sequel. Furthermore T (PG) is isomorphic to PG ×H. The isomorphism
is given by PG×H � (γ, h) �→ Xh

γ ∈ T (PG). Using this isomorphism, we can
introduce an inner product in T (PG)γ as follows: for h, k ∈ H

(Xh
γ |Xk

γ) := (h|k)H .
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Hence PG can be regarded as a Riemannian manifold with a right invariant
metric. Similarly we can define the cotangent bundle T ∗(PG), and T ∗(PG)
can be identified with PG×H∗.

For f ∈ FC∞(PG), h �→ Xhf is a bounded linear map, and so we denote
it by ∇̂f :

〈∇̂f, h〉 = Xhf.

(∇ is reserved for the covariant derivation on the based loop space ΩG). As is
well-known (see, e.g. Gross [17, Lemma 4.15]), the differential of the Itô map
I is given by

I∗(h) = γ · h (7)

where

(γ · h)(t) =
∫ t

0

Ad(γs)ḣ(s)ds. (8)

Here (7) means that

〈D(f◦I)B , h〉 = 〈∇̂f, γ · h〉 (9)

where D denotes the Gross H-differentiation operator and γ = I(B). Thus we
have the following diagram:

T (Pg) ∼= Pg ×H
I∗−−−−→ PG×H ∼= T (PG)� �

Pg
I−−−−→ PG

(10)

The important thing is that I∗ preserves the inner product and therefore I is
an isomorphism in the sense of ‘Riemannian manifolds.’

By the way, on the Wiener space Pg, we can introduce the set of all
H-valued smooth function in the sense of Malliavin, which we denote by
W∞,∞−(H). We may regard an element of W∞,∞−(H) as a smooth sec-
tion of T (Pg) ∼= Pg ×H, and so we denote it by Γ(T (Pg)). The associated
set of smooth section of T (PG) is defined to be the image of Γ(T (Pg)) under
I. We denote it by Γ(T (PG)). We can define Γ(T ∗(PG)) similarly and it is
easy to see that ∇̂f ∈ Γ(T ∗(PG)) for f ∈ FC∞(PG).

We introduce a homomorphism π : PG → G by

π(γ) = γT . (11)
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The kernel of π is ΩG. The differential of π is also given by

π∗(h) = Ad(γ−1
T

)hT (12)

and we also have the following diagram:

T (PG) ∼= PG×H
π∗−−−−→ G× g ∼= T (G)� �

PG
π−−−−→ G

(13)

As is well-known in the Malliavin calculus, the H-derivative of γt is given
by

γ−1
t 〈Dγt, h〉 = Ad(γ−1

t )
∫ t

0

Ad(γs)ḣ(s)ds. (14)

In general, Dγt ∈ L(2)(H,T (G)γt ) where L(2)(H,T (G)γt ) denotes the set of
all Hilbert-Schmidt class operators from H into T (G)γt . γ−1

t in the left hand
gives rise to an isomorphism T (G)γt

∼= g. To be more precise, γ−1
t = (Lγ−1

t
)∗ :

T (G)γt → g.
We see (14) quickly. Using the matrix notation, we have by (3),

dBt = γ−1
t ◦dγt

Differentiating both hands, we have

ḣtdt = 〈D(γ−1
t ◦dγt), h〉

= −γ−1
t 〈Dγt, h〉γ−1

t ◦dγt + γ−1
t ◦d〈Dγt, h〉

= −γ−1
t 〈Dγt, h〉◦dBt + γ−1

t ◦d〈Dγt, h〉.

Hence
d〈Dγt, h〉 = 〈Dγt, h〉◦dBt + γtḣ(t)dt.

Now set

Yt =
∫ t

0

Ad(γs)ḣ(s)ds =
∫ t

0

γsḣ(s)γ−1
s dt.

