Application of Groebner basis to computing some homotopy invariants

Tomohiro Fukaya

Department of Mathematics
Kyoto University

JHU Topology Seminar, Nov 142007

Outline

(1) Brief Introduction to Gröbner basis

- What can Gröbner basis do?
- Monomial ordering and Division algorithm
- Gröbner basis
(2) Application to cup-length
- Cup-length
- Main Theorem
- Sketch of Proof
- LS-category
- Immersion problem
(3) Non commutative Gröbner basis
- Steenrod algebra
- Free resolution

Brief Introduction to Gröbner basis
Application to cup-length
Non commutative Gröbner basis

What can Gröbner basis do?

Let k be a field, $R=k\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring.
Let $f_{1}, \ldots, f_{m} \in R$ be polynomials and $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$ be an ideal of R.

Droblem

- Ideal Membership Problem: For given $f \in R$, determine if

Gröbner basis can solve these problems systematically.

What can Gröbner basis do?

Let k be a field, $R=k\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring.
Let $f_{1}, \ldots, f_{m} \in R$ be polynomials and $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$ be an ideal of R.

Problem

Gröbner basis can solve these problems systematically.

What can Gröbner basis do?

Let k be a field, $R=k\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring.
Let $f_{1}, \ldots, f_{m} \in R$ be polynomials and $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$ be an ideal of R.

Problem

- Ideal Membership Problem: For given $f \in R$, determine if $f \in I$.

Gröbner basis can solve these problems systematically.

What can Gröbner basis do?

Let k be a field, $R=k\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring.
Let $f_{1}, \ldots, f_{m} \in R$ be polynomials and $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$ be an ideal of R.

Problem

- Ideal Membership Problem: For given $f \in R$, determine if $f \in I$.

Gröbner basis can solve these problems systematically.

Monomial ordering

Definition

Let k be a field, $R=k\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring. We call an element $x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}$ of R as a power product of R.

Definition (Monomial ordering)
Let \geq be total ordering on the set of power products of R. \geq is called Monomial ordering if and only if

- For any power products X and Y, if $X>Y$ then $X Z>Y Z$ for any power product Z.
- If Y divides X, then $X>Y$

If \geq is a monomial ordering, then \geq is well-ordering, that is, any subset of the set of power products has the least element.

Monomial ordering

Definition

Let k be a field, $R=k\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring. We call an element $x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}$ of R as a power product of R.

Definition (Monomial ordering)

Let \geq be total ordering on the set of power products of R. \geq is called Monomial ordering if and only if

- For any power products X and Y, if $X>Y$ then $X Z>Y Z$ for any power product Z. - If Y divides X, then $X>Y$

> If \geq is a monomial ordering, then \geq is well-ordering, that is, any subset of the set of power products has the least element.

Brief Introduction to Gröbner basis
Application to cup-length Non commutative Gröbner basis

Monomial ordering

Definition

Let k be a field, $R=k\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring.
We call an element $x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}$ of R as a power product of R.

Definition (Monomial ordering)

Let \geq be total ordering on the set of power products of R. \geq is called Monomial ordering if and only if

- For any power products X and Y, if $X>Y$ then $X Z>Y Z$ for any power product Z.

> If \geq is a monomial ordering, then \geq is well-ordering, that is, any subset of the set of power products has the least element.

Brief Introduction to Gröbner basis
Application to cup-length Non commutative Gröbner basis

Monomial ordering

Definition

Let k be a field, $R=k\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring.
We call an element $x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}$ of R as a power product of R.

Definition (Monomial ordering)

Let \geq be total ordering on the set of power products of $R . \geq$ is called Monomial ordering if and only if

- For any power products X and Y, if $X>Y$ then $X Z>Y Z$ for any power product Z.
- If Y divides X, then $X \geq Y$.

> If \geq is a monomial ordering, then \geq is well-ordering, that is, any subset of the set of power products has the least element.

Monomial ordering

Definition

Let k be a field, $R=k\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring.
We call an element $x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}$ of R as a power product of R.

Definition (Monomial ordering)

Let \geq be total ordering on the set of power products of $R . \geq$ is called Monomial ordering if and only if

- For any power products X and Y, if $X>Y$ then $X Z>Y Z$ for any power product Z.
- If Y divides X, then $X \geq Y$.

