Comparison theorem and logarithmic Sobolev inequality

Ichiro Shigekawa (Kyoto University)

Let (M, \mathcal{B}, m) be a σ -finite measure space. Suppose we are given a Markovian contraction semigroup $\{T_t\}$ on $L^2(m)$. Further, we are given a semigroup $\{\vec{T}_t\}$ acting on Hilbert space valued functions. We denote the Hilbert space by H. We denote the norm of the Hilbert space by $|\cdot|$. We are interested in when

$$|\vec{T}_t u| \le T_t |\theta|, \quad \forall \theta \in L^2(m; H),$$
(1)

holds. We can give a sufficient condition for (1) in terms of square field operator. We denote the generators and bilinear forms associated with $\{T_t\}, \{\vec{T}_t\}$ by A, \vec{A} and $\mathcal{E}, \vec{\mathcal{E}}$. We assume that the square field operator

$$\Gamma(f,g) = \frac{1}{2} \{ A(fg) - (Af) - f(Ag) \}$$
(2)

is well-defined and satisfies the derivation property.

We introduce the following property for $\{T_t\}$:

 $(\vec{\Gamma}_{\lambda})$ For $\theta, \eta \in \text{Dom}(\vec{A}_2)$, we have $(\theta|\eta)_H \in \text{Dom}(A_1)$ and there exists $\lambda \in \mathbb{R}$ such that

$$A_1|\theta|^2 - 2(\vec{A}_2\theta|\theta)_H + 2\lambda|\theta|^2 \ge 0.$$
(3)

Here A_1 denotes the generator in L^1 and \vec{A}_2 denotes the generator in L^2 . We define $\vec{\Gamma}$ by

$$\vec{\Gamma}(\theta,\eta) = \frac{1}{2} \{ A_1(\theta|\eta)_H - (\vec{A}_2\theta|\eta)_H - (\theta|\vec{A}_2\eta)_H \}.$$
(4)

 (\vec{D}) For $\theta, \eta \in \text{Dom}(\vec{\mathcal{E}}) \cap L^{\infty}, f \in \text{Dom}(\mathcal{E}) \cap L^{\infty}$, it holds that $(\theta|\eta)_H \in \text{Dom}(\mathcal{E}), f\theta \in \text{Dom}(\vec{\mathcal{E}})$ and

$$2f\vec{\Gamma}(\theta,\eta) = -\Gamma(f,(\theta|\eta)_H) + \vec{\Gamma}(\theta,f\eta) + \vec{\Gamma}(f\theta,\eta).$$
(5)

Under conditions of $(\vec{\Gamma}_{\lambda})$ and (\vec{D}) , we have $|\vec{T}_t\theta| \leq e^{\lambda t}T_t|\theta|$.

Typical example is the Hodge-Kodaira Laplacian acting on p-forms on a Riemannian manifold. If the manifold has no boundary, the above criterion works well. But it doesn't work if the manifold has a boundary. We attempt to extend the above criterion.

To define $\vec{\Gamma}$, the condition $(\vec{\Gamma}_{\lambda})$ must be satisfied. But we notice the following identity.

$$-\mathcal{E}((\theta,\eta),f) + \vec{\mathcal{E}}(f\theta,\eta) + \vec{\mathcal{E}}(\theta,f\eta) = 2\int_{M}\vec{\Gamma}(\theta,\eta)fdm$$

The left had side is well-defined without $(\vec{\Gamma}_{\lambda})$. For example, we consider a Riemannian manifold with a boundary. The Hodge-Kodaira Laplacian acting on 1-forms satisfies the following:

$$-\mathcal{E}((\theta,\eta),f) + \mathcal{E}_{(1)}^{B_a}(f\theta,\eta) + \mathcal{E}_{(1)}^{B_a}(\theta,f\eta)$$

= $2\int_M (\nabla\theta,\nabla\eta)fdm - 2\int_{\partial M} f(\alpha(\theta,\eta),N)d\sigma + 2\int_M f\operatorname{Ric}(\theta,\eta)dm.$
 $\mathcal{E}_{(1)}^{B_a}(\theta,\eta) = \int_{\mathbb{T}^d} \{(d\theta,d\theta) + (d^*\theta,d^*\eta)\}dm$

Here

$$\mathcal{E}^{B_a}_{(1)}(\theta,\eta) = \int_M \{ (d\theta, d\theta) + (d^*\theta, d^*\eta) \} dm$$

and B_a denotes the absolute boundary condition. α is the second fundamental form on the boundary ∂M , N is the inner unit normal vector field and Ric is the Ricci tensor. In this case, we have the following comparison theorem.

Theorem 1. We assume that
$$(\alpha(\theta, \theta), N) \leq 0$$
 and $\operatorname{Ric}(\theta, \theta) \geq \lambda |\theta|^2$. Then we have
 $|\vec{T_t}\theta| \leq e^{-\lambda t} T_t |\theta|.$ (6)

We can also obtain similar criterion for *p*-forms. Further combining this result with the commutation theorem, we can reformulate Bakry-Emery criterion for the logarithmic Sobolev inequality.

References

- E. Ouhabaz, Invariance of closed convex sets and domination criteria for semigroups *Potential Analysis*, 5 (1996), 611–625.
- [2] B. Simon, An abstract Kato's inequality for generators of positivity preserving semigroups, Indiana Univ. Math. J., 26 (1997), 1069–1073.
- [3] B. Simon, Kato's inequality and the comparison of semigroups, J. Funct. Anal., 32 (1979), 97–101.
- [4] I. Shigekawa, L^p contraction semigroups for vector valued functions, J. Funct. Anal., 147 (1997), 69–108.