Then,

d(Ytγt) = dYt◦γt + Yt◦dγt = γtḣ(t)γ−1
t dt◦γt + Yt◦(γt◦dBt)

= γtḣ(t)dt+ (Ytγt)◦dBt.
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By the uniqueness of the solution, we have

〈Dγt, h〉 = Ytγt

and therefore

γ−1
t 〈Dγt, h〉 = γ−1

t Ytγt = Ad(γ−1
t )

∫ t

0

Ad(γs)ḣ(s)ds

which is (14).
Using the notation (8), we can rewrite (14) as

γ−1
t 〈Dγt, h〉 = Ad(γ−1

t )(γ · h)(t). (15)

Since γ
T

= π◦I, we have

γ−1
T

〈Dγ
T
, h〉 = Ad(γ−1

T
)(γ · h)(T ) = π∗I∗(h). (16)

We have had a covariant differentiation on Pg, we can transfer it to PG,
since Pg and PG are isomorphic (up to constant) to each other as Riemannian
manifolds. Let us calculate the covariant derivative.
Proposition 2.2 Let Xh, Xk be right invariant vector fields associated with
h, k ∈ H. Then we have

∇̂XhXk = Xl (17)

where

l(t) = −
∫ t

0

[h(s), k̇(s)]ds.

Moreover we have

[Xh,Xk] := ∇̂XhXk − ∇̂XkXh = −X[h,k]. (18)

Here [h, k](t) := [h(t), k(t)] and [ , ] is the Lie bracket.
Proof. First we note that, for γ = I(B),

I−1
∗ (Xk) = γ−1 · k.

Therefore

D(γ−1 · k)(t) = D(
∫ t

0

Ad(γ−1
s )k̇(s)ds)
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= D(
∫ t

0

γ−1
s k̇(s)γsds)

= −
∫ t

0

γ−1
s Dγsγ

−1
s k̇(s)γsds +

∫ t

0

γ−1
s k̇(s)γsγ−1

s Dγsds

= −
∫ t

0

[γ−1
s Dγs,Ad(γ−1

s )k̇(s)]ds.

On the other hand

γ−1
s 〈Dγs, γ−1 · h〉 = Ad(γ−1

s )
∫ s

0

Ad(γu)Ad(γ−1
u )ḣ(u)du = Ad(γ−1

s )h(s).

Therefore

〈D(γ−1 · k)(t), γ−1 · h〉 = −
∫ t

0

[Ad(γ−1
s )h(s),Ad(γ−1

s )k̇(s)]ds

= −
∫ t

0

Ad(γ−1
s )[h(s), k̇(s)]ds.

This means

〈D(γ−1 · h), γ−1 · k〉 = −
∫ ·

0

Ad(γ−1
s )[h(s), k̇(s)]ds.

We eventually arrive at

I∗〈D(γ−1 · h), γ−1 · k〉 = −
∫ ·

0

Ad(γs)Ad(γ−1
s )[h(s), k̇(s)]ds

= −
∫ ·

0

[h(s), k̇(s)]ds.

Then the above calculation shows that

∇̂XhXk = Xl.

Next we show (18). Note that

−
∫ t

0

[h(s), k̇(s)]ds +
∫ t

0

[k(s), ḣ(s)]ds = −
∫ t

0

d

ds
[h(s), k(s)]ds = −[h(t), k(t)].

Now we easily have

[Xh,Xk] = ∇̂XhXk − ∇̂XkXh = −X[h,k]
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as desired.

The Lie bracket [Xk,Xh] agrees with the usual definition. For the reason
why the minus sign appears, see, e.g., Helgason [20, Lemma II.3.5].

Lastly we calculate the divergence. We denote the dual operator of D
(with respect to PW ) by δ. For a vector field X, we define divX = −δX�, X�

being the 1-form associated with X, i.e.,

X�(Y) = (X|Y).

For h ∈ H, we denote (Xh)� by ωh. Then we have the following:
Proposition 2.3 For h ∈ H,

divXh = −δωh = −
∫ T

0

(ḣ(t)|dbt)g. (19)

Here (bt) is the Brownian motion defined by (4).
Proof. The vector field corresponding to Xh is γ−1 · h that is given by

(γ−1 · h)(t) =
∫ t

0

Ad(γ−1
s )ḣ(s)ds.

Note that the integrand is adapted. Then it is well-known that δ(γ−1 · h) is
the stochastic integral:

δ(γ−1 · h) =
∫ T

0

(Ad(γ−1
s )ḣ(s)|dBs)g.

