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Abstract

Markovian semigroups on L2-space with suitable conditions can be re-

garded as Markovian semigroups on Lp-spaces for p ∈ [1,∞). When we ad-

ditionally assume the ergodicity of the Markovian semigroups, the rate of

convergence on Lp-space for each p is considerable. However, the rate of con-

vergence depends on the norm of the space. The purpose of this paper is to

investigate the relation between the rates on Lp-spaces for different p, to ob-

tain some sufficient condition for the rates to be independent of p, and to give

an example that the rates depend on p. We also consider spectra of Markovian

semigroups on Lp-spaces, because the rate of convergence is closely related to

the spectra.
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1 Introduction

Let (M,B) be a measurable space, m a probability measure on (M,B) and Lp(m)

the Lp-space of C-valued functions with respect to m. We denote the Lp-norm by

|| · ||p,
∫
fdm by ⟨f⟩ for f ∈ L1(m), and the constant function which takes values 1

by 1. A semigroup {Tt} on L2(m) is called a Markovian semigroup if 0 ≤ Ttf ≤ 1

m-almost everywhere whenever f ∈ L2(m) and 0 ≤ f ≤ 1 m-almost everywhere.
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†e-mail: ichiro@math.kyoto-u.ac.jp
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In this paper, we always assume that Tt1 = 1 for all t ≥ 0. Let {Tt} be a strongly

continuous Markovian semigroup. We assume that T ∗
t 1 = 1 where T ∗

t is the dual

operator of Tt on L
2(m). Then, as we will see in Section 2, the semigroup {Tt} can

be extended or restricted to a semigroups on Lp(m) for p ∈ [1,∞]. Moreover, {Tt}
is strongly continuous for p ∈ [1,∞). Let

(1.1) γp→q := − lim sup
t→∞

1

t
log ||Tt −m||p→q

where m means the linear operator f 7→ ⟨f⟩1 and || · ||p→q the operator norm from

Lp(m) to Lq(m) for p, q ∈ [1,∞]. Consider the case that Ttf converges to ⟨f⟩ for

sufficiently many f . In this case γp→q means the exponential rate of the convergence.

Generally γp→q depends on p, q ∈ [1,∞]. In this paper we consider the properties

of γp→q, relation among {γp→q; p, q ∈ [1,∞]}, some sufficient conditions that γp→q

is to be independent of p and q, and give some examples that they depend on p

and q. We also consider spectra of Markovian semigroups with respect to Lp-spaces,

because the rate of convergence is closely related to the spectra.

The organization of this paper is as follows. In Section 2 we consider properties on

γp→q which are obtained by general argument. We also discuss the relation between

the spectra of Markovian semigroups and γp→q. In Section 3 we consider properties

of hyperbounded Markovian semigroups and the relation of γp→q between different

pairs (p, q). We also consider the cases of hypercontractive Markovian semigroups

and ultracontractive Markovian semigroups. In Section 4 we consider a sufficient

condition for γp→p to be independent of p. Precisely speaking, we consider a hyper-

bounded Markovian semigroup whose generator is a normal operator on L2-space,

and show the p-independence of the spectra of the generator. In particular, this

implies that γp→p is independent of p. In Section 5 we give a sufficient condition for

non-symmetric Markovian semigroups to be hyperbounded by using the logarithmic

Sobolev inequality, and consider a diffusion process on a manifold as an example.

Non-symmetric diffusion semigroups on manifolds are also considered in [7]. In the

paper, equivalent conditions to contractivity conditions are obtained. In Section 6

we consider the relation of the spectra of linear operators which are consistent on

Lp-spaces for p. Markovian semigroups and their generators are examples of con-

sistent operators on Lp-spaces. We remark that self-adjointness of the operator on

L2-space is additionally assumed in Section 6. In Section 7 we give an example of

Markovian semigroup that γp→p depends on p. More precisely we give a generator

on half line, which is a second order differential operator with boundary condition.

By investigating the spectra of the generator, we will show that γp→p depends on p.

In the rest of this section, we give some notations used through this paper. For

z ∈ C, we denote the conjugate complex number of z by z̄, and for p ∈ [1,∞] we

denote by p∗ the conjugate exponent, i.e. 1/p+ 1/p∗ = 1.

Let (M,m) be a measure space and Lp(m) be the Lp-space with respect to

m for p ∈ [1,∞]. For p ∈ [1,∞], f ∈ Lp(m) and g ∈ Lp∗(m), define ⟨f, g⟩ by∫
f(x)g(x)m(dx). This notation is standard for p = 2, because ⟨·, ·⟩ is the inner



Exponential convergence of Markovian semigroups 3

product on L2(m). On the other hand, the notation may not standard for p ̸= 2,

because ⟨·, ·⟩ is not bilinear on Lp(m)×Lp∗(m). In this paper, we consider Lp-spaces

and L2-space at the same time. So, we use the notation ⟨·, ·⟩ as defined above. Let

Ap be a linear operator on Lp(m) and Dom(Ap) the domain of Ap. We define the

dual operator (Ap)
∗ as follows. Let Dom((Ap)

∗) be the total set of f ∈ Lp∗(m) such

that there exists h ∈ Lp∗(m) satisfying

(1.2) ⟨Apg, f⟩ = ⟨g, h⟩, g ∈ Dom(Ap),

and for f ∈ Dom((Ap)
∗) define (Ap)

∗f := h where h is the element of Lp∗(m)

appearing in (1.2).

We define the point spectra of Ap by the total set of λ ∈ C such that λ− Ap is

not injective on Lp(m), and denote the point spectra of Ap by σp(Ap). We define

the continuous spectra of Ap by the total set of λ ∈ C such that λ−Ap is injective,

but is not onto map, and the range of λ − Ap is dense in Lp(m). We denote the

continuous spectra of Ap by σc(Ap). We define the residual spectra of Ap by the

total set of λ ∈ C such that λ−Ap is injective, but is not onto map, and the range

of λ − Ap is not dense in Lp(m). We denote the residual spectra of Ap by σr(Ap).

Let σ(Ap) := σp(Ap) ∪ σc(Ap) ∪ σr(Ap). We define the resolvent set of Ap by the

total set of λ ∈ C such that λ − Ap is bijective, and denote it by ρ(Ap). By the

definition, σp(Ap), σc(Ap), σr(Ap) and ρ(Ap) are disjoint set of C and their union is

equal to C.
In this paper 1/0 and 1/∞ are often regarded as ∞ and 0, respectively.

2 Relation between spectra and the exponential

rate of convergence for semigroups

In this section we consider immediate consequences on γp→q obtained by general

theories.

Let (M,m) be a probability space and {Tt} a strongly continuous Markovian

semigroup on L2(m). We assume that T ∗
t 1 = 1 where T ∗

t is the dual operator of Tt
on L2(m). Then, it is easy to see that m is an invariant measure of both {Tt} and

{T ∗
t }. By Jensen’s inequality, for p ∈ [1,∞) we have∫

|Ttf |pdm ≤
∫
Tt(|f |p)dm =

∫
|f |pdm.

This implies that Tt is contractive on Lp(m) for p ∈ [1,∞). Since {Tt} is positivity

preserving on L2(m) (i.e. Ttf ≥ 0 if f ∈ L2(m) and f ≥ 0), it is easy to see that

Tt is also contractive on L∞(m). Hence, {Tt} can be extended or restricted to a

Markovian semigroup on Lp(m) for p ∈ [1,∞]. Let p ∈ (1,∞). For given f ∈ Lp(m)

and ε > 0, take a bounded measurable function g such that ||f − g||p < ε. Then, by

Hölder’s inequality

||Ttf − f ||p ≤ ||Ttf − Ttg||p + ||Ttg − g||p + ||g − f ||p
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≤ 2||f − g||p +
(∫

|Ttg − g| · |Ttg − g|p−1dm

)1/p

≤ 2ε+ ||Ttg − g||1/p2 ||Ttg − g||1−1/p
∞

≤ 2ε+ 2||g||1−1/p
∞ ||Ttg − g||1/p2 .

Hence, lim supt→0 ||Ttf − f ||p ≤ 2ε. This implies that {Tt} is strongly continuous

on Lp(m) for p ∈ (1,∞). Trivially {Tt} is strongly continuous on L1(m). Therefore,

{Tt} is strongly continuous for p ∈ [1,∞). Define Ap be the generator of {Tt} on

Lp(m) for p ∈ [1,∞). We regard {Tt} as a semigroup on Lp(m) for all p ∈ [1,∞].

Define γp→q by (1.1) for p, q ∈ [1,∞].

Proposition 2.1. Let p1, p2, q1, q2 ∈ [1,∞]. Let r1 and r2 be a real number in [1,∞]

such that there exists θ ∈ [0, 1] such that

(2.1)
1

r1
=

1− θ

p1
+
θ

q1
and

1

r2
=

1− θ

p2
+
θ

q2
.

Then,

γr1→r2 ≥ (1− θ)γp1→p2 + θγq1→q2 .

In particular, the function s 7→ γ1/s→1/s on [0, 1] is concave.

Proof. By Riesz-Thorin’s interpolation theorem (see Theorem 2.2.14 in [2]),

||Tt −m||r1→r2 ≤ ||Tt −m||1−θ
p1→p2

||Tt −m||θq1→q2
.

Hence, by the definition of γp→q we have the assertion. .

Proposition 2.1 gives us some nice properties on γp→p. We state the properties

in the theorems below.

Theorem 2.2. The function p 7→ γp→p on [1,∞] is continuous on (1,∞). If γp→p >

0 for some p ∈ [1,∞], then γp→p > 0 for all p ∈ (1,∞).

Proof. The equation (2.1) implies that s 7→ γ1/s→1/s on [0, 1] is concave, hence

s 7→ γ1/s→1/s is continuous on (0, 1). Hence, the first assertion holds. Since ||Tt −
m||p→p ≤ 2 for p ∈ [1,∞], γp→p ≥ 0 for p ∈ [1,∞]. This fact and the concavity

conclude the second assertion.

Remark 2.3. The function γp→p may not be continuous at p = 1,∞. Indeed, let

m be the probability measure with the standard normal distribution and {Tt} be the

Ornstein-Uhlembeck semigroup. Then, γp→p = 1 for p ∈ (1,∞), however γp→p = 0

for p = 1,∞.

