Relatively hyperbolic group

The augmented space

Sketch of the proof

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The Coarse Baum-Connes Conjecuture for Relatively Hyperbolic Groups

Tomohiro Fukaya¹ Shin-ichi Oguni²

¹Department of Mathematics Tohoku University

²Department of Mathematics Ehime University Relatively hyperbolic group

The augmented space

Sketch of the proof

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The category of Coarse Spaces

Category of Coarse spaces $\ensuremath{\mathcal{C}}$ consists by

- Objects: Coarse equivalence classes of proper metric spaces.
- Morphisms: $Hom(X, Y) = \{f : X \rightarrow Y \text{ coarse map}\}/close.$

There are two covariant functor from this category to the category of abelian groups Ab.

- The coarse K-homology.
- The K-theory of the Roe-algebras.

Relatively hyperbolic group

The augmented space

Sketch of the proof

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

What is Coarse K-homology?

- The coarse K-homology *KX*_{*}(-) is a coarse version of the K-homology.
- $KX_* : C \rightsquigarrow Ab$ covariant functor.
- $KX_*(-)$ satisfies Mayer-Vietoris axiom.

Let *X* be a metric space. $KX_*(X)$ represent a TOPOLOGICAL property of *X*.

Relatively hyperbolic group

The augmented space

Sketch of the proof

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Roe algebra and its K-theory

- For space *X*, we can associate *X* with a *C**-algebra *C**(*X*), called the Roe algebra.
- $K_*(C^*(-))$: The K-theory of the Roe algebra
- $K_*(C^*(-)): \mathcal{C} \rightsquigarrow \mathbf{Ab}$ covariant functor.
- $K_*(C^*(-))$ satisfies Mayer-Vietoris axiom.

Let *X* be a metric space.

 $K_*(C^*(X))$ represent an Analytic property of *X*.

Relatively hyperbolic group

The augmented space

Sketch of the proof

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Coarse Baum-Connes conjecture

- There is a natural transformation μ from $KX_*(-)$ to $K_*(C^*(-))$.
- μ is called the coarse assembly map.

Conjecture

If X is a "good" metric space, then the coarse assembly map

$$\mu \colon KX_*(X) \to K_*(C^*(X))$$

is an isomorphism.

 Higson and Roe proved the conjecture for δ-hyperbolic spaces.

The augmented space

Sketch of the proof

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

General Method for Coarse Baum-Connes conjecture

Let *X* be a metric space.

Guoliang Yu proved several sufficient condition of the coarse BC conjecture for X.

• The asymptotic dimension of *X* is finite.

• Example: $\operatorname{asdim}(\mathbb{Z}^n) = \operatorname{asdim}(\mathbb{R}^n) = n$.

- X has the property A.
- *X* can be coarsely embedded into the Hilbert space.

The augmented space

Sketch of the proof

"Definition" of Relatively Hyperbolic Groups

- Let G be a finitely generated group.
- Let $\mathbb{P} = \{P_1, \dots, P_k\}$ be a finite family of infinite subgroups.

(G, \mathbb{P}) is called a relatively hyperbolic group if G is hyperbolic relative to \mathbb{P} , or, hyperbolic modulo \mathbb{P} ,

• $P \in \mathbb{P}$ is called a parabolic subgroup.

The augmented space

Sketch of the proof

Examples of relatively hyperbolic group

- Let *A*, *B* be finitely generated groups. Then *C* = *A* * *B* is hyperbolic relative to {*A*, *B*}.
- Let *M* be a complete, finite volume Riemannian manifold with (pinched) negative sectional curvature

$$-b^2 < K(M) < -a^2 < 0.$$

Then $\pi_1(M)$ is hyperbolic relative to cusp subgroups.

- A non-uniform lattice in \mathbb{R} -rank one simple Lie group.
- Let K be a hyperbolic knot (i.e. S³ \ K admits hyperbolic metric). Then π₁(S³ \ K) is hyperbolic relative to Z².

Relatively hyperbolic group

The augmented space

Sketch of the proof

Known results

Theorem

Let (G, \mathbb{P}) be a relatively hyperbolic group.

- If $\operatorname{asdim} P < \infty$ for all $P \in \mathbb{P}$, then $\operatorname{asdim} G < \infty$ (Osin).
- If *P* is exact for all $P \in \mathbb{P}$, then *G* is also exact (Ozawa).
- If P is coarsely embeddable in l₂ for all P ∈ P, then G is also coarsely embeddable in l₂ (Dadarlat-Guentner).

Due to Yu's work, those results imply the coarse Baum-Connes conjecture for such groups.