Noticing that dbs = Ad(γs)dBs and (·|·)g is Ad(G)-invariant, we have

divXh = −δ(γ−1 · h)

= −
∫ T

0

(Ad(γ−1
s )ḣ(s)|dBs)g

= −
∫ T

0

(ḣ(s)|Ad(γs)dBs)g

= −
∫ T

0

(ḣ(s)|dbs)g

which is the desired result.
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3 Based loop group

Now we proceed to a pinned space. Our interest is in a based loop space, but
we consider more general situations. For a fixed g ∈ G, set

(PG)g := π−1(g) = {γ ∈ PG ; γT = g}. (20)

In particular, (PG)e = ΩG. The Cameron-Martin space associated to (PG)g
is given by

H0 = {h ∈ H ;h(T ) = 0}. (21)

We can define right invariant vector fields as in the path space case. For
h ∈ H0, let {ϕu;u ∈ R} be a one-parameter subgroup in (PG)g defined by

ϕu(t) = exp{uh(t)}.
{ϕu} defines a one-parameter transformation group on (PG)g as

Φu(γ) = ϕuγ.

Now
Xhf(γ) =

d

du
f(Φu(γ))

∣∣∣
u=0

for f ∈ FC∞((PG)g),

where FC∞((PG)g) is the set of all functions f : (PG)g → R of the form

f(γ) = F (γt1 , . . . , γtn), 0 < t1 < · · · < tn < 1, F ∈ C∞(Gn).

We use the same notation as in the path space case, because Xh is just a
restriction to (PG)g .

We can easily presume that the space (PG)g corresponds to a submanifold
of the Wiener space defined by

Sg = {B ∈ Pg; γ
T

= g} (22)

We already have a calculus on a submanifold of the Wiener space (see, e.g.
Airault [6] or [22]). First recall the Malliavin covariance. Since (DγT )B : H →
T (G)g ∼= g, the Malliavin covariance of γ

T
is defined by

σ =
∑
λ

〈DγT , hλ〉 ⊗ 〈DγT , hλ〉 ∈ T (G)γ
T
⊗ T (G)γ

T

∼= g ⊗ g (23)

where {hλ} is a c.o.n.s. in H. In other words,

σ = DγT ◦(DγT )∗ ∈ Hom(T ∗(G)γ
T
, T (G)γ

T
) ∼= T (G)γ

T
⊗ T (G)γ

T
.
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Here the right hand side is the composite of the following mappings:

T ∗(G)γ
T

(Dγ
T
)∗−−−−−→ H∗ ∼= H

Dγ
T−−−−→ T (G)γ

T

Let {hλ} be a c.o.n.s. of H. Now using (16), we have,

σ =
∑
λ

〈γ−1
T
DγT , hλ〉 ⊗ 〈γ−1

T
DγT , hλ〉

=
∑
λ

Ad(γ−1
T

)(γ · hλ) ⊗ Ad(γ−1
T

)(γ · hλ)

=
∑
λ

∫ T

0

Ad(γ−1
T

)Ad(γs)ḣλ(s)ds⊗
∫ T

0

Ad(γ−1
T

)Ad(γs)ḣλ(s)ds

=
∑
λ

d∑
i,j=1

∫ T

0

(Ad(γ−1
T
γs)ḣλ(s)|Xi)gds

×
∫ T

0

(Ad(γ−1
T
γs)ḣλ(s)|Xj)gdsXi ⊗Xj

=
d∑

i,j=1

∑
λ

∫ T

0

(ḣλ(s)|Ad(γ−1
s γT )Xi)gds

×
∫ T

0

(ḣλ(s)|Ad(γ−1
s γ

T
)Xj)gdsXi ⊗Xj

=
d∑

i,j=1

∫ T

0

(Ad(γ−1
s γ

T
)Xi)|Ad(γ−1

s γ
T

)Xj)gdsXi ⊗Xj

=
d∑

i,j=1

∫ T

0

(Xi|Xj)gdsXi ⊗Xj

= T
d∑

i=1

Xi ⊗Xi.