Theorem 2.4. Assume that {Tt} is self-adjoint on L2(m). Then, γp→p = γp∗→p∗

for p ∈ [1,∞] and the function p 7→ γp→p on [1,∞] is non-decreasing on [1, 2] and

non-increasing on [2,∞]. In particular, the maximum is attained at p = 2.
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Proof. Let f(s) := γ1/s→1/s for s ∈ [0, 1]. In view of Proposition 2.1 we have already

known that f is concave on [0, 1]. On the other hand, the symmetry of {Tt} on

L2(m) implies that ||T ∗
t −m||p→p = ||Tt −m||p→p. Since the operator-norm of the

dual operator is equal to that of the original operator, we have ||Tt − m||p∗→p∗ =

||Tt − m||p→p. Hence, γp→p = γp∗→p∗ for p ∈ [1,∞]. This fact and the concavity

conclude the other assertions.

Remark 2.5. In Theorem 2.4 we obtain that p 7→ γp→p is non-decreasing on [1, 2],

non-increasing on [2,∞], and the maximum is attained by p = 2. This assertion

also follows from (2.2) and Remark 6.3 below.

Next we consider the relation between γp→p and the radius of spectra. When we

regard Tt as an operator on Lp(m), we denote Tt : L
p(m) → Lp(m) by T

(p)
t . For a

bounded linear operator A on a Banach space, define the radius of spectra Rad(A)

by

Rad(A) := sup{|λ|;λ ∈ σ(A)}.

It is well-known that the limit

lim
t→∞

1

t
log ||Tt −m||p→p

exists (see e.g. Theorem 1.22. in Chapter 1 of [1]), and of course, the limit equals

to −γp→p. Moreover, it holds

(2.2) Rad(T
(p)
t −m) = e−γp→pt

(see e.g. Theorem 1.22. in Chapter 1 of [1] and Theorem 4.1.3 in of [2]). Hence, to

see γp→p it is sufficient to see the spectra of T
(p)
t . There is also some relation between

the spectra of semigroups and that of their generators. Let Ap the generator of {T (p)
t }

for [1,∞). Then, it is known that

(2.3) etσ(Ap)\{0} ⊂ σ(T
(p)
t −m) \ {0}

for t ∈ [0,∞) (see e.g. Theorem 2.16 in Chapter 2 of [1]). In general setting, the

inclusion cannot be replaced by equality (see Theorem 2.17 in Chapter 2 of [1]).

Sufficient conditions for the inclusion in (2.3) to be replaced by equality are known

(see Corollary 3.12 in Chapter IV of [4]). For example, if {T (p)
t } is an analytic

semigroup, then

(2.4) etσ(Ap)\{0} = σ(T
(p)
t −m) \ {0}, t ∈ [0,∞).

On the other hand, in general setting the two equalities

etσp(Ap)\{0} = σp(T
(p)
t −m) \ {0}

etσr(Ap)\{0} = σr(T
(p)
t −m) \ {0}
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hold for t ∈ [0,∞) (see Theorem 3.7 in Chapter IV of [4]). Note that the definition

of residual spectra in [4] is different from that in this paper. However, it is easy to

see that the equality above still holds.

Consider the case that {Tt} is a Markovian semigroup on (M,m) such that {T (2)
t }

is symmetric on L2(m). By Theorem 1 in Section 2 of Chapter III of [10] {T (p)
t } is

an analytic semigroup on Lp(m) for p ∈ (1,∞). Hence, (2.4) holds. Moreover, by

Corollary 3.12 in Chapter IV of [4] we obtain

(2.5) sup{Reλ;λ ∈ σ(Ap) \ {0}} = lim
t→∞

1

t
log ||Tt −m||p→p

for p ∈ (1,∞). We will use this equality in Section 7.

Now we introduce a property of spectra of real operators on a general Banach

space. Let B be a complex Banach space and A a linear operator on B. If there

exists a bounded linear operator J on B satisfying that

(2.6)
J(αx+ βy) = ᾱJx+ β̄Jy, α, β ∈ C, x, y ∈ B,

J2 = I, ||Jx|| = ||x||, x ∈ B, AJ = JA,

then A is called a real operator. Denote the resolvent operator with respect to

λ ∈ ρ(A) by Rλ.

Lemma 2.6. If A is a real operator, then σp(A) = σp(A), σc(A) = σc(A), σr(A) =

σr(A) and ρ(A) = ρ(A) where Λ := {λ̄;λ ∈ Λ} for Λ ⊂ C. Moreover, Rλ̄ = JRλJ

for λ ∈ ρ(A).

Proof. If λx = Ax holds for x ∈ Dom(A) \ {0}, then λ̄Jx = AJx and Jx ̸= 0.

Hence, σp(A) = σp(A). If there exists a sequence {xn} ⊂ B such that ||xn|| = 1 and

limn→∞ ||λxn − Axn|| = 0, then ||Jxn|| = 1 and limn→∞ ||λ̄Jxn − AJxn|| = 0. This

implies that the conjugate of approximate point spectrum is also an approximate

point spectrum. Hence, σp(A)∪ σc(A) = σp(A)∪ σc(A). Since σp(A) and σc(A) are
disjoint each other and σp(A) = σp(A), we have σc(A) = σc(A). For λ ∈ ρ(A)

JRλJ(λ̄− A) = I on Dom(A) and (λ̄− A)JRλJ = I on B.

This implies that λ̄ ∈ ρ(A) and Rλ̄ = JRλJ . Since σp(A) = σp(A), σc(A) = σc(A)

and ρ(A) = ρ(A), disjointness of σp(A), σc(A), σr(A), and ρ(A) implies that σr(A) =

σr(A).

Consider the following property for a linear operator A on a C-valued function

space B:

(2.7)
if f ∈ Dom(A) and f is a real-valued function,

then Af is also a real-valued function.

It is easy to see that an operator A satisfying (2.7) is a real operator by letting

Jf := f̄ for B. Since Markovian semigroups are positivity preserving, they satisfy

(2.7). Hence, so are the generators of strong continuous Markovian semigroups.

Consider {Tt} and Ap defined in the beginning of this section. Then, {Tt} and Ap

are real operators on Lp(m) for p ∈ [1,∞). Hence, by Lemma 2.6 we have that each

kind of spectra of {Tt} on Lp(m) and Ap are symmetric with respect to the real axis.



Exponential convergence of Markovian semigroups 7

3 Hyperboundedness and p-independence of γp→p

In this section we discuss the relation between hyperboundedness and γp→q. Hy-

perboundedness enables us to compare {γp→q; p, q ∈ (1,∞)} with each other and

hyperboundedness and {γp→q; p, q ∈ (1,∞)} characterize each other. In particu-

lar, we obtain the p-independence of γp→p for p ∈ (1,∞) from hyperboundedness.

Hence, the results in this section give some sufficient conditions for γp→p to be p-

independent. We also discuss the relation between hypercontractivity and γp→p.

Let (M,m) and {Tt} be the same as in Section 2. However, the assumption

“T ∗
t 1 = 1” is not needed on the results before Proposition 3.3. For p, q ∈ (1,∞)

such that p < q, {Tt} is called (p, q)-hyperbounded if there exist K ≥ 0 and C > 0

such that

(3.1) ||TKf ||q ≤ C||f ||p, f ∈ Lp(m),

and {Tt} is called (p, q)-hypercontractive if there exists K ≥ 0 such that (3.1) holds

with C = 1.

First we prepare the following lemma.

Lemma 3.1. Let p, q ∈ (1,∞) such that p < q. If there exist non-negative constants

K and C such that ||TKf ||q ≤ C||f ||p for f ∈ Lp(m), then for n1, n2 ∈ N such that

q−n1/p−n1−1 > 1,

||T(n1+n2)Kf ||qn2/pn2−1 ≤ Cα(n1,n2)||f ||q−n1/p−n1−1 , f ∈ Lq−n1/p−n1−1

(m),

where α(n1, n2) =
∑n2−1

k=−n1
pk/qk.

Proof. Let f ∈ Lqn1+1/pn1 (m). By the positivity of {Tt}, Jensen’s inequality and the

assumption, for n ∈ N and m ∈ Z such that qm−1/pm−2 > 1 we have

||TnKf ||qm/pm−1 ≤
[∫ (

TK

(
|T(n−1)Kf |q

m−1/pm−1
))q

dm

]pm−1/qm

=
∥∥∥TK (|T(n−1)Kf |q

m−1/pm−1
)∥∥∥pm−1/qm−1

q

≤ Cpm−1/qm−1
∥∥∥|T(n−1)Kf |q

m−1/pm−1
∥∥∥pm−1/qm−1

p

= Cpm−1/qm−1 ||T(n−1)Kf ||qm−1/pm−2 .

Iterating this calculation, we have the conclusion.

Next we give the following theorem on hyperboundedness and hypercontractivity.

Theorem 3.2. If {Tt} is (p, q)-hyperbounded for some p, q ∈ (1,∞) such that p < q,

then {Tt} is (p, q)-hyperbounded for any p, q ∈ (1,∞) such that p < q. Moreover, if

{Tt} is (p, q)-hypercontractive for some p, q ∈ (1,∞) such that p < q, then {Tt} is

(p, q)-hypercontractive for any p, q ∈ (1,∞) such that p < q.
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Proof. Assume that {Tt} is (p1, q1)-hyperbounded for p1 < q1. It is easy to see that

{Tt} is (p2, q2)-hyperbounded for p1 ≤ p2 < q2 ≤ q1. Let p, q ∈ (1,∞) such that

p < q. Choose p2 and q2 so that p1 ≤ p2 < q2 ≤ q1 and that 1 < p2
n1+1/q2

n1 < p

with some n1 ∈ N. Take n2 ∈ N such that q2
n2/p2

n2−1 > q. Then, by applying

Lemma 3.1 we have {Tt} is (q2
n2/p2

n2−1, p2
n1+1/q2

n1)-hyperbounded, and therefore,

{Tt} is (p, q)-hyperbounded. Similarly, we obtain the second assertion.

This theorem says that (p, q)-hyperboundedness for some p, q ∈ (1,∞) such that

p < q implies (p, q)-hyperboundedness for all p, q ∈ (1,∞) such that p < q and

the same assertion holds for hypercontractivity. Hence, we simply say that {Tt} is

hyperbounded and hypercontractive instead that {Tt} is (p, q)-hyperbounded and

(p, q)-hypercontractive respectively.

In the rest of this section we consider the relation between hypercontractivity

(or hyperboundedness) and the exponential rate of convergence γp→p. Note that the

assumption “T ∗
t 1 = 1” is needed from now. First we show the following proposition,

which is an extension of the first assertion of Lemma 6.1.5 in [3].