Main theorem

Relatively hyperbolic group

The augmented space

Sketch of the proof

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Theorem (Oguni-F)

Let (G, \mathbb{P}) be a relatively hyperbolic group. If all $P \in \mathbb{P}$ satisfies the following two conditions:

- P admits a finite P-simplicial complex which is a universal space for proper actions.
- The coarse Baum-Connes conjecture for P holds.

Then the coarse Baum-Connes conjecture for G also holds.

Relatively hyperbolic group

The augmented space

Sketch of the proof

The combinatorial horoball

Definition

Let (P, d) be a metric space. The combinatorial horoball based on *P*, denoted by $\mathcal{H}(P)$, is the graph defined as follows:

- $\mathcal{H}(P)^{(0)} = P \times (\mathbb{N} \cup \{0\}).$
- $\mathcal{H}(P)^{(1)}$ contains the following two type of edges:
 - For $l \in \mathbb{N} \cup \{0\}$ and $p, q \in P$, if $0 < d(p,q) \le 2^l$ then there is a horizontal edge connecting (p, l) and (q, l).
 - ② For $l \in \mathbb{N} \cup \{0\}$ and $p \in P$, there is a vertical edge connecting (p, l) and (p, l+1).

Lemma

 $\mathcal{H}(P)$ is δ -hyperbolic for some $\delta > 0$.

Coarse	Baum-Connes	conjecture

Relatively hyperbolic group

The augmented space

Sketch of the proof

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Notations

- Let *G* be a finitely generated group.
- Let $\mathbb{P} = \{P_1, \dots, P_k\}$ be a finite family of infinite subgroups.
- Choose a sequence $g_1, g_2, ...$ in *G* such that for any r = 1, ..., k, the map $\mathbb{N} \to G/P_r : a \mapsto g_{ak+r}P_r$ is bijective.

Coarse	Baum-Connes	conjecture	

Relatively hyperbolic group

The augmented space ○○●○ Sketch of the proof

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Notations

- Let S be a finite generating set of G.
- Let $d_{\mathcal{S}}$ be the word metric of *G* associated to \mathcal{S} .
- Each coset g_iP_(i) has a proper metric d_i which is the restriction of d_S.
- $\mathcal{H}(g_i P_{(i)})$ is the combinatorial horoball based on $(g_i P_{(i)}, d_i)$.
- The zero-th floor of $\mathcal{H}(g_i P_{(i)})$ can be embedded in $\Gamma = \text{Cayley}(G, S).$

Relatively hyperbolic group

The augmented space

Sketch of the proof

The augmented space

Definition

The augmented space $X(G, \mathbb{P}, S)$ is obtained by pasting $\mathcal{H}(g_i P_{(i)})$ to Γ for all $i \in \mathbb{N}$.

$$X(G,\mathbb{P},\mathcal{S})=\Gamma\cup \bigcup_{i\in\mathbb{N}}\mathcal{H}(g_iP_{(i)}).$$

Definition (Groves-Manning)

G is hyperbolic relative to \mathbb{P} if the augmented space $X(G, \mathbb{P}, S)$ is δ -hyperbolic for some $\delta \geq 0$.

Relatively hyperbolic group

The augmented space

Sketch of the proof

Proof of the Main theorem

Theorem (Oguni-F)

Let (G, \mathbb{P}) be a relatively hyperbolic group. If all $P \in \mathbb{P}$ satisfies the following two conditions:

- P admits a finite P-simplicial complex which is a universal space for proper actions.
- The coarse Baum-Connes conjecture for P holds.

Then the coarse Baum-Connes conjecture for *G* also holds.

The keys to the proof is the following:

- Coarse Mayer-Vietoris exact sequences.
- Approximate discrete spaces by continuous spaces.

Relatively hyperbolic group

The augmented space

Sketch of the proof

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

ω -excision

Definition

- Let *M* be a metric space.
- $M = A \cup B$.

 $M = A \cup B$ is an ω -excisive decomposition, if for each R > 0 there exists some S > 0 such that

 $\operatorname{Pen}(A; R) \cap \operatorname{Pen}(B; R) \subset \operatorname{Pen}(A \cap B; S).$

Here $Pen(A; R) = \{p \in M : d(p, A) \le R\}.$

Relatively hyperbolic group

The augmented space

Sketch of the proof

Coarse Mayer-Vietoris sequences

Theorem (Higson-Roe-Yu)

Suppose that $M = A \cup B$ is an ω -excisive decomposition. Then the following diagram is commutative and horizontal sequences are exact:

$$\longrightarrow KX_p(A \cap B) \longrightarrow KX_p(A) \oplus KX_p(B) \longrightarrow K_p(C^*(A \cap B)) \longrightarrow K_p(C^*(A)) \oplus K_p(C^*(B)) \longrightarrow K_$$

$$\begin{array}{ccc} KX_p(M) & \longrightarrow & KX_{p-1}(A \cap B) & \longrightarrow & \\ & & \downarrow & & \downarrow \\ & & & \downarrow & \\ & & & K_p(C^*(M)) & \longrightarrow & K_{p-1}(C^*(A \cap B)) & \longrightarrow & \end{array}$$

Here vertical arrows are coarse assembly maps.