Here we regard σ as an element of g ⊗ g and we used in the fifth line that
the inner product in g is Ad(G)-invariant, i.e. Ad(γ−1

T
γs) is orthogonal. The

inverse of σ is therefore given by

σ−1 = T−1
d∑

i=1

ωi ⊗ ωi ∈ g∗ ⊗ g∗ ∼= T ∗(G)γ
T
⊗ T ∗(G)γ

T
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where {ω1, . . . , ωd} is the dual basis of {X1, . . . ,Xd}. Then the tangent space
of Sg is given by

T (Sg) = {h ∈ H; 〈DγT , h〉 = 0}. (24)

By this definition and (16), it is easy to see that h ∈ T (Sg) if and only if
(γ · h)(T ) = I∗(h)(T ) = 0. Therefore I∗ : T (S)B → H0 is again an isomor-
phism preserving inner products. Sg is isomorphic to (PG)g as a Riemannian
manifold. We can identify Sg and (PG)g with one another. On the submani-
fold Sg, we can define Γ(T (Sg)) to be the set of smooth sections of T (Sg) (see,
e.g. [22]) and therefore, by using I, we can define the set of smooth sections
on T ((PG)g) and denote it by Γ(T ((PG)g)).

It is easy to see that

H⊥
0 = {Xψ;X ∈ g} (25)

where ψt = t/
√
T . Let p : H → H0, q : H → H⊥

0 be orthogonal projections.
Then they can be written as

ph = h− h(T )√
T
ψ (26)

qh = h(T )√
T
ψ. (27)

The normal bundle is defined as the image of q and denoted by N((PG)g).
Since g � X �→ Xψ ∈ H⊥

0 gives an isomorphism, we identify H⊥
0 with g.

Therefore N((PG)g) ∼= (PG)g × g
Now the covariant differentiation on (PG)g is defined by

∇XY := p∇̂XY, X,Y ∈ Γ(T ((PG)g)).

The second fundamental form A is given by

A(X,Y) = q∇̂XY = ∇̂XY −∇XY.

Proposition 3.1 For h, k ∈ H0,

A(Xh,Xk) = − 1√
T

∫ T

0

[h(s), k̇(s)]ds (28)

Proof. By Proposition 2.2, ∇̂XhXk = Xl where

l(t) = −
∫ t

0

[h(s), k̇(s)]ds.
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Hence

A(Xh,Xk) = ql = − 1√
T

∫ T

0

[h(s), k̇(s)]ds,

which is the desired result.

By using the second fundamental form, we can express the Riemannian
curvature as follows (see, e.g. [31, Proposition 26], [22, Theorem 3.5]):

R(X,Y,Z,W) = −(A(X,Z)|A(Y,W))g + (A(Y,Z)|A(X,W))g .
(29)

Let us introduce the area measure m on (PG)g as follows (for the area
measure, see [7]):

m = δg(γT )
√

detσ.

Since det σ = T d, we have

m = T d/2 pT (e, g)E[ · |γT = g]

Here pT (e, g) denotes the probability density function of the law of γT . Thus
m differs from the pinned measure E[ · |γ

T
= g] up to constant. Let ∇∗ be

the dual operator of ∇ with respect to m. Then ∇∗ can be written as

∇∗ = δ − 1
2
i((Dγ

T
log det σ)�)

(see, [23, §2]) where i(·) denotes the interior product. Therefore we have ∇∗ = δ
because det σ is constant. For a vector field X, we define divX = −∇∗X�, X�

being the 1-form associated with X, i.e.,

X�(Y) = (X|Y).

In the sequel, we denote (Xh)� by ωh. By Proposition 2.3, we easily have
Proposition 3.2 For h ∈ H0,

divXh = −∇∗ωh = −
∫ T

0

(ḣ(t)|dbt)g. (30)

Here (bt) is the Brownian motion defined by (4).
Let us proceed to define the Ricci curvature. By using the second funda-

mental form, we can write the Ricci curvature as follows (see, e.g. [15], [23]):

Ric(·, ·) = −
∑
λ

(A(·,Xhλ )|A(·,Xhλ )) + (A(·, ·)|qδq) (31)

where {hλ} is a c.o.n.s. of H0. First we calculate qδq.
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Lemma 3.3 It holds that

qδq =
bT√
T
. (32)

Proof. We first note that the projection operator to T (Sg) which we denote
by Q, can be written as follows:

Qh = I−1
∗ (q(I∗h))

= I−1
∗ (q(γ · h))

= I−1
∗

( 1√
T

(γ · h)(T )ψ
)

=
1
T

∫ ·
0

Ad(γ−1
t )(γ · h)(T )dt.

