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What can Gröbner basis do?

Let k be a field, R = k[x1, . . . , xn] be a polynomial ring.
Let f1, . . . , fm ∈ R be polynomials and I = 〈f1, . . . , fm〉 be an ideal
of R .

Problem

Ideal Membership Problem: For given f ∈ R, determine if

f ∈ I .

Gröbner basis can solve these problems systematically.
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What can Gröbner basis do?
Monomial ordering and Division algorithm
Gröbner basis

Monomial ordering
Definition

Let k be a field, R = k[x1, . . . , xn] be a polynomial ring.
We call an element xa1

1 xa2
2 · · · xan

n of R as a power product of R .

Definition (Monomial ordering)

Let ≥ be total ordering on the set of power products of R . ≥ is
called Monomial ordering if and only if

For any power products X and Y , if X > Y then XZ > YZ

for any power product Z .

If Y divides X , then X ≥ Y .

If ≥ is a monomial ordering, then ≥ is well-ordering, that is, any
subset of the set of power products has the least element.
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What can Gröbner basis do?
Monomial ordering and Division algorithm
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What can Gröbner basis do?
Monomial ordering and Division algorithm
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Monomial ordering
Example

Example (Lexicographic ordering)

Let X = xa1
1 xa2

2 · · · xan
n and Y = xb1

1 xb2
2 · · · xbn

n be power products.

X > Y
def
⇔ the left-most non zero entry of

(a1 − b1, . . . , an − bn) is positive.

Then Lexicographic ordering is a monomial ordering.
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Monomial ordering
Leading elements

Let f = a1X1 + · · · + anXn for a1, . . . , an ∈ k \ {0} and X1, . . . ,Xn

are power products satisfying X1 > · · · > Xn

Definition

lp(f ) = X1 the leading power product of f .

lc(f ) = a1 the leading coefficient of f .

lt(f ) = a1X1 the leading term of f .
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What can Gröbner basis do?
Monomial ordering and Division algorithm
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Theorem

INPUT

f ∈ R and F = (f1, . . . , fs): ordered s-tuple of polynomials in R.

OUTPUT

f = a1f1 + · · · + as fs + r .

where a1, . . . , as ∈ k \ {0}, and either r = 0 or r =
∑

ciYi ,

ci ∈ k \ {0}, Yi is a power product, satisfying none of the Yi is

divisible by any of lp(f1), . . . , lp(fs).

We denote above r as r : = f
F
. Unfortunately, f

F
is depend on

the ordering on F and f ∈ I = 〈F 〉 does not imply f
F

= 0.

Tomohiro Fukaya Application of Gröbner basis
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What can Gröbner basis do?
Monomial ordering and Division algorithm
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Application to cup-length

Non commutative Gröbner basis
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Brief Introduction to Gröbner basis
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Gröbner basis
Definition

We can overcome this difficulty by choosing a Gröbner basis.

Definition

Let I be an ideal of R . A finite subset G = {g1, . . . , gs} ⊂ I is a
Gröbner basis of I if

〈{lt(f )|f ∈ I}〉 = 〈lt(g1), . . . , lt(gs)〉.
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What can Gröbner basis do?
Monomial ordering and Division algorithm
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Gröbner basis
Basics properties

Proposition

Let I be an ideal of R and
G = {g1, . . . , gs} be a Gröbner basis of I .
Then, for f ∈ R

f
G

is independent of an ordering on the G and f
G

is unique.

f ∈ I ⇔ f
G

= 0. Ideal Membership Problem.
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Application to cup-length

Non commutative Gröbner basis
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What can Gröbner basis do?
Monomial ordering and Division algorithm
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Gröbner basis
How to obtain Gröbner basis?

Let f , g ∈ R , lp(f ) = x
a1
1 · · · xan

n and lp(g) = x
b1
1 · · · xbn

n .
Then the least common multiple of f and g is

lcm(f , g) = x
max (a1,b1)
1 · · · x

max (an,bn)
n .