If \geq is a monomial ordering, then \geq is well-ordering, that is, any subset of the set of power products has the least element.

Monomial ordering

Example

Example (Lexicographic ordering)

Let $X=x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}$ and $Y=x_{1}^{b_{1}} x_{2}^{b_{2}} \cdots x_{n}^{b_{n}}$ be power products.

$$
\begin{aligned}
& X>Y \stackrel{\text { def }}{\Leftrightarrow} \quad \text { the left-most non zero entry of } \\
&\left(a_{1}-b_{1}, \ldots, a_{n}-b_{n}\right) \text { is positive. }
\end{aligned}
$$

Then Lexicographic ordering is a monomial ordering.

Monomial ordering

Leading elements

Let $f=a_{1} X_{1}+\cdots+a_{n} X_{n}$ for $a_{1}, \ldots, a_{n} \in k \backslash\{0\}$ and X_{1}, \ldots, X_{n} are power products satisfying $X_{1}>\cdots>X_{n}$

Definition

Monomial ordering

Leading elements

Let $f=a_{1} X_{1}+\cdots+a_{n} X_{n}$ for $a_{1}, \ldots, a_{n} \in k \backslash\{0\}$ and X_{1}, \ldots, X_{n} are power products satisfying $X_{1}>\cdots>X_{n}$

Definition

- $\operatorname{lp}(f)=X_{1}$ the leading power product of f.
- $\operatorname{lc}(f)=a_{1}$ the leading coefficient of f - $\operatorname{lt}(f)=a_{1} X_{1}$ the leading term of f.

Monomial ordering

Leading elements

Let $f=a_{1} X_{1}+\cdots+a_{n} X_{n}$ for $a_{1}, \ldots, a_{n} \in k \backslash\{0\}$ and X_{1}, \ldots, X_{n} are power products satisfying $X_{1}>\cdots>X_{n}$

Definition

- $\operatorname{lp}(f)=X_{1}$ the leading power product of f.
- $\operatorname{lc}(f)=a_{1}$ the leading coefficient of f.
- $\operatorname{lt}(f)=a_{1} X_{1}$ the leading term of f

Monomial ordering

Leading elements

Let $f=a_{1} X_{1}+\cdots+a_{n} X_{n}$ for $a_{1}, \ldots, a_{n} \in k \backslash\{0\}$ and X_{1}, \ldots, X_{n} are power products satisfying $X_{1}>\cdots>X_{n}$

Definition

- $\operatorname{lp}(f)=X_{1}$ the leading power product of f.
- $\operatorname{lc}(f)=a_{1}$ the leading coefficient of f.
- $\operatorname{lt}(f)=a_{1} X_{1}$ the leading term of f.

Division algorithm

Division algorithm

Theorem

INPUT

$f \in R$ and $F=\left(f_{1}, \ldots, f_{s}\right)$: ordered s-tuple of polynomials in R.

$c_{i} \in k \backslash\{0\}, Y_{i}$ is a power product, satisfying

We denote above r as $r:=\bar{f}^{F}$. Unfortunately, \bar{f}^{F} is depend on
the ordering on F and $f \in I=\langle F\rangle$ does not imply $\bar{f}^{F}=0$.

Division algorithm

Division algorithm

Theorem

INPUT

$f \in R$ and $F=\left(f_{1}, \ldots, f_{s}\right)$: ordered s-tuple of polynomials in R. OUTPUT

$$
f=a_{1} f_{1}+\cdots+a_{s} f_{s}+r .
$$

where $a_{1}, \ldots, a_{s} \in k \backslash\{0\}$, and either $r=0$ or $r=\sum c_{i} Y_{i}$, $c_{i} \in k \backslash\{0\}, Y_{i}$ is a power product, satisfying

We denote above r as $r:=\bar{f}^{F}$. Unfortunately, \bar{f}^{F} is depend on

the ordering on F and $f \in I=\langle F\rangle$ does not imply $\bar{f}^{F}=0$.

Division algorithm

Division algorithm

Theorem

INPUT

$f \in R$ and $F=\left(f_{1}, \ldots, f_{s}\right)$: ordered s-tuple of polynomials in R. OUTPUT

$$
f=a_{1} f_{1}+\cdots+a_{s} f_{s}+r .
$$

where $a_{1}, \ldots, a_{s} \in k \backslash\{0\}$, and either $r=0$ or $r=\sum c_{i} Y_{i}$

$c_{i} \in k \backslash\{0\}, Y_{i}$ is a power product, satisfying

We denote above r as $r:=\bar{f}^{F}$. Unfortunately, \bar{f}^{F} is depend on
the ordering on F and $f \in I=\langle F\rangle$ does not imply $\bar{f}^{F}=0$.