For a c.o.n.s. {hλ} of H, we can write

δQ = δ{
∑
λ

(hλ|Q(·))H ⊗ hλ} =
∑
λ

δ(hλ|Q(·))Hhλ.

Here for h ∈ H,

(hλ|Q(h)) =
1
T

∫ T

0

(
ḣλ(t)

∣∣∣Ad(γ−1
t )

∫ T

0

Ad(γs)ḣ(s)ds
)

g
dt

=
1
T

∫ T

0

∫ T

0

(Ad(γ−1
s γt)ḣλ(t)|ḣ(s))gds dt.

Hence

(hλ|Q(·))H =
1
T

∫ ·
0

ds

∫ T

0

Ad(γ−1
s γt)ḣλ(t)dt

=
1
T

∫ ·
0

ds

∫ s

0

Ad(γ−1
s γt)ḣλ(t)dt

+
1
T

∫ ·
0

ds

∫ T

s

Ad(γ−1
s γt)ḣλ(t)dt.

Here we identify H∗ with H. Since the integrand of the first term is adapted,
we have

δ
( 1
T

∫ ·
0

ds

∫ s

0

Ad(γ−1
s γt)ḣλdt

)
=

1
T

∫ T

0

(∫ s

0

Ad(γ−1
s γt)ḣλ(t)dt

∣∣∣dBs

)
g
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=
1
T

∫ T

0

(∫ s

0

Ad(γt)ḣλ(t)dt
∣∣∣Ad(γs)dBs

)
g

=
1
T

∫ T

0

((γ · hλ)(s)|dbs)g.

We calculate the second term. To do this, we use an approximation argument.
Let � = {0 = s0 < s1 < · · · < sN = T} be a partition of [0, T ] and we set
|�| = max{sk − sk−1; k = 1, . . . , N}. Then

1
T

∫ ·
0

ds

∫ T

s

Ad(γ−1
s γt)ḣλ(t)dt

= lim
|	|→0

1
T

N∑
k=1

∫ T

sk

Ad(γ−1
sk
γt)ḣλ(t)dt

∫ ·
0

1[sk−1,sk](s)ds.

Here, the convergence in the right hand side is the strong convergence in
Lp(Pg, PW ) for all p ≥ 1. On the other hand, since (γt) is a left Brown-
ian motion, it holds that, for t ≥ s

γ−1
s γt = γt−s(θsB)

where θs is a shift operator: (θsB)u = Bs+u −Bs. We can see that for t ≥ s

〈DAd(γ−1
s γt), h〉 = 0

if suppḣ ⊆ [0, s]. By virtue of this fact, we have

δ
{ 1
T

N∑
k=1

∫ T

sk

Ad(γ−1
sk
γt)ḣλ(t)dt

∫ ·
0

1[sk−1,sk](s)ds
}

= − 1
T

N∑
k=1

d∑
i=1

(
D

∫ T

sk

(Ad(γ−1
sk
γt)ḣλ(t)|Xi)gdt

∣∣∣ ∫ ·
0

Xi1[sk−1,sk](s)ds
)
H

+
1
T

N∑
k=1

d∑
i=1

∫ T

sk

(Ad(γ−1
sk
γt)ḣλ(t)|Xi)gdt δ

{∫ ·
0

Xi1[sk−1,sk](s)ds
}

=
1
T

N∑
k=1

(∫ T

sk

Ad(γ−1
sk
γt)ḣλ(t)dt

∣∣∣Bsk −Bsk−1

)
g

=
1
T

N∑
k=1

N−1∑
l=k

(∫ sl+1

sl

Ad(γt)ḣλ(t)dt
∣∣∣Ad(γsk )(Bsk −Bsk−1)

)
g

15



=
1
T

N−1∑
l=1

(∫ sl+1

sl

Ad(γt)ḣλ(t)dt
∣∣∣ l∑
k=1

Ad(γsk)(Bsk −Bsk−1)
)

g
.

We notice that

lim
|	|→0

∑
k: sk≤t

Ad(γsk)(Bsk −Bsk−1) = 2
∫ t

0

Ad(γs)◦dBs −
∫ t

0

Ad(γs)dBs

= bt.