The S-polynomial of f and g is

S(f , g) =
lcm(lp(f ), lp(g))

lt(f )
f −

lcm(lp(f ), lp(g))

lt(g)
g .

Theorem (Buchberger’s test)

For G = {g1, . . . , gs} ⊂ R, I = 〈G 〉, the followings are equivalent:

G is a Gröbner basis of I .

S(gi , gj )
G

= 0 for each pair i , j s.t. i 6= j .
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Brief Introduction to Gröbner basis
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What can Gröbner basis do?
Monomial ordering and Division algorithm
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What can Gröbner basis do?
Monomial ordering and Division algorithm
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Gröbner basis
Buchberger’s algorithm

Theorem

Let I = 〈f1, . . . , fs〉 be a ideal. Then a Gröbner basis for I can be

constructed in a finite number of steps by the following algorithm:

INPUT F = (f1, . . . , fs)
OUTPUT a Gröbner basis G = {g1, . . . , gt} for I

G := F

REPEAT

G ′ := G

FOR each pair {p, q},p 6= q in G ′ DO

S := S(p, q)
G ′

IF S 6= 0 THEN G := G ∪ {S}
UNTIL G = G ′
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Main Theorem
Sketch of Proof
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Immersion problem

Cup-length
cup-length and LS-category

Let R be a commutative ring. We define the cup-length of R as

cup(R) := max
{

n|∃x1, . . . , xn ∈ R \ R× s.t. x1 · · · xn 6= 0
}

.

This invariant is useful in algebraic topology.
Let X be a space and A be a commutative ring.

cupA(X ) := cup(H̃∗(X ;A)).

Theorem

cupA(X ) ≤ cat(X ).

Where cat(X ) is LS-category of X normalized as cat(∗) = 0.
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Theorem

cupA(X ) ≤ cat(X ).

Where cat(X ) is LS-category of X normalized as cat(∗) = 0.
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Cup-length
Oriented Grassmann manifolds

We will compute a cup-length of oriented Grassmann manifolds.

G̃n,k := SO(n + k)/SO(n) × SO(k)

consists of oriented k-dimensional vector subspace in R
n+k .

When k = 2, the cohomology of G̃n,2 is well-known.

When k ≥ 3, that of G̃n,k is in vague.

In this talk, we will compute the Z/2 cup-length of oriented
Grassmann manifold for

k = 3; n = 2m+1 − 4 (m ≥ 2).
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Brief Introduction to Gröbner basis
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Main Theorem
Notion of Theorem

Theorem

cupZ/2(G̃n,3) = n + 1 for n = 2m+1 − 4 (m ≥ 2).
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Sketch of Proof
Cohomology of oriented Grassmann manifolds

There are the double covering map pn : G̃n,k → Gn,k .

Imp∗
n
∼= H∗(G̃n,3; Z/2) (∗ < n).

∵ G̃n,3 ≃n BSO(3); p∗
∞, i∗:epi.

Imp∗
n
∼= Z/2[w2,w3]/Jn, where Jn = p∗

∞(In).

G̃n,3

ı̃

pn
Gn,3

i

BSO(3)
p∞

BO(3)

H∗(G̃n,3; Z/2) Z/2[w1,w2,w3]/In
p∗

n

Z/2[w2,w3]

ı̃∗

Z/2[w1,w2,w3]
p∗

∞

i∗
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Sketch of Proof
Using Gröbner basis

Imp∗
n
∼= Z/2[w2,w3]/Jn.

By degree reason, cup(Imp∗
n) determines cupZ/2(G̃n,3).

computing cup(Imp∗
n) ⇔ Ideal Membership Problem of Jn.

By Borel, the generator of Jn is given.

Computing Gröbner basis of Jn, we can solve the Ideal
Membership Problem of Jn.

I computed a Gröbner basis of Jn for n = 2m+1 − 4(m ≥ 2)
and obtained Main Theorem.
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Using Gröbner basis

Imp∗
n
∼= Z/2[w2,w3]/Jn.