Division algorithm

Division algorithm

Theorem

INPUT

$f \in R$ and $F=\left(f_{1}, \ldots, f_{s}\right)$: ordered s-tuple of polynomials in R. OUTPUT

$$
f=a_{1} f_{1}+\cdots+a_{s} f_{s}+r .
$$

where $a_{1}, \ldots, a_{s} \in k \backslash\{0\}$, and either $r=0$ or

$c_{i} \in k \backslash\{0\}, Y_{i}$ is a power product, satisfying

We denote above r as $r:=\bar{f}^{F}$. Unfortunately, \bar{f}^{F} is depend on the ordering on F and $f \in I=\langle F\rangle$ does not imply $\bar{f}^{F}=0$.

Division algorithm

Division algorithm

Theorem

INPUT

$f \in R$ and $F=\left(f_{1}, \ldots, f_{s}\right)$: ordered s-tuple of polynomials in R. OUTPUT

$$
f=a_{1} f_{1}+\cdots+a_{s} f_{s}+r .
$$

where $a_{1}, \ldots, a_{s} \in k \backslash\{0\}$, and either $r=0$ or $r=\sum c_{i} Y_{i}$, $c_{i} \in k \backslash\{0\}, Y_{i}$ is a power product, satisfying none of the Y_{i} is divisible by any of $\operatorname{lp}\left(f_{1}\right), \ldots, \operatorname{lp}\left(f_{s}\right)$.

We denote above r as $r:=\bar{f}^{F}$. Unfortunately, \bar{f}^{F} is depend on
the ordering on F and $f \in I=\langle F\rangle$ does not imply $\bar{f}^{F}=0$.

Division algorithm

Division algorithm

Theorem

INPUT

$f \in R$ and $F=\left(f_{1}, \ldots, f_{s}\right)$: ordered s-tuple of polynomials in R. OUTPUT

$$
f=a_{1} f_{1}+\cdots+a_{s} f_{s}+r .
$$

where $a_{1}, \ldots, a_{s} \in k \backslash\{0\}$, and either $r=0$ or $r=\sum c_{i} Y_{i}$, $c_{i} \in k \backslash\{0\}, Y_{i}$ is a power product, satisfying none of the Y_{i} is divisible by any of $\operatorname{lp}\left(f_{1}\right), \ldots, \operatorname{lp}\left(f_{s}\right)$.
We denote above r as r : $=\bar{f}^{F}$. Unfortunately, \bar{f}^{F} is depend on the ordering on F and $f \in I=\langle F\rangle$ does not imply $\bar{f}^{F}=0$

Division algorithm

Division algorithm

Theorem

INPUT

$f \in R$ and $F=\left(f_{1}, \ldots, f_{s}\right)$: ordered s-tuple of polynomials in R. OUTPUT

$$
f=a_{1} f_{1}+\cdots+a_{s} f_{s}+r .
$$

where $a_{1}, \ldots, a_{s} \in k \backslash\{0\}$, and either $r=0$ or $r=\sum c_{i} Y_{i}$, $c_{i} \in k \backslash\{0\}, Y_{i}$ is a power product, satisfying none of the Y_{i} is divisible by any of $\operatorname{lp}\left(f_{1}\right), \ldots, \operatorname{lp}\left(f_{s}\right)$.

We denote above r as r : $=\bar{f}^{F}$. Unfortunately, \bar{f}^{F} is depend on the ordering on F and $f \in I=\langle F\rangle$ does not imply $\bar{f}^{F}=0$.

Brief Introduction to Gröbner basis
Application to cup-length
Non commutative Gröbner basis

Gröbner basis

Definition

We can overcome this difficulty by choosing a Gröbner basis.

Definition

Let I be an ideal of R. A finite subset $G=\left\{g_{1}, \ldots, g_{s}\right\} \subset I$ is a

Gröbner basis

Definition

We can overcome this difficulty by choosing a Gröbner basis.