Proposition 3.3. Assume that

(3.2) ||TKf ||r ≤ ||f ||2, f ∈ L2(m)

for some K > 0 and r > 2. Then, we have

(3.3) ||TKf − ⟨f⟩||2 ≤ (r − 1)−1/2||f ||2, f ∈ L2(m).

and

(3.4) ||Ttf − ⟨f⟩||2 ≤
√
r − 1 exp

{
− t

K
log

√
r − 1

}
||f ||2, f ∈ L2(m), t ∈ [0,∞).

Proof. Let f ∈ L∞(m) such that ⟨f⟩ = 0 and ||f ||∞ ≤ a0 with a nonnegative

constant a0 and let a be a positive constant such that a > a0. From (3.2) we have

(3.5) (a2 + ||f ||22)r/2 = ||a+ f ||r2 ≥ ||TK(a+ f)||rr =
∫

|a+ TKf(x)|rm(dx).

By the Taylor theorem there exists θ ∈ [0, 1] such that

(3.6) (a2 + ||f ||22)r/2 = ar +
r

2
ar−2||f ||22 +

1

2

r(r − 2)

4
(a2 + θ||f ||22)r/2−2||f ||42.

Since {Tt} is a Markovian semigroup, ||TKf ||∞ ≤ a0. Hence, by the Taylor theorem

again, for each x there exists ηx ∈ [0, 1] such that

(a+ TKf)
r(x) = ar + rar−1TKf(x) +

r(r − 1)

2
ar−2(TKf)

2(x)

+
r(r − 1)(r − 2)

6
(a+ ηxTKf)

r−3(x)(TKf)
3(x).



Exponential convergence of Markovian semigroups 9

By integrating both sides we have

(3.7)

∫
(a+ TKf)

rdm = ar +
r(r − 1)

2
ar−2||TKf ||22

+
r(r − 1)(r − 2)

6

∫
(a+ ηxTKf)

r−3(TKf)
3dm.

From (3.5), (3.6) and (3.7)

r

2
ar−2||f ||22 +

1

2

r(r − 2)

4
(a2 + θ||f ||22)r/2−2||f ||42

≥ r(r − 1)

2
ar−2||TKf ||22 +

r(r − 1)(r − 2)

6

∫
(a+ ηxTKf)

r−3(x)(TKf)
3(x)m(dx).

Dividing both sides by ar−2 and taking limit as a→ ∞, we have

r

2
||f ||22 ≥

r(r − 1)

2
||TKf ||22.

Hence, (3.3) follows.

To show (3.4), for given t ≥ 0 take n ∈ N ∪ {0} and ρ ∈ [0, K) such that

t = nK + ρ. Then, by (3.3)

||Ttf − ⟨f⟩||2 = ||TnKTρf − ⟨Tρf⟩||2 ≤ (r − 1)−n/2||Tρf ||2

≤ (r − 1)−
1
2(

t
K
−1)||f ||2 ≤

√
r − 1 exp

{
− t

K
log

√
r − 1

}
||f ||2.

Hence, we have (3.4).

Next we show the following theorem, which tells us the relation between hyper-

boundedness and γp→q.

Theorem 3.4. The following conditions are equivalent:

(i) {Tt} is hyperbounded.

(ii) γp→q ≥ 0 for some 1 < p < q <∞.

(iii) γp→q = γ2→2 for all p, q ∈ (1,∞).

Proof. First we show (ii) implies (i). By the definition of γp→q there exists K > 0

such that ||TK −m||p→q < ∞. Hence, ||TK ||p→q < ∞. Therefore, we obtain (i) by

Theorem 3.2. Immediately (ii) follows from (iii), since γ2→2 ≥ 0.

Finally we show that (i) implies (iii). For given p, q, r, s ∈ (1,∞) take K > 0

and C > 0 such that ||TK ||p→r ≤ C and ||TK ||s→q ≤ C. Then, it is easy to see that

(3.8) ||TK −m||p→r ≤ C + 1 and ||TK −m||s→q ≤ C + 1.

Since

||Tt+2K −m||p→q ≤ ||TK −m||p→r||Tt −m||r→s||TK −m||s→q,
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we have

− 1

t
log ||Tt+2K −m||p→q

≥ −1

t
log ||TK −m||p→r −

1

t
log ||Tt −m||r→s −

1

t
log ||TK −m||s→q.

In view of (3.8), letting t → ∞, we obtain γp→q ≥ γr→s. Since p, q, r, s ∈ (1,∞) are

arbitrary, (iii) follows.

Finally we show the following theorem, which tells us the relation between hy-

percontractivity and γp→q, and some criterion for {Tt} to be hypercontractive.

Theorem 3.5. The following conditions are equivalent:

(i) {Tt} is hypercontractive.

(ii) γp→q > 0 for some 1 < p < q <∞.

(iii) γp→q = γ2→2 for all p, q ∈ (1,∞) and γ2→2 > 0.

(iv) There exist K > 0 and r > 0 such that

||TK ||2→r <∞ and ||TK −m||2→2 < 1.

Proof. By Theorem 3.4 we have that (ii) implies (iii). Trivially (ii) follows from (iii).

By Theorem 3.4, (i) implies that γp→q = γ2→2 for all p, q ∈ (1,∞). On the other

hand, by Proposition 3.3 we obtain from (i) that γ2→2 > 0. Hence, (i) implies (iii).

Lemma 6.1.5 in [3] and Theorem 3.2 tells that (iv) implies (i).

To finish the proof, it is sufficient to prove that (iii) implies (iv). Assume (iii). As

we have seen in Theorem 3.4, there exists K > 0 and r > 0 such that ||TK ||2→r <∞.

Since γ2→2 > 0, by the definition of γp→q it holds that there exists K > 0 such that

||TK −m||2→2 < 1. Thus, we obtain (iv).

Remark 3.6. We introduce the defective logarithmic Sobolev inequality and the

logarithmic Sobolev inequality in Section 5 below. It is known that hyperboundedness

and hypercontractivity are equivalent to the defective logarithmic Sobolev inequality

and the logarithmic Sobolev inequality, respectively (See Theorem 6.1.14 in [3]).

4 Sufficient conditions for spectra to be p-independent

In Section 3 we showed that when hyperboundedness holds, the exponential rate of

convergence {γp→p; p ∈ (1,∞)} are independent of p. However, hyperboundedness

gives us the further information that the spectra of {−Ap; p ∈ (1,∞)} are indepen-

dent of p. Recall that −Ap and γp→p are closely related to each other (see Section

2). In this section we show the assertion.
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Let (M,m), {Tt} be the same as in Section 2. Let p ∈ (2,∞) and fix p. Assume

that there exists positive constants K and C such that

(4.1) ||TKf ||p ≤ C||f ||2, f ∈ L2(m).

By Theorem 3.2 this assumption is equivalent to hyperboundedness on {Tt}. Hence,
if necessary taking another pair (K,C), both (4.1) and

(4.2) ||TKf ||2 ≤ C||f ||p∗ , f ∈ Lp∗(m)

hold. We choose a pair (K,C) such that both (4.1) and (4.2) hold, and fix it. Let

Ap be the generator of {Tt} on Lp(m) for p ∈ [1,∞) and assume that A2 is a normal

operator, i.e. (A2)
∗A2 = A2(A2)

∗. Then, we can consider the spectral decomposition

of −A2 (see [8]) as follows:

−A2 =

∫
C
λdEλ.

For a bounded C-valued measurable function ϕ on C, define a operator ϕ(−A2) on

L2(m) by

ϕ(−A2) =

∫
C
ϕ(λ)dEλ.

Note that it is sufficient that ϕ is defined only on σ(−A2). Since Lp(m) ⊂ L2(m)

and L2(m) is dense in Lp∗(m) in our setting, ϕ(−A2) can be regarded as a linear

operator on Lp(m) and on Lp∗(m). So, we denote ϕ(−A2) by ϕ(−A) simply and

regard ϕ(−A) as a linear operator on L2(m), on Lp(m), and on Lp∗(m).

It is easy to see that ϕ(−A) is a bounded operator on L2(m) if and only if ϕ

is bounded on σ(−A2). However, it is not easy to obtain sufficient conditions for

ϕ(−A) to be a bounded operator on Lp(m) and on Lp∗(m). Now we consider a

sufficient condition for the boundedness of ϕ(−A) on Lp(m) and on Lp∗(m) under

the assumption (4.1). Define a function χ on C by

χ(λ) :=

{
0, Reλ < 0,

1, Reλ ≥ 0,

and let χn(λ) := χ(λ− n).

Proposition 4.1. The followings hold.

(i) If ϕ is bounded and the real part of the support of ϕ is bounded, then ϕ(−A)

is a bounded operator on Lp(m) and also on Lp∗(m).

(ii) There exists a positive constant c = c(p, n) satisfying

||Ttχn(−A)||p→p ≤ ce−nt,(4.3)

||Ttχn(−A)||p∗→p∗ ≤ ce−nt,(4.4)

for t ∈ [0,∞).
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Proof. To show (i) let ψ(λ) := ϕ(λ)eKλ where K is the constant which appeared

in (4.1). Since the real part of the support of ϕ is bounded, ψ(−A) is a bounded

operator on L2(m). By using the fact that ϕ(−A) = TKψ(−A) and (4.1), we have

||ϕ(−A)||2→p ≤ ||TK ||2→p||ψ(−A)||2→2 ≤ C||ψ(−A)||2→2.

Hence, by the continuity of the embedding Lp(m) ↪→ L2(m) we have ϕ(−A) is a

bounded operator on Lp(m). Similar argument is available to estimate ||ϕ(−A)||p∗→2

and we have ϕ(−A) is a bounded operator on Lp∗(m). Thus, we obtain (i).

Next we show (ii). Since sup
Reλ≥0

|e−tλ|χn(λ) ≤ e−nt, we have

||Ttχn(−A)||2→2 ≤ e−nt.

Hence, by (4.1), for t ≥ 0

||Tt+Kχn(−A)||2→p ≤ ||TK ||2→p||Ttχn(−A)||2→2 ≤ Ce−nt ≤ CenKe−n(t+K).

Therefore, choosing c ≥ CenK , (4.3) holds for t ≥ K.

Since I{Reλ≥0} − χn is bounded and the real part of its support is bounded,

(i) implies that I − χn(−A) is a bounded operator on Lp(m). Here, note that

σ(−A2) ⊂ {z ∈ C; Rez ≥ 0}. Thus, for t ∈ [0, K]

||Ttχn(−A)||p→p = ||Tt(I − I + χn(−A))||p→p

≤ ||Tt||p→p + ||Tt(I − χn(−A))||p→p

≤ 1 + ||(I − χn(−A))||p→p

≤ (1 + ||(I − χn(−A))||p→p)e
nKe−nt.