Relatively hyperbolic group

The augmented space

Sketch of the proof

(日) (日) (日) (日) (日) (日) (日)

Sketch of the Proof of the Main Theorem

• Let (G, \mathbb{P}) be a relatively hyperbolic group.

•
$$X_n := \Gamma \cup \bigcup_{i \ge n} \mathcal{H}(g_i P_{(i)}).$$

•
$$X_{\infty} := \bigcap_{n \ge 1} X_n = \Gamma.$$

 Since X₁ = X(G, ℙ, S) is δ-hyperbolic, by the result of Higson-Roe ('93), the coarse assembly map

$$\mu_1 \colon KX_*(X_1) \to K_*(C^*(X_1))$$

is an isomorphism.

• Since $X_n = X_{n+1} \cup \mathcal{H}(g_n P_{(n)})$ by the induction and the coarse Mayer-Vietoris sequences,

$$\mu_n \colon KX_*(X_n) \to K_*(C^*(X_n))$$

is an isomorphism for all $n \ge 1$.

Relatively hyperbolic group

The augmented space

Sketch of the proof

▲□▶▲□▶▲□▶▲□▶ □ のQで

How to study
$$\mu_{\infty} : KX_*(X_{\infty}) \to K_*(C^*(X_{\infty}))$$
?

• Can we expect so-called Milnor sequence?

 $0 \to \varprojlim^{1} KX_{p+1}(X_n) \to KX_p(X_{\infty}) \to \varprojlim KX_p(X_n) \to 0.$ (1)

- No! In general, (1) is not exact!
- A counter example is $Y_n = \mathbb{R} \setminus [-n, n]$.

•
$$Y_{\infty} := \cap_n Y_n = \emptyset$$
.

- Y_n and \mathbb{R} are coarsely equivalent for all $n \ge 0$.
- $KX_p(Y_n) \cong KX_p(\mathbb{R}) = \mathbb{Z}$ if p is even.

Relatively hyperbolic group

The augmented space

Sketch of the proof

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Universal space for proper actions

- Let <u>E</u>G be a finite G-simplicial complex which is a universal space for proper actions.
- <u>E</u>G admits a proper metric such that Γ and <u>E</u>G are coarsely equivalent.
- Since <u>E</u>G is uniformly contractible, of bounded geometry, KX_∗(<u>E</u>G) ≅ K_∗(<u>E</u>G) (Higson-Roe).
- We have $KX_*(\Gamma) \cong K_*(\underline{E}G)$.

Relatively hyperbolic group

The augmented space

Sketch of the proof

Contractible model

•
$$EX_n := \underline{E}G \cup \bigcup_{i \ge n} (g_i \underline{E}P_{(i)} \times [0, \infty))$$

• $EX_\infty := \bigcap_{n \ge 1} EX_n = \underline{E}G.$

Proposition (Oguni-F)

For all $n \ge 0$,

$$KX_*(X_n) \cong K_*(EX_n).$$

Remark

 EX_n admits a proper metric such that EX_n is coarsely equivalent to X_n . However, it is of unbounded geometry, so we cannot deduce the above proposition from a result of Higson-Roe.

Relatively hyperbolic group

The augmented space

Sketch of the proof

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Milnor exact sequence for K-homology

For the K-homology of a decreasing sequence of locally compact Hausdorff spaces EX_n , the following sequence is exact!

$$0 \to \varprojlim^1 K_{p+1}(EX_n) \to K_p(EX_\infty) \to \varprojlim K_p(EX_n) \to 0.$$

Relatively hyperbolic group

The augmented space

Sketch of the proof

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Milnor exact sequence for K-theory of C*-algebra

Theorem (Phillips ('89))

- Let {*A_n*} be a projective system of *C**-algebras.
- We suppose that $A_{\infty} := \lim A_n$ is a C^* -algebra.

Then the following sequence is exact.

$$0 \to \varprojlim^1 K_{p+1}(A_n) \to K_p(A_\infty) \to \varprojlim K_p(A_n) \to 0.$$

We apply Phillips's theorem for $C^*(X_{\infty}) = \bigcap_{n \ge 1} C^*(X_n)$.

Relatively hyperbolic group

The augmented space

Sketch of the proof

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Final step

By the five lemma, the vertical map of the center is an isomorphism. This implies that the coarse assembly map

$$\mu\colon KX_*(\Gamma)\to K_*(C^*(\Gamma))$$

is an isomorphism.