Here we used Proposition 2.1. Accordingly, by using the Itô formula, we have

lim
|	|→0

δ
{ 1
T

N∑
k=1

∫ T

sk

Ad(γ−1
sk
γt)ḣλ(t)dt

∫ ·
0

1[sk−1,sk](s)ds
}

=
1
T

∫ T

0

(Ad(γt)ḣλ(t)|bt)gdt

=
1
T

(
∫ T

0

Ad(γt)ḣλ(t)dt|bT )g − 1
T

∫ T

0

(
∫ t

0

Ad(γs)ḣλ(s)ds|dbt)g

=
1
T

((γ · hλ)(T )|bT )g − 1
T

∫ T

0

((γ · hλ)(t)|dbt)g.

Thus we have

δ(hλ|Q(·))H =
1
T

∫ T

0

((γ · hλ)(s)|dbs)g +
1
T

((γ · hλ)(T )|bT )g

− 1
T

∫ T

0

((γ · hλ)(t)|dbt)g

=
1
T

((γ · hλ)(T )|bT )g.

By summing up over λ we have

∑
λ

δ(hλ|q(·))Hhλ =
1
T

∑
λ

((γ · hλ)(T )|bT )ghλ.

Now we have

qδq = I∗(QδQ)

=
1
T

∑
λ

((γ · hλ)(T )|bT )gI∗(qhλ)

16



=
1
T

∑
λ

((γ · hλ)(T )|bT )g
1√
T

(γ · hλ)(T )

=
1

T 3/2

∑
λ

d∑
i=1

(
∫ T

0

Ad(γs)ḣλ(s)ds|bT )g(
∫ T

0

Ad(γs)ḣλ(s)ds|Xi)g Xi

=
1

T 3/2

d∑
i=1

∑
λ

∫ T

0

(ḣλ(s)|Ad(γ−1
s )bT )gds

∫ T

0

(ḣλ(s)|Ad(γ−1
s )Xi)gdsXi

=
1

T 3/2

d∑
i=1

∫ T

0

(Ad(γ−1
s )bT |Ad(γ−1

s )Xi)gdsXi

=
1

T 3/2

d∑
i=1

T (bT |Xi)g Xi

=
1√
T
bT

which completes the proof.

Now we can calculate the Ricci curvature as follows:
Proposition 3.4 The Ricci curvature is written as

Ric(Xh,Xk) =
1
T

∫ T

0

K(h(s), k(s))ds +
1√
T

(bT |A(Xh,Xk))g (33)

− 1
T 2

∫ T

0

∫ T

0

K(h(s), k(t))dsdt

where K is the Killing form defined by K(X,Y ) = tr(adXadY ).
Proof. It is enough to calculate

∑
λ(A(·,Xhλ )|A(·,Xhλ )). Since (·, ·)g is Ad(G)

invariant, adX is skew-symmetric for X ∈ g. Hence, for X,Y ∈ g,∑
i

(adX(Xi)|adY (Xi))g = −
∑
i

(Xi|adXadY (Xi))g

= −tr(adXadY )
= −K(X,Y ).

Using this and noting that {hλ} ∪ {Xiψ} forms a c.o.n.s. of H, we have

∑
λ

(A(Xh,Xhλ )|A(Xk ,Xhλ))g

17



=
1
T

∑
λ

(∫ T

0

[h(s), ḣλ(s)]ds
∣∣∣ ∫ T

0

[k(t), ḣλ(t)]dt
)

g

=
1
T

∑
λ

d∑
i=1

∫ T

0

(adh(s)(Xi)|ḣλ(s))gds
∫ T

0

(adk(t)(Xi)|ḣλ(s))gdt

=
1
T

d∑
i=1

∫ T

0

(adh(s)(Xi)|adk(s)(Xi))gds

− 1
T

d∑
i,j=1

∫ T

0

(adh(s)(Xi)|Xjψ̇(s))gds
∫ T

0

(adk(t)(Xi)|Xjψ̇(t))gdt

= − 1
T

∫ T

0

K(h(s), k(s))ds +
1
T 2

d∑
i=1

∫ T

0

∫ T

0

(adh(s)(Xi)|adk(t)(Xi))gds dt

= − 1
T

∫ T

0

K(h(s), k(s))ds +
1
T 2

∫ T

0

∫ T

0

K(h(s), k(t))dsdt.

This completes the proof.