Therefore, by taking c ≥ 1 + ||(I − χn(−A))||p→p (4.3) holds for t ∈ [0, K]. Conse-

quently, letting c = max{CenK , 1 + ||(I − χn(−A))||p→p} (4.3) holds for t ∈ [0,∞).

We are able to prove (4.4) by similar way. Hence, we omit it.

By using Proposition 4.1 we can show a sufficient condition for ϕ(−A) to be

a bounded linear operator on Lp(m) and on Lp∗(m). The following theorem is an

extension of the result by Meyer [5].

Theorem 4.2. Assume (4.1). Let h be a C-valued bounded measurable function on

C which is analytic on the neighborhood around 0 and define a C-valued bounded

function ϕ on C by ϕ(λ) = h(1/λ). Then, ϕ(−A) is a bounded operator on Lp(m)

and also on Lp∗(m).

Proof. The proofs for boundedness of ϕ(−A) on Lp(m) and for that on Lp∗(m) are

the same. So, we only prove that ϕ(−A) is a bounded operator on Lp(m). Choose

n ∈ N such that h is analytic on {z ∈ C; |z| ≤ 1/n} and let

ϕ(1) := ϕ(1− χn) and ϕ
(2) := ϕχn.



Exponential convergence of Markovian semigroups 13

Then, ϕ is decomposed as

ϕ = ϕ(1) + ϕ(2).

Since σ(−A2) ⊂ {z ∈ C; Rez ≥ 0}, (i) of Proposition 4.1 implies that ϕ(1)(−A) is

a bounded operator on Lp(m). Hence, it is sufficient to show that ϕ(2)(−A) is a

bounded operator on Lp(m).

Let

R :=

∫ ∞

0

Ttχn(−A)dt.

Since for k ∈ N ∪ {0}

Rk =

∫ ∞

0

∫ ∞

0

· · ·
∫ ∞

0

Tt1χn(−A)Tt2χn(−A) · · ·Ttkχn(−A)dt1dt2 · · · dtk

=

∫ ∞

0

∫ ∞

0

· · ·
∫ ∞

0

Tt1+t2+···+tkχn(−A)dt1dt2 · · · dtk,

by (ii) of Proposition 4.1 we have

(4.5) ||Rk||p→p ≤ cn−k, k ∈ N ∪ {0}.

By using spectral argument on L2-space

R =

∫ ∞

0

∫
{Reλ≥n}

e−λtdEλdt =

∫
{Reλ≥n}

λ−1dEλ,

and hence

(4.6) Rk =

∫
{Reλ≥n}

λ−kdEλ.

On the other hand, since h is analytic on {z ∈ C; |z| ≤ 1/n}, by using Taylor

expansion we have

h(z) =
∞∑
k=0

akz
k, |z| ≤ 1

n
.

Note that
∑∞

k=0 |ak|n−k <∞. Hence, by (4.6) we obtain

ϕ(2)(−A) =

∫
{Reλ≥n}

h(λ−1)dEλ =
∞∑
k=0

ak

∫
{Reλ≥n}

λ−kdEλ =
∞∑
k=0

akR
k.

Therefore, (4.5) implies that ϕ(2)(−A) is a bounded operator on Lp(m).

Theorem 4.2 enables us to show that the spectra of Ap are independent of p

under the condition (4.1) as follows.

Theorem 4.3. Assume that (4.1) holds for some p ∈ (2,∞) and positive numbers

K and C. Then, σ(−Aq) = σ(−A2) for q ∈ (1,∞).
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Proof. As mentioned in the beginning of this section, in view of Theorem 3.2 the

assumption that (4.1) holds for some p ∈ (2,∞), K > 0 and C > 0 implies that for

any p ∈ (2,∞) there exists K > 0 and C > 0 such that (4.1) and (4.2) hold.

First we show that σ(−Aq) ⊃ σ(−A2) for q ∈ (1,∞). For given p ∈ (2,∞),

take positive numbers K and C such that (4.1) and (4.2) hold, and fix them.

Let α ∈ σ(−A2). For n ∈ N define Un := {z ∈ C; |z − α| ≤ 1/n} and Sn :={∫
Un
dEλf ; f ∈ L2(m)

}
. Then, Sn is a closed linear subspace of L2(m) and Sn ̸= {0}

for n ∈ N. Take fn ∈ Sn such that ||fn||2 = 1. Then, it is easy to see that

lim
n→∞

||Afn + αfn||2 = 0. Since

Afn + αfn = −
∫
Un

λdEλfn + αfn

= −
∫
Un

e−KλeKλλdEλfn +

∫
Un

e−KλeKλαdEλfn

=

(∫
Un

e−KλdEλ

)(∫
Un

eKλ(α− λ)dEλfn

)
= TK

∫
Un

eKλ(α− λ)dEλfn,

by (4.1) we have

||Afn + αfn||p ≤ C||
∫
Un

eKλ(α− λ)dEλfn||2

≤ C

n
eK(Reα+1/n)||fn||2.

Hence, lim
n→∞

||Afn+αfn||p = 0. On the other hand, ||fn||p ≥ ||fn||2 = 1. These yield

that α ∈ σ(−Ap). Similarly to the argument above,

Afn + αfn = −
∫
Un

eKλe−KλλdEλfn +

∫
Un

eKλe−KλαdEλfn

=

(∫
Un

eKλ(α− λ)dEλ

)(∫
Un

e−KλdEλfn

)
=

∫
Un

eKλ(α− λ)dEλ(TKfn).

Hence, by (4.2) we have

||Afn + αfn||p∗ ≤ ||
∫
Un

eKλ(α− λ)dEλ(TKfn)||2

≤ 1

n
eK(Reα+1/n)||TKfn||2

≤ C

n
eK(Reα+1/n)||fn||p∗ .

Letting f̃n := fn/||fn||p∗ , we have ||fn||p∗ = 1 for n ∈ N and limn→∞ ||Af̃n+αf̃n||p =
0. This yields that α ∈ σ(−Ap∗). Thus, we have σ(−A2) ⊂ σ(−Aq) for q ∈ (1,∞).
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Next we show that σ(−Aq) ⊂ σ(−A2) for q ∈ (1,∞). It is sufficient to show

that ρ(−Aq) ⊃ ρ(−A2) for q ∈ (1,∞). For given p ∈ (2,∞), take positive numbers

K and C such that (4.1) and (4.2) hold, and fix them. Let α ∈ ρ(−A2) and

ϕ(z) := 1/(α + z). Then,

(α− A)−1 =

∫
C
ϕ(λ)dEλ(4.7)

ϕ

(
1

z

)
=

z

αz + 1
.(4.8)

The equality (4.8) implies that ϕ (1/z) is analytic on a neighborhood around z = 0.

Since α ∈ ρ(−A2), the integral on the right-hand side of (4.7) is not changed by

replacing ϕ(λ) by 0 on a neighborhood around λ = −α. This implies that we

can regard ϕ as a bounded function. Hence, applying Theorem 4.2, we have that

(α − A)−1 is a bounded operator on Lp(m). Therefore, α ∈ ρ(−Ap). We also

have α ∈ ρ(−Ap∗) in the same manner. Thus, we have ρ(−A2) ⊂ ρ(−Aq) for

q ∈ (1,∞).

By using Theorem 4.3, we are able to know a little more information on the

spectra of {Tt} satisfying hyperboundedness.

Theorem 4.4. If {Tt} is hyperbounded, then σp(−A2) = σp(−Ap), σc(−A2) =

σc(−Ap) and σr(−Ap) = ∅ for p ∈ (1,∞).

Proof. Let p, q ∈ (1,∞). Let α ∈ σp(−Ap). Then, there exists f ∈ Dom(−Ap) \
{0} such that αf + Af = 0. Hence, αTtf + ATtf = 0 for t ∈ [0,∞). Since

{Tt} is hyperbounded, there exists a sufficiently large t ∈ [0,∞) such that Ttf ∈
Dom(−Aq) \ {0}. This implies that α ∈ σp(−Aq) and Ttf is an eigenfunction with

respect to α. Hence σp(−Ap) ⊂ σp(−Aq). Since this holds for arbitrary p, q ∈ (1,∞),

we have σp(−A2) = σp(−Ap) for p ∈ (1,∞).

Let p, q ∈ (1,∞) such that p < q. By using dual argument we have

||Tt||p→q = ||T ∗
t ||q∗→p∗ , t ∈ [0,∞).

Note that T ∗
t is also a normal operator, the generator of T ∗

t on Lp∗(m) is (Ap)
∗,

and q∗ < p∗. In view of Theorem 3.2, the hyperboundedness of {Tt} implies that of

{T ∗
t }. Applying the argument above to {T ∗

t }, we have

(4.9) σp(−(A2)
∗) = σp(−(Ap)

∗), p ∈ (1,∞).

Now assume α ∈ σr(−Ap) for some p ∈ (1,∞), and we will make contradiction.

Since there exists f ∈ Lp∗(m) such that ⟨(α + Ap)g, f⟩ = 0 for g ∈ Dom(Ap),

f ∈ Dom((Ap)
∗) and −(Ap)

∗f = ᾱf . Hence, α ∈ σp(−(Ap)∗). Since A2 is a normal

operator, it is easy to see that ||(z + A2)f ||2 = ||(z̄ + (A2)
∗)f ||2 for f ∈ Dom(A2)

and z ∈ C. In particular, σp(−(A2)∗) = σp(−A2). Hence, by (4.9) we have

σp(−(Ap)∗) = σp(−(A2)∗) = σp(−A2).
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Since σp(−A2) = σp(−Ap), we have α ∈ σp(−Ap). However, this conflicts with the

disjointness of σr(−Ap) and σp(−Ap). Hence, σr(−Ap) = ∅.
By Theorem 4.3 and the disjointness of σc(−Ap) and σp(−Ap), we have σc(−A2) =

σc(−Ap) for p ∈ (1,∞).

In Section 5 we consider a sufficient condition for hyperboundedness via logarith-

mic Sobolev inequalities. It is to be obtained that spectra are the same for p ∈ (1,∞)

if generators are normal (not necessarily symmetric) and the assumptions hold in

Theorem 5.1.

Now we consider the relation between ultracontractivity and {γp→p; p ∈ [1,∞]}.
If there exists positive constants K and C such that

||TKf ||∞ ≤ C||f ||1, f ∈ L1(m),

then {Tt} is called ultracontractive. In the case that {Tt} is symmetric, we have the

following proposition.