Definition

Let I be an ideal of R. A finite subset $G=\left\{g_{1}, \ldots, g_{s}\right\} \subset I$ is a Gröbner basis of I if

$$
\langle\{\operatorname{lt}(f) \mid f \in I\}\rangle=\left\langle\operatorname{lt}\left(g_{1}\right), \ldots, \operatorname{lt}\left(g_{s}\right)\right\rangle .
$$

Brief Introduction to Gröbner basis
Application to cup-length
Non commutative Gröbner basis

Gröbner basis

Basics properties

Proposition

Let I be an ideal of R and
$G=\left\{g_{1}, \ldots, g_{s}\right\}$ be a Gröbner basis of I.
Then, for $f \in R$

Brief Introduction to Gröbner basis
Application to cup-length
Non commutative Gröbner basis

Gröbner basis

Basics properties

Proposition

Let I be an ideal of R and
$G=\left\{g_{1}, \ldots, g_{s}\right\}$ be a Gröbner basis of I.
Then, for $f \in R$

Brief Introduction to Gröbner basis
Application to cup-length
Non commutative Gröbner basis

Gröbner basis

Basics properties

Proposition

Let I be an ideal of R and
$G=\left\{g_{1}, \ldots, g_{s}\right\}$ be a Gröbner basis of I.
Then, for $f \in R$

- \bar{f}^{G} is independent of an ordering on the G and \bar{f}^{G} is unique.

Brief Introduction to Gröbner basis
Application to cup-length Non commutative Gröbner basis

Gröbner basis

Basics properties

Proposition

Let I be an ideal of R and
$G=\left\{g_{1}, \ldots, g_{s}\right\}$ be a Gröbner basis of I.
Then, for $f \in R$

- \bar{f}^{G} is independent of an ordering on the G and \bar{f}^{G} is unique.
- $f \in I \Leftrightarrow \bar{f}^{G}=0$. Ideal Membership Problem.

Brief Introduction to Gröbner basis
Application to cup-length
Non commutative Gröbner basis

Gröbner basis

How to obtain Gröbner basis?

$$
\begin{aligned}
& \text { Let } f, g \in R, \operatorname{lp}(f)=x_{1}^{a_{1}} \cdots x_{n}^{a_{n}} \text { and } \operatorname{lp}(g)=x_{1}^{b_{1}} \cdots x_{n}^{b_{n}} \\
& \text { Then the least } \\
& \qquad \operatorname{lcm}(f, g)=x_{1}^{\max \left(a_{1}, b_{1}\right) \cdots x_{n}^{\max \left(a_{n}, b_{n}\right)}} \\
& \text { The S-polynomial of } f \text { and } g \text { is } \\
& \qquad S(f, g)=\frac{\operatorname{lcm}(\operatorname{lp}(f), \operatorname{lp}(g))}{\operatorname{lt}(f)} f-\frac{\operatorname{lcm}(\operatorname{lp}(f), \operatorname{lp}(g))}{\operatorname{lt}(g)} g .
\end{aligned}
$$

Theorem (Buchberger's test)

Brief Introduction to Gröbner basis
Application to cup-length
Non commutative Gröbner basis

Gröbner basis

How to obtain Gröbner basis?

Let $f, g \in R, \operatorname{lp}(f)=x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$ and $\operatorname{lp}(g)=x_{1}^{b_{1}} \cdots x_{n}^{b_{n}}$.
Then the least common multiple of f and g is

$$
\operatorname{lcm}(f, g)=x_{1}^{\max \left(a_{1}, b_{1}\right)} \cdots x_{n}^{\max \left(a_{n}, b_{n}\right)}
$$

The S-polynomial of f and g is

Theorem (Buchberger's test)

For $G=\left\{g_{1}, \ldots, g_{s}\right\} \subset R, I=\langle G\rangle$, the followings are equivalent:

- G is a Gröbner basis of I.

$=0$ for each pair i, j s.t. $i \neq j$

Brief Introduction to Gröbner basis
Application to cup-length Non commutative Gröbner basis

Gröbner basis

How to obtain Gröbner basis?