By degree reason, cup(Imp∗
n) determines cupZ/2(G̃n,3).

computing cup(Imp∗
n) ⇔ Ideal Membership Problem of Jn.

By Borel, the generator of Jn is given.
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Application to cup-length

Non commutative Gröbner basis
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LS-category
Definition

Definition

For topological space X ,

cat(X ) = min
{
n
∣∣∣∃U0, . . . ,Un ⊂ X open, contractible;

s.t. X =

n⋃

i=0

Ui

}
.

Any smooth fanction on a manifold X has at least cat(X ) + 1
critical points.

cat(Sn) = 1.

cat(SO(n)) is not known for n > 10.
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Brief Introduction to Gröbner basis
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A smooth function on T

2 which has three critical points. (cat(T 2) = 2)

0
0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1

-0.5

0

0.5

0
0.2

0.4

0.6
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Cup-length
Main Theorem
Sketch of Proof
LS-category
Immersion problem

LS-category
Lower and upper bounds

By Main Theorem, immediately we have a lower bound of
cat(G̃n,3).

Using some obstruction theory and Main Theorem, we also
have a upper bound of it.

Theorem

n + 1 ≤ cat(G̃n,3) < 3
2n for n = 2m+1 − 4(m ≥ 2).

Especially cat(G̃4,3) = 5.
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Immersion
Results

We give an another application of our Main Theorem to Immersion
of G̃n,3 into a Euclidean space.

Theorem

G̃n,3 immerses into R
6n−3 but not into R

3n+8 when

n = 2m+1 − 4 (m ≥ 3).

G̃4,3 immerses into R
21 but not into R

17.
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Immersion
Proof: Lower bounds

λ: canonical bundle over G̃n,3.

ν: stable normal bundle over G̃n,3.

TG̃n,3
∼= Hom(λ, λ⊥) ∼= λ ⊗ λ⊥.

TG̃n,3 ⊕ λ ⊗ λ ∼= λ ⊗ (λ ⊕ λ⊥) ∼= (n + 3)λ.

(1 + w2 + w3)
n+4 = 1. ∵ Main Theorem.

w(ν) =
1

w(TG̃n,3)
=

w(λ ⊗ λ)

w((n + 3)λ)

= 1 + w2 + w3 + w2
2 + w3

2 + w2
3 + w2

2 w3 + w2w
2
3 + w3

3 .

w9(ν) = w3
3 6= 0 for n = 2m+1 − 4, (m ≥ 3);

w6(ν) = w3
2 6= 0 for n = 4.

Then we have non immersion results.
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TG̃n,3
∼= Hom(λ, λ⊥) ∼= λ ⊗ λ⊥.

TG̃n,3 ⊕ λ ⊗ λ ∼= λ ⊗ (λ ⊕ λ⊥) ∼= (n + 3)λ.

(1 + w2 + w3)
n+4 = 1. ∵ Main Theorem.

w(ν) =
1

w(TG̃n,3)
=

w(λ ⊗ λ)

w((n + 3)λ)

= 1 + w2 + w3 + w2
2 + w3

2 + w2
3 + w2

2 w3 + w2w
2
3 + w3

3 .

w9(ν) = w3
3 6= 0 for n = 2m+1 − 4, (m ≥ 3);

w6(ν) = w3
2 6= 0 for n = 4.

Then we have non immersion results.
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Immersion
Proof: Upper bounds

Proposition (Hirsch)

Let Mm be m-dim manifold. The followings are equivalent.

Mm can immerse into R
m+p.

Mm has a normal bundle ν which is a p-plane bundle.

The classifying map ν : Mm → BO lifts νp : Mm → BO(p).