Proposition 4.5. If {Tt} is symmetric on L2(m), then {Tt} is ultracontractive if

and only if there exist q ∈ [1,∞) such that

(4.10) ||TKf ||∞ ≤ C||f ||q, f ∈ Lq(m).

with some positive constants K and C.

Proof. It is sufficient to show that ultracontractivity holds if (4.10) holds for some

q, K and C. It is immediately obtained that {Tt} is (p, q)-hyperbounded for any

p ∈ (1,∞). Hence, by Theorem 3.2 there exists K ′ > 0 such that ||TK′||q∗→q < ∞.

Symmetry of {Tt} on L2(m) implies that ||Tt||1→q∗ = ||T ∗
t ||1→q∗ . On the other

hand, by the duality we have ||T ∗
t ||1→q∗ = ||Tt||q→∞. Hence, (4.10) implies that

||TK ||1→q∗ = ||TK ||q→∞ <∞. Thus, we have

||T2K+K′||1→∞ ≤ ||TK ||1→q∗ ||TK′||q∗→q||TK ||q→∞ <∞.

When {Tt} is ultracontractive, we can discuss p-independence of the spectra of

the generator of {Tt} for p ∈ [1,∞) in the same way as in the case of hyperbounded

Markovian semigroups.

Theorem 4.6. Assume that {Tt} is ultracontractive and that A2 is a normal op-

erator. Then, σ(−Ap) = σ(−A2) for p ∈ [1,∞). Moreover, σp(−A2) = σp(−Ap),

σc(−A2) = σc(−Ap) and σr(−Ap) = ∅ for p ∈ [1,∞).

Note that {Tt} is not necessarily symmetric (or equivalently A2 is not) in Theo-

rem 4.6.
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Remark 4.7. If {Tt} is symmetric on L2(m) and ultracontractive, the compactness

of Tt on L
p(m) for p ∈ (1,∞) and t ≥ K is to be obtained (See Theorem 13.4.2 in

[2]).

Remark 4.8. When Ttf(x) =
∫
f(y)pt(x, y)m(dy) and∫ ∫

|pK(x, y)|2m(dy)m(dx) <∞

holds for some K > 0, we have the compactness of TK on L2(m) by Theorem 4.2.16

in [2]. Therefore, p-independence of spectra is obtained (See Remark 6.8).

5 Non-symmetric Markovian semigroups and log-

arithmic Sobolev inequality

In Section 4 we obtain some sufficient conditions for the spectra of a Markovian

semigroup {Tt} on Lp(m) to be independent of p ∈ (1,∞). In this section we

consider a sufficient condition for non-symmetric Markovian semigroups to satisfy

hyperboundedness.

Let (M,m), {Tt} be as same as in Section 2. However, in this section, the

finiteness of m is not needed. Let Ap be the generator of {Tt} on Lp(m). We often

denote Ap by A simply. Let {Rα} be the resolvent operator of {Tt} on L2(m) and

define

D := R1(L
1(m) ∩ L∞(m)).

Then, D ⊂ Dom(Ap) for p ∈ [1,∞] and D ⊂ L1(m) ∩ L∞(m).

We prepare another supplementary symmetric semigroup {St} on L2(m). Let E

the Dirichlet form associated with {St}. Let α ∈ (0,∞) and β ∈ [0,∞) and assume

that

(5.1)

∫
|f(x)|2 log(|f(x)|2/||f ||22)m(dx) ≤ αE (f, f) + β||f ||22, f ∈ L2(m).

This inequality is called a defective logarithmic Sobolev inequality. In the case that

α > 0 and β = 0, (5.1) is called a logarithmic Sobolev inequality. Additionally

assume the following:

(5.2)
For p > 1 and f ∈ D , |f |p/2 ∈ Dom(E ) and

4(p− 1)

p2
E (|f |p/2, |f |p/2) ≤ −(Af, |f |p−1sgn(f)).

When Tt is symmetric on L2(m), by taking St by Tt we have (5.2) (see the proof of

Theorem 6.1.14 in [3]).

Theorem 5.1. Assume (5.1) and (5.2). Then, we have

||Tt||p→q ≤ exp

{
β

(
1

p
− 1

q

)}
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for t > 0 and 1 < p ≤ q < ∞ such that e4t/α ≥ (q − 1)/(p − 1). Hence, {Tt} is

hyperbounded. Moreover, {Tt} is hypercontractive if β = 0.

Proof. The proof is just the same as the proof of Theorem 6.1.14 in [3]. Let f ∈ D

and denote Ttf by ft. Let q(t) := 1+(p−1)e4t/α. By following the proof of Theorem

6.1.14 in [3] we have

||ft||q(t)−1
q(t)

d

dt
||ft||q(t)

=

∫
|ft|q(t)−1sgn(ft)Aftdm+

q′(t)

q(t)2

∫
|ft|q(t) log

(
|ft|q(t)/||ft||q(t)q(t)

)
dm.

By (5.2) we obtain

||ft||q(t)−1
q(t)

d

dt
||ft||q(t)

≤ −4(q(t)− 1)

q(t)2
E (|ft|q(t)/2, |ft|q(t)/2) +

q′(t)

q(t)2

∫
|ft|q(t) log

(
|ft|q(t)/||ft||q(t)q(t)

)
dm.

Hence, we can continue our proof in the same way as the proof of Theorem 6.1.14

in [3] and obtain the conclusion.

In Theorem 5.1 we assumed (5.1) and (5.2). Now, we give an example of a

non-symmetric Markovian semigroup {Tt} satisfying (5.1) and (5.2).

Let M be a complete Riemannian manifold and m be the volume measure on

M . Denote the total set of vector fields on M by D. We define the basis measure

ν on M by ν := e−Um where U is a C∞-function on M such that
∫
M
e−Udm = 1.

Let ∇ be an affine connection. Then, the dual ∇∗
ν of ∇ on L2(ν) is characterized by

∇∗
νθ = ∇∗θ + (∇U, θ) for θ ∈ D where ∇∗ is the dual of ∇ on L2(m).

Let b ∈ D and consider the generator A defined by

(5.3) A = −1

2
∇∗

ν∇+ b.

Then, the dual A∗
ν of A on L2(ν) satisfies

A∗
ν = −1

2
∇∗

ν∇− b− divνb

where divν is the divergence on L2(ν), i.e. divν is the linear operator on D which is

characterized by ∫
Xfdν = −

∫
fdivνXdν, f ∈ C1

0(M).

Let B := −1
2
∇∗

ν∇ and E the Dirichlet form associated with B. Then,

E (f, g) = −1

2

∫
(gradf, gradg)dν, f, g ∈ C∞

0 (M)
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where gradf is the gradient of f ∈ C∞(M). For B to be a generator of a Markovian

semigroup, we assume that the closure of B defined on C∞
0 (M) is m-dissipative

on Lp(m) for p ∈ [0,∞]. Sufficient conditions for the assumption is found in [9].

Additionally, we assume

(5.4) divνb ≥ 0.

Under these assumptions we show (5.2). Since B is symmetric on L2(ν), (5.2) holds

for B and E (See a remark just after (5.2)). Hence, letting {Gα} be the resolvent

associated with B, we have for f ∈ G1(L
1 ∩ L∞)

(5.5)
4(p− 1)

p2
E (|f |p/2, |f |p/2) ≤ 1

2

(
∇∗

ν∇f, |f |p−1sgn(f)
)
.

In particular, since C∞
0 (M) ⊂ G1(L

1 ∩ L∞), (5.5) holds for f ∈ C∞
0 (M). For

f ∈ C∞
0 (M) we have

−(Af, |f |p−1sgn(f)) =

∫ (
1

2
∇∗

ν∇f − bf

)
|f |p−1sgn(f)dν

=
1

2

∫
(∇∗

ν∇f) |f |p−1sgn(f)dν −
∫

(bf)|f |p−1sgn(f)dν.

By using (5.4)

−
∫

(bf)|f |p−1sgn(f)dν = −1

p

∫
b (|f |p) dν =

1

p

∫
(divνb) |f |pdν ≥ 0.

Hence, by (5.5) we obtain

(5.6) −(Af, |f |p−1sgn(f)) ≥ 4(p− 1)

p2
E (|f |p/2, |f |p/2), f ∈ C∞

0 (M).

Since each function f which belongs to Dom(Ap) can be approximated by a se-

quence {fn} in C∞
0 (M) with respect to the graph-norm of Ap, (5.6) implies that

supn E (|fn|p/2, |fn|p/2) < ∞. Hence, there exists a subsequence of {fn} which

converges weakly with respect to the norm given by the inner product E1(·, ·) :=

(·, ·) + E (·, ·). Denote the subsequence by {fn} again. Clearly, the limit of {fn} is

f . By (5.6) we have

4(p− 1)

p2
E (|f |p/2, |f |p/2) ≤ lim inf

n→∞

4(p− 1)

p2
E (|fn|p/2, |fn|p/2)

≤ − lim inf
n→∞

(Afn, |fn|p−1sgn(fn))

≤ −(Af, |f |p−1sgn(f)).

Therefore, (5.2) holds.

For (5.1) we additionally assume that

Ric + HessU ≥ εI



Exponential convergence of Markovian semigroups 20

for some ε > 0. Then it is known that the logarithmic Sobolev inequality holds for

B (see Theorem 6.2.42 in [3]). Hence, (5.1) holds.

By Theorem 5.1, the hyperboundedness holds. Furthermore, when we apply the

results in Section 4, we need the conditions that ν is the invariant measure with

respect to the semigroup generated by A and A is normal on L2(ν).

Example 5.2. Let M := R2, ν(dx) := (1/2π)e−|x|2/2dx, and

b = b1(x)
∂

∂x1
+ b2(x)

∂

∂x2
:= −cx2

∂

∂x1
+ cx1

∂

∂x2

where c is a positive constant. Then,

A = −1

2
∇∗

ν∇+ b =
1

2

(
∂2

∂x21
+

∂2

∂x22

)
− x1

∂

∂x1
− x2

∂

∂x2
+ b.

Hence, the diffusion associated with A is the Ornstein-Uhlembeck diffusion with ro-

tation. In this case, by explicit calculation we have that ν is the invariant measure

and A is normal on L2(ν).

6 Properties on spectra of operators on Lp-spaces

In this section we consider consistent linear operators on Lp-spaces and discuss its

spectra with respect to Lp-spaces. Let (M,m) be a probability space and Lp(m) the

Lp-space of C-valued functions with respect to m. For p ∈ [1,∞) let Ap be a densely

defined closed linear operator on Lp(m) and assume {Ap; p ∈ [1,∞)} are consistent,

i.e. if p > q, then Dom(Ap) ⊂ Dom(Aq) and Apf = Aqf for f ∈ Dom(Ap).