We set ∆ = −∇∗∇. Here ∆ acts on scalar-valued functions. Recall that
the Bakry-Emery Γ2 is defined by

Γ2(f, g) :=
1
2
{∆(∇f |∇g)− (∇∆f |∇g)− (∇f |∇∆g)}.

Then the following formula for Γ2 can be found in Getzler [15] and Airault [6]
(see also [23]).

Γ2(f, g) = (∇2f |∇2g) + (∇f |∇g) + Ric((∇f)�, (∇g)�). (34)

We give an estimate for the norm of A. Let M be a constant satisfying

|[X,Y ]|g ≤M |X|g|Y |g. (35)

Then we have

‖A‖ := sup
|h|H , |k|H≤1

|A(Xh,Xk)|g ≤ M
√
T . (36)

To see this,

|A(Xh,Xk)|g ≤ 1√
T

∫ T

0

|[h(t), k̇(t)]|gdt
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≤ M√
T

∫ T

0

|h(t)|g|k̇(t)|gdt

≤ M√
T

sup
t∈[0,T ]

|h(t)|g
∫ T

0

|k̇(t)|gdt

≤ M√
T

∫ T

0

|ḣ(t)|gdt
∫ T

0

|k̇(t)|gdt

≤ M√
T
T

{∫ T

0

|ḣ(t)|2gdt
}1/2{∫ T

0

|k̇(t)|2gdt
}1/2

= M
√
T |h|H |k|H .

This shows (36).
The lower bound of the Ricci curvature is essential in the later argument.

Since G is compact, the Killing form K is negative definite. Therefore, we have
to estimate the first term in (33). We can see

|K(X,Y )| = |
∑
i

(adX(Xi)|adY (Xi))g| ≤
∑
i

M2d|X|g|Y |g.

Hence ∣∣∣ 1
T

∫ T

0

K(h(s), k(s))ds
∣∣∣ ≤ M2d sup

t∈[0,T ]

|h(t)|g sup
t∈[0,T ]

|k(t)|g (37)

≤ M2dT |h|H |k|H .

4 Spectral gap

The spectral gap for the operator ∇∗∇ is a fundamental problem. In this
section we give a sufficient condition for the spectral gap. But unfortunately,
the author does not know any example satisfying this sufficient condition.
First we change the reference measure. Set µ = e−2Udm. Here U is a smooth
function in the sense of Malliavin. We consider the following Dirichlet form in
L2((PG)g , µ):

E(f, h) =
∫

(PG)g

(∇f |∇h)dµ. (38)

We denote the norm in Lp((PG)g , µ) by ‖ · ‖p. We assume the following
logarithmic Sobolev inequality for E: there exists a constant λ > 0 and a
non-negative potential function V such that∫

(PG)g

f2 log(f2/‖f‖2
2)dµ ≤ λE(f, f) +

∫
(PG)g

V f2dµ. (39)
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The generator associated with E can be calculated as follows: for η ∈
Γ(T ∗((PG)g))∫

(PG)g

(∇f |η)e−2Udm =
∫

(PG)g

f(∇∗ηe−2U − (∇e−2U |η)dm

=
∫

(PG)g

f(∇∗η + 2(∇U |η))e−2Udm.

Hence the dual operator of ∇ with respect to µ is ∇∗ + 2(∇U |·). Therefore
the generator AU can be written as

AU = −(∇∗ + 2(∇U |·))∇ = −∇∗∇− 2(∇U |∇·) = ∆ − 2(∇U |∇·).
Then, by (33), the Bakry-Emery Γ2 in this case is given by

Γ2(f, g) =
1
2
{AU (∇f |∇g) − (∇AUf |∇g) − (∇f |∇AUg)}

= (∇2f |∇2g) + (∇f |∇g) + Ric((∇f)�, (∇g)�)
+ 2∇2U((∇f)�, (∇g)�).

Clearly AU is non-negative definite and AU1 = 0. The following lemma is
easy:
Lemma 4.1 If there exists a constant c > 0 such that∫

(PG)g

Γ2(f, f)dµ ≥ c

∫
(PG)g

(∇f |∇f)dµ. (40)

Then AU has a spectral gap. To be precise, denoting the set of spectrum of
−AU by σ(−AU ), it holds that

inf{σ(−AU ) \ {0}} ≥ c. (41)

Proof. Note that ∫
(PG)g

Γ2(f, f)dµ =
∫

(PG)g

(AUf)2dµ

and ∫
(PG)g

(∇f |∇f)dµ = −
∫

(PG)g

(AUf)fdµ.