Investigating the fibration BSO(3n − 3) → BSO(∞),
we obtain that ν : G̃n,3 → BSO(∞) lifts νp : G̃n,3 → BSO(3n − 3).
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Brief Introduction to Gröbner basis
Application to cup-length

Non commutative Gröbner basis

Steenrod algebra
Free resolution

Steenrod algebra
Motivation

I would like to do calculations on the Steenrod algebra and
modules over it, with computer.

We consider the Steenrod algebra A2 as follow.

Let
A = Z/2〈Sq1, . . . ,Sqi , . . . 〉

be a free associative non commutative algebra. Let

IAdem =

〈
SqaSqb −

[a/2]∑

i=0

(
b − 1 − i

a − 2i

)
Sqa+b−iSqi

∣∣∣∣∣∣
a < 2b

〉

be a two-side ideal of A generated by the Adem relations. Then

A2 = A/IAdem.
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Non commutative Gröbner basis
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i=0

(
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)
Sqa+b−iSqi

∣∣∣∣∣∣
a < 2b

〉

A2 = A/IAdem.

There exists the theory of a non commutative Gröbner basis
and we can define the Gröbner basis of IAdem.

It is well-known that admissible products SqI forms a basis of
the Z/2-vector space A2, it follows that the Adem relations
are Gröbner basis of IAdem.
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Brief Introduction to Gröbner basis
Application to cup-length

Non commutative Gröbner basis

Steenrod algebra
Free resolution

Free resolution
Commutative and non Commutative case

Let R = k[x1, . . . , xn] be free commutative ring.

It is well-known that there is an algorithm using Gröbner basis
for calculating a free resolution of R-module M.

· · · → Ra2 → Ra1 → M.

I generalized the above algorithm for a module over non
commutative ring A = k〈x1, . . . , xn〉 using non commutative
Gröbner basis.

I would like to apply it to free resolution of A2-module and
computing E2 terms of the Adams spectral sequence.
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Brief Introduction to Gröbner basis
Application to cup-length

Non commutative Gröbner basis

Steenrod algebra
Free resolution

Free resolution
Calculation example

I wrote a computer program which compute the Free
resolution of F2.

The following is the free resolution of F2 in degree less than 8

· · ·
ϕ9
−→ A6

2
ϕ8
−→ A6

2
ϕ7
−→ A7

2
ϕ6
−→ A14

2
ϕ5
−→ A9

2
ϕ4
−→ A8

2
ϕ3
−→ A4

2
ϕ2
−→ A2

ϕ1
−→ F2

ϕi = ϕ8 for i ≥ 8.

Now I am trying to compute E
∗,∗
2 = Ext

∗,∗
A2

(H∗(X ),H∗(Y )) which
converges to {Y ,X}∗, for X ,Y = Sn, RPn, CPn,O(n),U(n) etc...

Tomohiro Fukaya Application of Gröbner basis
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Steenrod algebra
Free resolution

Free resolution
Calculation example

I wrote a computer program which compute the Free
resolution of F2.

The following is the free resolution of F2 in degree less than 8

· · ·
ϕ9
−→ A6

2
ϕ8
−→ A6

2
ϕ7
−→ A7

2
ϕ6
−→ A14

2
ϕ5
−→ A9

2
ϕ4
−→ A8

2
ϕ3
−→ A4

2
ϕ2
−→ A2

ϕ1
−→ F2

ϕi = ϕ8 for i ≥ 8.

Now I am trying to compute E
∗,∗
2 = Ext

∗,∗
A2

(H∗(X ),H∗(Y )) which
converges to {Y ,X}∗, for X ,Y = Sn, RPn, CPn,O(n),U(n) etc...

Tomohiro Fukaya Application of Gröbner basis
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Appendix For Further Reading

For Further Reading I

William W. Adams and Philippe Loustaunau.
An introduction to Gröbner bases, volume 3 of Graduate

Studies in Mathematics.
American Mathematical Society, Providence, RI, 1994.

Huishi Li.
Noncommutative Gröbner bases and filtered-graded transfer,
volume 1795 of Lecture Notes in Mathematics.
Springer-Verlag, Berlin, 2002.
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