Moreover, assume that Ap is a real operator for some p ∈ [1,∞). Note that Ap

is a real operator for all p ∈ [1,∞) by this assumption. A Markovian semigroup

{Tt} and its generators {Ap; p ∈ [1,∞)} defined in Section 2 satisfy the assumption

on {Ap; p ∈ [1,∞)}. Since the argument below is applicable to both {Tt} and

{Ap; p ∈ [1,∞)}, so we prepare {Ap; p ∈ [1,∞)} as a unified notation. Also note

that, when we consider a Markovian semigroup {Tt} as {Ap}, the results below

include the case that p = ∞.

In this section, we additionally assume that A2 is self-adjoint on L2(m), i.e.

A2 = A∗
2. By using consistency it is easy to see that (Ap)

∗ = Ap∗ for p ∈ [1,∞). We

denote Ap by A simply when confusion does not occur.

Lemma 6.1. σr(Ap) = ∅ for p ≤ 2.

Proof. Assuming that there exists λ ∈ σr(Ap), we will make a contradiction. Then,

there exists f ∈ Lp∗(m)\{0} such that ⟨(λ−A)g, f⟩ = 0 for g ∈ Dom(Ap). Since g 7→
⟨Ag, f⟩ = ⟨g, λ̄f⟩ is a bounded linear functional on Dom(Ap), f ∈ Dom((Ap)

∗) =

Dom(Ap∗) and Af = λ̄f . On the other hand, f ∈ Dom(Ap∗)\{0} ⊂ Dom(Ap)\{0}.
This implies that f is an eigenfunction of Ap with respect to the eigenvalue λ̄. By

Lemma 2.6 we have λ ∈ σp(Ap). This conflicts with the disjointness of σp(Ap) and

σr(Ap).
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Proposition 6.2. We have the following.

(i) σp(Ap) ⊂ σp(Aq) for q ≤ p.

(ii) σr(Aq) ⊂ σr(Ap) for q ≤ p.

(iii) σc(Ap) ⊂ σc(Aq) ∪ σp(Aq) for q ≤ p ≤ 2.

(iv) ρ(Aq) ⊂ ρ(Ap) for q ≤ p ≤ 2.

Proof. Let λ ∈ σp(Ap). Then, there exists f ∈ Dom(Ap) \ {0} such that λf = Af .

This implies that λ ∈ σp(Aq), because f ∈ Dom(Ap) \ {0} ⊂ Dom(Aq) \ {0}.
Therefore, we have (i).

Next we prove (ii). Let λ ∈ σr(Aq). If λ ∈ σp(Ap), by (i) we have that λ ∈ σp(Aq).

This conflicts that σp(Aq) and σr(Aq) are disjoint each other. Thus, λ ̸∈ σp(Ap).

Since λ ∈ σr(Aq), there exists f ∈ Lq∗(m) \ {0} and that ⟨(λ − A)g, f⟩ = 0 for

g ∈ Dom(Aq). Noting that q∗ ≥ p∗, we have that f ∈ Lp∗(m) \ {0} and that

⟨(λ− A)g, f⟩ = 0 for g ∈ Dom(Ap). Hence, λ ∈ σr(Ap). Thus, (ii) follows.

Now we show (iv). Let q ≤ p ≤ 2. Let λ ∈ ρ(Aq). Note that ρ(Aq) = ρ(Aq∗).

Let (λ−Aq)
−1 and (λ−Aq∗)

−1 be the resolvent operators of Aq and Aq∗ with respect

to λ, respectively. Define a linear operator R
(p)
λ on Lp(m) by R

(p)
λ f := (λ− Aq)

−1f

for f ∈ Dom(R
(p)
λ ) where Dom(R

(p)
λ ) := {f ∈ Lp(m); (λ− Aq)

−1f ∈ Lp(m)}. Then,
R

(p)
λ , (λ − Aq)

−1 and (λ − Aq∗)
−1 are consistent. Hence, Lq∗(m) ⊂ Dom(R

(p)
λ ) and

Dom(R
(p)
λ ) is dense in Lp(m). By the Riesz-Thorin theorem we have

||R(p)
λ ||p→p ≤ ||(λ− Aq)

−1||1−θ
q→q ||(λ− Aq∗)

−1||θq∗→q∗ ,

where θ ∈ [0, 1] satisfying 1/p = (1−θ)/q+θ/q∗. This implies that ||R(p)
λ ||p→p <∞.

By the definition of R
(p)
λ we have

(λ− Ap)R
(p)
λ = I, on Dom(R

(p)
λ ),

R
(p)
λ (λ− Ap) = I, on Dom(Ap),

and therefore the closure of R
(p)
λ is the resolvent operator of Ap with respect to λ.

Hence, λ ∈ ρ(Ap) and we have (iv).

We obtain (iii) by (iv) and Lemma 6.1.

Remark 6.3. By (iv) of Proposition 6.2 we have that σ(Ap) is decreasing for p ∈
[1, 2] and increasing for p ∈ [2,∞).

Corollary 6.4. Let p ∈ [2,∞). Then the followings hold.

(i) σp(Ap) ∪ σr(Ap) = σp(Ap∗).

(ii) σc(Ap) = σc(Ap∗).
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Proof. By (i) of Proposition 6.2, we have σp(Ap) ⊂ σp(Ap∗). By similar argument

to that in the proof of Lemma 6.1, it holds that σr(Ap) ⊂ σp(Ap∗). Hence, we have

(6.1) σp(Ap) ∪ σr(Ap) ⊂ σp(Ap∗).

Let λ ∈ σp(Ap∗) and S the total set of f ∈ Dom(Ap∗) such that λf = Af . Since

λ ∈ σp(Ap∗), S ̸= {0}. If Lp(m) ∩ S ̸= {0}, then λ ∈ σp(Ap). Consider the case

that Lp(m) ∩ S = {0}. Then, λ ̸∈ σp(Ap). Take f ∈ S \ {0}. Then, it holds

that ⟨λf, g⟩ = ⟨Af, g⟩ for g ∈ Lp(m). Hence, by the symmetry of A we have

⟨f, λ̄g⟩ = ⟨f,Ag⟩ for g ∈ Dom(Ap). Here, note the definition of ⟨·, ·⟩ in Section 1.

On the other hand, since λ ̸∈ σp(Ap), we have λ̄ ̸∈ σp(Ap) by Lemma 2.6. These

facts imply λ̄ ∈ σr(Ap). By Lemma 2.6 again, we have λ ∈ σr(Ap). Thus,

(6.2) σp(Ap∗) ⊂ σp(Ap) ∪ σr(Ap).

By (6.1) and (6.2) yield (i).

Since σ(Ap) = σ(Ap∗), we have (ii).

Corollary 6.5. σp(Ap) ⊂ R for p ∈ [2,∞).

Proof. The assertion immediately follows by (i) of Proposition 6.2 and σ(A2) ⊂
R.

Remark 6.6. Since A2 is a self-adjoint operator, by using the general theory of

self-adjoint operators on Hilbert spaces it is obtained that σ(A2) ⊂ R. However,

when p ̸= 2, it does not always hold. An example that σ(Ap) ̸⊂ R when p ̸= 2, is

given in Section 7.

Let λmin
p := min{|λ|;λ ∈ σ(Ap)} and λmax

p := max{|λ|;λ ∈ σ(Ap)} for p ∈ [1,∞).

Note that the minimum and the maximum above exist in [0,∞], because σ(Ap) is

closed set in C. The following corollary follows immediately from (iv) of Proposition

6.2.

Corollary 6.7. λmin
q ≥ λmin

p and λmax
q ≥ λmax

p for q ∈ [1,min{p, p∗}]∪[max{p, p∗},∞).

This corollary gives the relation of the exponential rate of convergence for Marko-

vian semigroups. For example, let Ap = Ap, where Ap is the generator of the Marko-

vian semigroup on Lp(m) defined in Section 2. Then, λmin
p is the distance between 0

and σ(Ap). For another example, let Ap be T
(p)
t −m for some t > 0, where T

(p)
t is the

Markovian semigroup on Lp(m) defined in Section 2. Then, λmax
p = Rad(T

(p)
t −m).

As mentioned in Section 2, these are related to the rate of convergence of the Marko-

vian semigroups.

Remark 6.8. In Chapter 4 of [2] spectra of consistent bounded operators are con-

sidered. When we additionally assume that Ap is bounded for any p ∈ [1,∞) and

that Ap is compact for some p ∈ [1,∞), then the p-independence of spectra of Ap

is obtained by using Schauder’s theorem (see Theorem 4.2.13 in [2]) and Theorem

4.2.14 in [2].
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7 Example that γp→p depends on p

In Section 4 we give a sufficient condition for the spectra of a Markovian semigroup

as an operator on Lp(m) to be independent of p. However, generally the spectra

depend on p. We give an example so that the spectra depend on p in this section.

Let p ∈ [1,∞). Define a measure ν on [0,∞) by ν(dx) := e−xdx and a differential

operator A◦
p with its domain Dom(A◦

p) by

Dom(A◦
p) :=

{
f ∈ C2

0([0,∞);C); f ′(0) = 0
}
,

A◦
p :=

d2

dx2
− d

dx
.

Consider a generator Ap by the closed extension of A◦
p on L

p(ν). Note that A2 is

a self-adjoint operator on L2(ν). This is an example that the spectra σ(Ap) depend

on p and γq→q < γp→p for q < p ≤ 2. Now, we show them by investigating σ(Ap)

explicitly.

Let p ∈ [1, 2]. Consider the linear transformation I defined by

(7.1) (If)(x) := e−x/2f(x).

Then, we have ∫ ∞

0

|If(x)|pe(
p
2
−1)xdx =

∫ ∞

0

|f(x)|pν(dx),

and f ′(0) = 0 if and only if 1
2
(If)(0) + (If)′(0) = 0 for f ∈ C1([0,∞);C). Hence, I

is an isometric transformation from Lp(ν) to Lp(ν̃p), where ν̃p := e(
p
2
−1)xdx. Define

a linear operator Ãp on Lp(ν̃p) by

(7.2)
Dom(Ãp) :=

{
f̃ ∈ W 2,p(ν̃p);

1

2
f̃(0) + f̃ ′(0) = 0

}
,

Ãpf̃ :=
d2

dx2
f̃ − 1

4
f̃ .

