L^p multiplier theorem for Hodge-Kodaira Laplacian

Ichiro Shigekawa (Kyoto University)

We discuss the L^p multiplier therem. In L^2 setting, it is well known that $\varphi(-L)$ is bounded if and only if φ is bounded where L is a non-positive self-adjoint operator. In L^p setting, the criterion above is no more true in general.

E. M. Stein gave a sufficient condition when L is a generator of a symmetric Markov process. It reads as follows: define a function φ on $[0, \infty)$ by

$$\varphi(\lambda) = \lambda \int_0^\infty e^{-2t\lambda} m(t) dt.$$
(1)

Here we assume that m is a bounded function. A typical example is $\varphi(\lambda) = \lambda^{i\alpha}$ ($\alpha \in \mathbb{R}$). Then Stein proved that $\varphi(-L)$ is a bounded operator in L^p for $1 . He also proved that the operator norm of <math>\varphi(-L)$ depends only on the bound of m and p.

In the meanwhile we consider the Hodge-Kodaira operator on a compact Riemannian manifold M. It is of the form $\vec{L} = -(dd^* + d^*d)$ where d is the exterior differentiation. A Typical feature is that \vec{L} acts on vector valued functions (to be precise, differential forms on M). In this case, we can get the following theorem:

Theorem 1. For sufficiently large κ , $\varphi(\kappa - \vec{L})$ is a bounded operator in L^p . Further the operator norm is estimated in terms of m and p only.

To show this theorem, we use the following facts.

- 1. the semigroup domination.
- 2. the Littlewood-Paley inequality.

For the first, we can show that

$$|e^{(-\kappa+\bar{L})t}\theta| \le e^{-Lt}|\theta|.$$
⁽²⁾

Here L is the Laplace-Beltrami operator on M and the inequality holds pointwise. This inequality can be shown by means of Ouhabaz criterion ([1]). To use the criterion, the following inequality is essential.

$$L|\theta|^2 - 2(\hat{L}\theta, \theta) + \kappa|\theta|^2 \ge 0.$$

For the second, we need the Littlewood-Paley function. This is somehow different from usual one. We may call it the Littlewood-Paley function of parabolic type. It is defined as follows:

$$\mathcal{P}\theta(x) = \left\{ \int_0^\infty |\nabla \vec{T_t}\theta(x)|^2 dt \right\}^{1/2}$$

Here \vec{T}_t denotes the semigroup $e^{(-\kappa+\vec{L})t}$. We can show the following inequality: there exists positive constant C independent of θ such that

$$|\mathcal{P}\theta||_p \le C ||\theta||_p$$

This inequality is called the Littlewood-Paley inequality.

Combining these two inequality we can show that

$$|(\varphi(\kappa - L)\theta, \eta)| \le C_1 \|\mathcal{P}\theta\|_p \|\mathcal{P}\eta\|_q \le C_2 \|\theta\|_p \|\eta\|_q.$$

Here q is the conjugate exponent of p. Now the desired result follows easily.

References

- E. Ouhabaz, Invariance of closed convex sets and domination criteria for semigroups *Potential Anal*ysis, 5 (1996), 611–625.
- [2] E. M. Stein, "Topics in harmonic analysis, related to Littlewood-Paley theory," Annals of Math. Studies, 63, Princeton Univ. Press, 1974.
- [3] N. T. Varopoulos; Aspects of probabilistic Littlewood-Paley theory, J. Funct. Anal., 38 (1980), 25–60