Then the assertion is an easy consequence of the spectral theorem.
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Remark 4.1 The above proof shows that (40) and (41) are equivalent to one
another.

Now we have the following main theorem.
Theorem 4.2 Assume that there exists a constant c > 0 such that for any
h ∈ H0,(

1 − dM2T +
1
λ
− 1
λ
‖eλM |bT |‖1 − V

λ
− c

)
|Xh|2 + 2∇2U(Xh,Xh) ≥ 0.

(42)

Then AU has a spectral gap.
Proof. We check the assumption of Lemma 4.1. By Proposition 3.4, (36) and
(37), we easily have

Ric(Xh,Xh) ≥ −(|bT |/
√
T )‖A‖|h|2H − dM2T |h|2H

≥ −M |bT ||h|2H − dM2T |h|2H .

Hence,

Γ2(f, f)
= (∇2f |∇2f) + (∇f |∇f) + Ric((∇f)�, (∇f)�) + 2∇2U((∇f)�, (∇f)�)
≥ |∇2f |2 + |∇f |2 −M |bT ||∇f |2 − dM2T |∇f |2 + 2∇2U((∇f)� , (∇f)�).

Now we notice that from (39) we have∫
(PG)g

|∇f |2 log(|∇f |2/‖∇f‖2
2)dµ ≤ λ

∫
(PG)g

|∇2f |2dµ +
∫

(PG)g

V |∇f |2dµ.
(43)

Further recall the Young inequality st ≤ s log s − s + et (s > 0, t ∈ R). Com-
bining these inequalities, we have∫

(PG)g

Γ2(f, f)dµ

≥
∫

(PG)g

|∇2f |2dµ + (1 − dM2T )
∫

(PG)g

|∇f |2dµ

−
∫

(PG)g

M |bT ||∇f |2dµ +
∫

(PG)g

2∇2U((∇f)�, (∇f)�)dµ

≥
∫

(PG)g

|∇2f |2dµ + (1 − dM2T )
∫

(PG)g

|∇f |2dµ
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− 1
λ

∫
(PG)g

|∇f |2(λM |bT |)dµ +
∫

(PG)g

2∇2U((∇f)�, (∇f)�)dµ

≥
∫

(PG)g

|∇2f |2dµ + (1 − dM2T )
∫

(PG)g

|∇f |2dµ

− 1
λ

∫
(PG)g

|∇f |2 log |∇f |2dµ +
1
λ

∫
(PG)g

|∇f |2dµ

− 1
λ

∫
(PG)g

eλM |bT |dµ + 2
∫

(PG)g

∇2U((∇f)�, (∇f)�)dµ

≥
∫

(PG)g

|∇2f |2dµ + (1 − dM2T )
∫

(PG)g

|∇f |2dµ−
∫

(PG)g

|∇2f |2dµ

− 1
λ

∫
(PG)g

V |∇f |2dµ− 1
λ
‖∇f‖2

2 log ‖∇f‖2
2 +

1
λ

∫
(PG)g

|∇f |2dµ

− 1
λ

∫
(PG)g

eλM |bT |dµ + 2
∫

(PG)g

∇2U((∇f)�, (∇f)�)dµ

≥
∫

(PG)g

(
1 − dM2T +

1
λ
− V

λ

)
|∇f |2dµ− ‖∇f‖2

2 log ‖∇f‖2
2

− 1
λ

∫
(PG)g

eλM |bT |dµ + 2
∫

(PG)g

∇2U((∇f)�, (∇f)�)dµ.

Replacing f by f/‖∇f‖2 (we may assume that ‖∇f‖2 �= 0), we have∫
(PG)g

Γ2(f, f)dµ ≥
∫

(PG)g

{(
1 − dM2T +

1
λ
− 1
λ
‖eλM |bT |‖1 − V

λ

)
|∇f |2

+2∇2U((∇f)� , (∇f)�)
}
dµ

≥ c

∫
(PG)g

|∇f |2dµ.

This completes the proof.
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