Then, we have for f̃ ∈ C∞
0 ([0,∞);C)

(
I ◦ Ap ◦ I−1

)
f̃(x) = e−x/2

(
d2

dx2
− d

dx

)
ex/2f̃(x)

= f̃ ′′(x) + f̃ ′(x) +
1

4
f̃(x)− f̃ ′(x)− 1

2
f̃(x)

= f̃ ′′(x)− 1

4
f̃(x).

Thus, we have the following commutative diagram.

Lp(ν)
Ap−→ Lp(ν)

I ↓ ↓ I

Lp(ν̃p)
Ãp−→ Lp(ν̃p)



Exponential convergence of Markovian semigroups 24

By this diagram we have

(7.3) σp(Ap) = σp(Ãp), σc(Ap) = σc(Ãp) and σr(Ap) = σr(Ãp).

Hence, to see the spectra of Ap, it is sufficient to see the spectra of Ãp.

From now we cannot discuss the cases that 1 ≤ p < 2 and that p = 2 in the

same way. First we consider the case that 1 ≤ p < 2. Let
√
z :=

√
reiθ/2 for z ∈ C

where z = reiθ such that r ≥ 0 and θ ∈ (−π, π].

Lemma 7.1. If 1 ≤ p < 2, then

σp(−Ãp) = {0} ∪
{
x+ iy; x, y ∈ R, x >

p− 1

p2
, |y| <

(
2

p
− 1

)√
x− p− 1

p2

}
.

Proof. Let u(x) = x− 2 for x ∈ [0,∞). Then, u ∈ Lp(ν̃p),

− d2

dx2
u+

1

4
u =

1

4
u and

1

2
u(0) + u′(0) = 0.

Hence,

(7.4)
1

4
∈ σp(−Ãp).

Let λ ∈ C \
{

1
4

}
. Consider the differential equation:

(7.5) − d2

dx2
u+

1

4
u = λu

where u : [0,∞) → C. Then, u is the solution of (7.5) if and only if

u(x) = C1e
x
√

−λ+1/4 + C2e
−x
√

−λ+1/4

where C1, C2 are constants in C. Note that 1
2
u(0)+u′(0) = 0 if and only if C1(1/2+√

−λ+ 1/4)+C2(1/2−
√
−λ+ 1/4) = 0. Hence, u is the solution of the boundary-

value problem on [0,∞):  − d2

dx2
u+

1

4
u = λu

1

2
u(0) + u′(0) = 0,

if and only if

(7.6)


u(x) = C1e

x
√

−λ+1/4 + C2e
−x
√

−λ+1/4

C1

(
1

2
+

√
−λ+

1

4

)
+ C2

(
1

2
−
√

−λ+
1

4

)
= 0.

When u satisfies (7.6),

|C1|p
∫ ∞

0

e

(
Re
√

−λ+1/4
)
px
e(p/2−1)xdx− |C2|p

∫ ∞

0

e
−
(
Re
√

−λ+1/4
)
px
e(p/2−1)xdx



Exponential convergence of Markovian semigroups 25

≤
∫ ∞

0

|u(x)|pe(p/2−1)xdx

≤ |C1|p
∫ ∞

0

e

(
Re
√

−λ+1/4
)
px
e(p/2−1)xdx+ |C2|p

∫ ∞

0

e
−
(
Re
√

−λ+1/4
)
px
e(p/2−1)xdx.

This implies that

(7.7) u ∈ Lp(ν̃p) if and only if “pRe
√

−λ+ 1/4 +
p

2
− 1 < 0 or C1 = 0”.

By (7.6), if C1 = 0, then λ = 0 or C2 = 0. Therefore, (7.4) and (7.7) imply that

σp(−Ãp) = {0} ∪
{
λ ∈ C; Re

√
−λ+ 1/4 < 1

p
− 1

2

}
.

Lemma 7.2. If 1 ≤ p < 2, then

ρ(−Ãp) ⊃

{
x+ iy; x, y ∈ R, y2 >

(
2

p
− 1

)2(
x− p− 1

p2

)}
\ {0}.

Proof. It is sufficient to show that
{
z ∈ C \ {0}; Re

√
−z + 1/4 > 1

p
− 1

2

}
⊂ ρ(−Ãp).

For λ ∈
{
z ∈ C \ {0}; Re

√
−z + 1/4 > 1

p
− 1

2

}
let

ϕλ(x) :=

(
1

2
−
√

−λ+
1

4

)
ex
√

−λ+ 1
4 −

(
1

2
+

√
−λ+

1

4

)
e−x

√
−λ+ 1

4 , x ∈ [0,∞)

ψλ(x) := e−x
√

−λ+ 1
4 , x ∈ [0,∞)

Wλ := −2

√
−λ+

1

4

(
1

2
−
√

−λ+
1

4

)

and define a C-valued function gλ on [0,∞)× [0,∞) by

gλ(x, y) :=


1

Wλ

ϕλ(x)ψλ(y), x ≤ y

1

Wλ

ϕλ(y)ψλ(x), y ≤ x

Let Gλf(x) :=
∫∞
0
gλ(x, y)f(y)dy for f ∈ C0([0,∞);C). Then, by explicit calcula-

tion, we have for f ∈ C0([0,∞);C){
λ− (−Ãp)

}
Gλf = f, and

1

2
Gλf(0) + (Gλf)

′(0) = 0.

In view of Lemmas 6.1 and 7.1, to show that λ ∈ ρ(−Ãp), it is sufficient to prove

the boundedness of the operator Gλ on Lp(ν̃p). Let

Cλ(ε) := sup
y∈[0,∞)

e(1−p/2)y

(∫ ∞

0

|gλ(x, y)|(1−ε)p e(p/2−1)xdx

)
,

C ′
λ(ε) := sup

x∈[0,∞)

(∫ ∞

0

|gλ(x, y)|εp
∗
dy

)p/p∗
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for ε ∈ (0, 1). By explicit calculation, we have Cλ(ε) < ∞ when Re
√

−λ+ 1/4 >
1

1−ε

(
1
p
− 1

2

)
, and C ′

λ(ε) <∞. By Hölder’s inequality we have

||Gλf ||pLp(ν̃p)

=

∫ ∞

0

∣∣∣∣∫ ∞

0

gλ(x, y)f(y)dy

∣∣∣∣p e(p/2−1)xdx

≤
∫ ∞

0

[∫ ∞

0

|gλ(x, y)|1−ε |f(y)| · |gλ(x, y)|ε dy
]p
e(p/2−1)xdx

≤
∫ ∞

0

(∫ ∞

0

|gλ(x, y)|(1−ε)p |f(y)|pdy
)(∫ ∞

0

|gλ(x, y)|εp
∗
dy

)p/p∗

e(p/2−1)xdx

≤ C ′
λ(ε)

∫ ∞

0

(∫ ∞

0

|gλ(x, y)|(1−ε)p e(p/2−1)xdx

)
|f(y)|pdy

≤ C ′
λ(ε)Cλ(ε)||f ||pLp(ν̃p)

.

Since this estimate holds for all ε ∈ (0, 1),
{
z ∈ C \ {0}; Re

√
−z + 1/4 > 1

p
− 1

2

}
⊂

ρ(Ãp).

By the lemmas above, the spectra of −Ãp are determined exactly.

Theorem 7.3. Followings hold for 1 ≤ p < 2.

(i) σp(−Ãp) = {0} ∪
{
x+ iy; x, y ∈ R, x > p−1

p2
and |y| <

(
2
p
− 1
)√

x− p−1
p2

}
,

(ii) σc(−Ãp) =
{
x+ iy; x, y ∈ R, x ≥ p−1

p2
, and |y| =

(
2
p
− 1
)√

x− p−1
p2

}
\ {0},

(iii) ρ(−Ãp) =

{
x+ iy; x, y ∈ R, y2 >

(
2
p
− 1
)2 (

x− p−1
p2

)}
\ {0}.

Proof. The assertion (i) is obtained in Lemma 7.1. Since any limit point of point

spectra are either a point spectrum or a continuous spectrum, by (i) and Lemma

7.2, we have (ii). By (i), (ii) and Lemma 6.1, we obtain (iii).

By (7.3) we have the following theorem.

Theorem 7.4. Followings hold for 1 ≤ p < 2.

(i) σp(−Ap) = {0} ∪
{
x+ iy; x, y ∈ R, x > p−1

p2
and |y| <

(
2
p
− 1
)√

x− p−1
p2

}
,

(ii) σc(−Ap) =
{
x+ iy; x, y ∈ R, x ≥ p−1

p2
and |y| =

(
2
p
− 1
)√

x− p−1
p2

}
\ {0},

(iii) ρ(−Ap) =

{
x+ iy; x, y ∈ R, y2 >

(
2
p
− 1
)2 (

x− p−1
p2

)}
\ {0}.
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0

C

σp(−A1

ρ(−A1)

σc(−A1)

Figure 1: p = 1

0
p−1

p2

σp(−Ap)

ρ(−Ap)

σc(−Ap)

C

Figure 2: 1 < p < 2

The pictures of σp(−Ap), σc(−Ap) and ρ(−Ap) for p = 1 and for 1 < p < 2 are

described in Figures 1 and 2.

Next we check σ(−Ã2). Note that ν̃p is equal to the Lebesgue measure dx when

p = 2. Since σ(−Ã2) is self-adjoint and non-negative definite on L2(dx), we know

that σ(−Ã2) ⊂ [0,∞) and σr(−Ã2) = ∅ (see Lemma 6.1). The purpose of the

argument below is to investigate both σp(−Ã2) and σc(−Ã2) explicitly.

Lemma 7.5.

σp(−Ã2) = {0}.

Proof. The assertion follows by almost the same way as the proof of Lemma 7.5

except the part of checking whether 1
4
is a point spectrum or not. Let u be the

unique solution of the differential equation:

− d2

dx2
u+

1

4
u =

1

4
u and

1

2
u(0) + u′(0) = 0.

Then u(x) = x − 2. Since u ̸∈ L2(dx), 1
4
̸∈ σp(−Ã2). The rest of the proof is same

as that of Lemma 7.5.

We have already obtained σp(−Ã2) and σr(−Ã2) explicitly in Lemmas 6.1 and

7.5. Now we investigate σc(−Ã2). Since any limit point of point spectra is either a

point spectrum or a continuous spectrum, it was easy to see σc(−Ãp) for 1 ≤ p < 2.

However, in the case that p = 2 it is impossible to discuss continuous spectra in a

similar way to the case that 1 ≤ p < 2. Recall that by (7.3) it is sufficient to check

the spectra of Ã2 on L2(dx) defined on (7.2).