Let $f, g \in R, \operatorname{lp}(f)=x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$ and $\operatorname{lp}(g)=x_{1}^{b_{1}} \cdots x_{n}^{b_{n}}$.
Then the least common multiple of f and g is

$$
\operatorname{lcm}(f, g)=x_{1}^{\max \left(a_{1}, b_{1}\right)} \cdots x_{n}^{\max \left(a_{n}, b_{n}\right)}
$$

The S-polynomial of f and g is

$$
S(f, g)=\frac{\operatorname{lcm}(\operatorname{lp}(f), \operatorname{lp}(g))}{\operatorname{lt}(f)} f-\frac{\operatorname{lcm}(\operatorname{lp}(f), \operatorname{lp}(g))}{\operatorname{lt}(g)} g .
$$

Theorem (Buchberger's test)
For $G=\left\{g_{1}, \ldots, g_{s}\right\} \subset R, I=\{G\rangle$, the followings are equivalent

- G is a Gröbner basis of I.
\square $=0$ for each pair i, j s.t. $i \neq j$.

Gröbner basis

How to obtain Gröbner basis?
Let $f, g \in R, \operatorname{lp}(f)=x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$ and $\operatorname{lp}(g)=x_{1}^{b_{1}} \cdots x_{n}^{b_{n}}$.
Then the least common multiple of f and g is

$$
\operatorname{lcm}(f, g)=x_{1}^{\max \left(a_{1}, b_{1}\right)} \cdots x_{n}^{\max \left(a_{n}, b_{n}\right)}
$$

The S-polynomial of f and g is

$$
S(f, g)=\frac{\operatorname{lcm}(\operatorname{lp}(f), \operatorname{lp}(g))}{\operatorname{lt}(f)} f-\frac{\operatorname{lcm}(\operatorname{lp}(f), \operatorname{lp}(g))}{\operatorname{lt}(g)} g .
$$

Theorem (Buchberger's test)

For $G=\left\{g_{1}, \ldots, g_{s}\right\} \subset R, I=\langle G\rangle$, the followings are equivalent:

- G is a Gröbner basis of I.
- ${\overline{S\left(g_{i}, g_{j}\right)}}^{G}=0$ for each pair i, j s.t. $i \neq j$.

Gröbner basis

Buchberger's algorithm

Theorem

Let $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$ be a ideal. Then a Gröbner basis for I can be constructed in a finite number of steps by the following algorithm:
INPUT $F=\left(f_{1}, \ldots, f_{s}\right)$
OUTPUT a Gröbner basis $G=\left\{g_{1}, \ldots, g_{t}\right\}$ for I
$G:=F$

REPEAT

$$
G^{\prime}:=G
$$

$F O R$ each pair $\{p, q\}, p \neq q$ in $G^{\prime} D O$

$$
\begin{aligned}
& S:=\overline{S(p, q)} \\
& I F S \neq 0 \text { THEN } G:=G \cup\{S\}
\end{aligned}
$$

UNTIL $G=G^{\prime}$

Cup-length

cup-length and LS-category

Let R be a commutative ring. We define the cup-length of R as

$$
\operatorname{cup}(R):=\max \left\{\left.n\right|^{\exists} x_{1}, \ldots, x_{n} \in R \backslash R^{\times} \text {s.t. } x_{1} \cdots x_{n} \neq 0\right\} .
$$

This invariant is useful in algebraic topology.
Let X be a space and A be a commutative ring.

$$
\operatorname{cup}_{A}(X):=\operatorname{cup}\left(\tilde{H}^{*}(X ; A)\right)
$$

Theorem
$\operatorname{cup}_{\wedge}(X)<\operatorname{cat}(X)$.

Cup-length

cup-length and LS-category

Let R be a commutative ring. We define the cup-length of R as

$$
\operatorname{cup}(R):=\max \left\{\left.n\right|^{\exists} x_{1}, \ldots, x_{n} \in R \backslash R^{\times} \text {s.t. } x_{1} \cdots x_{n} \neq 0\right\} .
$$

This invariant is useful in algebraic topology.
Let X be a space and A be a commutative ring.

$$
\operatorname{cup}_{A}(X):=\operatorname{cup}\left(\tilde{H}^{*}(X ; A)\right)
$$

Theorem
$\operatorname{cup}_{\wedge}(X)<\operatorname{cat}(X)$

Cup-length

cup-length and LS-category

Let R be a commutative ring. We define the cup-length of R as

$$
\operatorname{cup}(R):=\max \left\{\left.n\right|^{\exists} x_{1}, \ldots, x_{n} \in R \backslash R^{\times} \text {s.t. } x_{1} \cdots x_{n} \neq 0\right\}
$$