Let E and Ẽ be the bilinear forms associated with A2 and Ã2 respectively. Then,

for f, g ∈ C2
b ([0,∞)) such that f(x) = g(x) = 0 for x > M with some M > 0, we

have

Ẽ (f, g) = E (I−1f, I−1g)(7.8)

=

∫ ∞

0

(ex/2f(x))′(ex/2g(x))′e−xdx
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=

∫ ∞

0

(
f ′(x)g′(x) +

1

2
f ′(x)g(x) +

1

2
f(x)g′(x) +

1

4
f(x)g(x)

)
dx

=

∫ ∞

0

f ′(x)g′(x)dx+
1

4

∫ ∞

0

f(x)g(x)dx+
1

2

∫ ∞

0

(f(x)g(x))′dx

=

∫ ∞

0

f ′(x)g′(x)dx+
1

4

∫ ∞

0

f(x)g(x)dx− 1

2
f(0)g(0).

Denote the Sobolev space on [0,∞) with measure dx and indices k, p by W k,p(dx)

where k is the index for differentiability and p is the index for integrability. Let

Dom(Ã
(0)
2 ) :=

{
f ∈ W 2,2(dx); f ′(0) = 0

}
,

Ã
(0)
2 :=

d2

dx2
− 1

4
,

and Ẽ (0) the bilinear form associated with Ã
(0)
2 . Then, by using integration by parts,

we have for f, g ∈ W 2,2(dx) ∩ {f ∈ C2
b ([0,∞)); f ′(0) = 0 and limx→∞ f(x) = 0}

Ẽ (0)(f, g) = −
∫ ∞

0

(
Ã

(0)
2 f
)
(x)g(x)dx(7.9)

= −
∫ ∞

0

f ′′(x)g(x)dx+
1

4

∫ ∞

0

f(x)g(x)dx

=

∫ ∞

0

f ′(x)g′(x)dx+
1

4

∫ ∞

0

f(x)g(x)dx.

Define a norm || · ||
Ẽ
(0)
1

by

||f ||2
Ẽ
(0)
1

= Ẽ (0)(f, f) +

∫ ∞

0

|f(x)|2dx.

Then, by standard calculation we have that the closure of Dom(Ã
(0)
2 ) with respect

to || · ||
Ẽ
(0)
1

is equal to W 1,2(dx). Hence, Dom(Ẽ (0)) = W 1,2(dx). Now we have the

following proposition.

Proposition 7.6. Dom(Ẽ (0)) = Dom(Ẽ ).

Proof. Since Ẽ (f, f) ≤ E (0)(f, f) for f ∈ C∞
0 ([0,∞)), Dom(Ẽ (0)) ⊂ Dom(Ẽ ). To

show Dom(Ẽ (0)) ⊃ Dom(Ẽ ), it is sufficient to show that f 7→ f(0) is a continuous

linear functional on W 1,2(dx). Let f ∈ C∞
0 ([0,∞)). Since f(x) = f(0)+

∫ x

0
f ′(y)dy,

we have

|f(0)|2 =
∫ 1

0

∣∣∣∣f(x)− ∫ x

0

f ′(y)dy

∣∣∣∣2 dx
≤ 2

∫ 1

0

|f(x)|2dx+ 2

∫ 1

0

∣∣∣∣∫ x

0

f ′(y)dy

∣∣∣∣2 dx
≤ 2

∫ ∞

0

|f(x)|2dx+ 2

∫ 1

0

√
x

(∫ x

0

|f ′(y)|2 dy
)
dx

≤ 2

∫ ∞

0

|f(x)|2dx+ 2

∫ ∞

0

|f ′(y)|2 dy.

Hence, f 7→ f(0) is a continuous linear functional W 1,2(dx).
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Now we extend the operators Ã2 and Ã
(0)
2 by the same way as argument written

in Section 2.2 of [11]. Let H := L2(dx), V := Dom(Ẽ (0)) = Dom(Ẽ ) and V ∗ the

dual space of V . By the Riesz theorem, the dual of H can be identified with H∗.

By this identification, we can regard V ⊂ H = H∗ ⊂ V ∗. Noting that V and H

are dense subsets of H and V ∗ respectively, the operator Ã2 can be extended to a

operator from V to V ∗. Denote the extension of Ã2 by B. For λ ∈ (0,∞) λ − B

is a bijection from V to V ∗ and the inverse (λ−B)−1 : V ∗ → V is an extension of

the resolvent (λ − Ã2)
−1 : H → Dom(Ã2). We also define B(0) from Ã

(0)
2 similarly.

Note that B(0) has same properties as B.

Denote the essential spectra of a linear operator A by σess(A). The definition of

essential spectra is in Section 2 of Chapter XII in [6]. Then, we have the following

proposition.

Proposition 7.7. σess(−Ã2) = σess(−Ã
(0)
2 ) =

[
1
4
,∞
)
.

Proof. It is well-known that σp(−Ã
(0)
2 ) = ∅ and σc(−Ã

(0)
2 ) =

[
1
4
,∞
)
. Since −Ã2

and −Ã
(0)
2 are non-negative definite, −1 ∈ ρ(−Ã2) ∩ ρ(−Ã

(0)
2 ). Once we have the

compactness of the bounded linear operator (1 − Ã2)
−1 − (1 − Ã

(0)
2 )−1 on H, we

obtain the conclusion by Weyl’s theorem (see Theorem XIII.14 in [6]).

(1− Ã2)
−1 − (1− Ã

(0)
2 )−1

= (1− Ã2)
−1(1− Ã

(0)
2 )(1− Ã

(0)
2 )−1 − (1− Ã2)

−1(1− Ã2)(1− Ã
(0)
2 )−1

= (1−B)−1(1−B(0))(1− Ã
(0)
2 )−1 − (1−B)−1(1−B)(1− Ã

(0)
2 )−1

= (1−B)−1(B−B(0))(1− Ã
(0)
2 )−1.

The linear operator (1−B)−1(B−B(0))(1− Ã
(0)
2 )−1 is the mapping as follows.

H
(1−Ã

(0)
2 )−1

−−−−−→ Dom(Ã
(0)
2 ) ↪→ V

B−B(0)

−−−−−→ V ∗ (1−B)−1

−−−−−→ V ↪→ H.

Since (1 − Ã
(0)
2 )−1 and (1 − B)−1 are continuous, it is sufficient to show the com-

pactness of the operator B − B(0) form V to V ∗. By (7.8) and (7.9) we have for

f, g ∈ V

V ∗⟨(B−B(0))f, g⟩V =
1

2
f(0)g(0).

This implies that B − B(0) is a mapping f 7→ f(0)δ where δ ∈ V ∗ is a bounded

linear operator on V defined by δ(g) = g(0) for V . Hence, the range of B−B(0) is

one-dimensional. This concludes the compactness of B−B(0).

By Lemma 7.5 and Proposition 7.7 we obtain the explicit information of spectra

of Ã2 as follows.

Theorem 7.8. It holds that

σp(−Ã2) = {0}, σc(−Ã2) =

[
1

4
,∞
)
.
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Proof. We have already obtained that σp(−Ã2) = {0} in Lemma 7.5. Noting that

σp(−Ã2) ∩ σess(−Ã2) = ∅, by the definition of essential spectra we have σc(−Ã2) =

σess(−Ã2) =
[
1
4
,∞
)
.

By (7.3) we have the following theorem.

Theorem 7.9. It holds that

σp(−A2) = {0}, σc(−A2) =

[
1

4
,∞
)
.

The picture of σp(−A2), σc(−A2) and ρ(−A2) is described in Figure 3.

0

1

4

ρ(−A2)

σc(−A2)

C

σp(−A2)

Figure 3: p = 2

By Theorems 7.4 and 7.9 we obtain the spectra of −Ap exactly for p ∈ [1, 2] as

described in Figures 1, 2 and 3.

We have considered only the case that 1 ≤ p ≤ 2. We also obtain σp(−Ap),

σc(−Ap) and σr(−Ap) explicitly for p ∈ (2,∞) by using Proposition 6.2, Corollary

6.4 and Theorems 7.4 and 7.9.

Theorem 7.10. For p ∈ (2,∞), we have the following.

(i) σp(−Ap) = {0},

(ii) σc(−Ap) =
{
x+ iy; x, y ∈ R, x ≥ p∗−1

p∗2
and |y| =

(
2
p∗

− 1
)√

x− p∗−1
p∗2

}
\{0},

(iii) σr(−Ap) =
{
x+ iy; x, y ∈ R, x > p∗−1

p∗2
and |y| <

(
2
p∗

− 1
)√

x− p∗−1
p∗2

}
,

(iv) ρ(−Ap) =

{
x+ iy; x, y ∈ R, y2 >

(
2
p∗

− 1
)2 (

x− p∗−1
p∗2

)}
\ {0}.

Proof. Let p ∈ (2,∞). Since σ(−Ap) = σ(−Ap∗), we have (iv). By Theorem 7.4

and Corollary 6.4 we obtain (ii). By Corollary 6.4 again, we have

(7.10) σp(−Ap) ∪ σr(−Ap) = σp(−Ap∗).
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On the other hand, applying Proposition 6.2 for q = 2, we have σp(−Ap) ⊂ σp(−A2).

Hence, Theorem 7.9 implies that σp(−Ap) ⊂ {0}. Since σp(−Ap) ⊃ {0}, we obtain

(i). By (7.10), (i) and Theorem 7.4, we have (iii).

This operator −Ap is an example that the spectra depend on p, the spectra are

not included by R for p ̸= 2, and σc(−Aq) ⊂ σp(−Ap) for some p < q ≤ 2 even if

−Ap is a diffusion operator, consistent on Lp(ν) for p ∈ [1,∞), self-adjoint when

p = 2, and ergodic.

In view of the argument in Section 2, the exact information on the spectra of

−Ap give the explicit value of γp→p as follows.

Corollary 7.11.

γp→p =
p− 1

p2
, p ∈ [1,∞].

Proof. Since −A2 is self-adjoint on L
2(ν), the argument in Section 2 is available and

(2.5) holds. By (2.5) we have γp→p = p−1
p2

for p ∈ (1, 2]. By Theorem 2.4 we have

0 ≤ γ1→1 ≤ inf{γp→p; p ∈ [1, 2]} = 0. Hence, γ1→1 = 0. By Theorem 2.4 again

γp→p = γp∗→p∗ for p ∈ [1,∞]. Therefore, the assertion holds.

Thus, we obtain an example that the exponential rate of convergence {γp→p; p ∈
[1,∞]} depend on p.
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