This invariant is useful in algebraic topology.
Let X be a space and A be a commutative ring.

$$
\operatorname{cup}_{A}(X):=\operatorname{cup}\left(\tilde{H}^{*}(X ; A)\right)
$$

Theorem
$\operatorname{cup}_{\wedge}(X) \leq \operatorname{cat}(X)$

Cup-length

cup-length and LS-category

Let R be a commutative ring. We define the cup-length of R as

$$
\operatorname{cup}(R):=\max \left\{\left.n\right|^{\exists} x_{1}, \ldots, x_{n} \in R \backslash R^{\times} \text {s.t. } x_{1} \cdots x_{n} \neq 0\right\}
$$

This invariant is useful in algebraic topology.
Let X be a space and A be a commutative ring.

$$
\operatorname{cup}_{A}(X):=\operatorname{cup}\left(\tilde{H}^{*}(X ; A)\right)
$$

Theorem

$$
\operatorname{cup}_{A}(X) \leq \operatorname{cat}(X)
$$

Where $\operatorname{cat}(X)$ is LS-category of X normalized as $\operatorname{cat}(*)=0$.

Cup-length

Oriented Grassmann manifolds

We will compute a cup-length of oriented Grassmann manifolds.

$$
\widetilde{G}_{n, k}:=S O(n+k) / S O(n) \times S O(k)
$$

consists of oriented k-dimensional vector subspace in \mathbb{R}^{n+k}.

- When $k=2$, the cohomology of $G_{n, 2}$ is well-known.
- When $k \geq 3$, that of $\widetilde{G}_{n, k}$ is in vague.

In this talk, we will compute the $\mathbb{Z} / 2$ cup-length of oriented
Grassmann manifold for

Cup-length

Oriented Grassmann manifolds

We will compute a cup-length of oriented Grassmann manifolds.

$$
\widetilde{G}_{n, k}:=S O(n+k) / S O(n) \times S O(k)
$$

consists of oriented k-dimensional vector subspace in \mathbb{R}^{n+k}.

- When $k=2$, the cohomology of $\widetilde{G}_{n, 2}$ is well-known.
- When $k \geq 3$, that of $G_{n, k}$ is in vague.

In this talk, we will compute the $\mathbb{Z} / 2$ cup-length of oriented
Grassmann manifold for

Cup-length

Oriented Grassmann manifolds

We will compute a cup-length of oriented Grassmann manifolds.

$$
\widetilde{G}_{n, k}:=S O(n+k) / S O(n) \times S O(k)
$$

consists of oriented k-dimensional vector subspace in \mathbb{R}^{n+k}.

- When $k=2$, the cohomology of $\widetilde{G}_{n, 2}$ is well-known.
- When $k \geq 3$, that of $\widetilde{G}_{n, k}$ is in vague.

In this talk, we will compute the $\mathbb{Z} / 2$ cup-length of oriented
Grassmann manifold for

Cup-length

Oriented Grassmann manifolds

We will compute a cup-length of oriented Grassmann manifolds.

$$
\widetilde{G}_{n, k}:=S O(n+k) / S O(n) \times S O(k)
$$

consists of oriented k-dimensional vector subspace in \mathbb{R}^{n+k}.

- When $k=2$, the cohomology of $\widetilde{G}_{n, 2}$ is well-known.
- When $k \geq 3$, that of $\widetilde{G}_{n, k}$ is in vague.

In this talk, we will compute the $\mathbb{Z} / 2$ cup-length of oriented
Grassmann manifold for

$$
k=3 ; n=2^{m+1}-4(m \geq 2)
$$

Main Theorem
 Notion of Theorem

Theorem
 $\operatorname{cup}_{\mathbb{Z} / 2}\left(\widetilde{G}_{n, 3}\right)=n+1$ for $n=2^{m+1}-4(m \geq 2)$.

Sketch of Proof

Cohomology of oriented Grassmann manifolds

- There are the double covering map $p_{n}: \widetilde{G}_{n, k} \rightarrow G_{n, k}$.

$$
\begin{aligned}
& \text { - } \operatorname{Im} p_{n}^{*} \cong H^{*}\left(G_{n, 3} ; \mathbb{Z} / 2\right)(*<n) \\
& \widetilde{G}_{n, 3} \simeq_{n} B S O(3) ; \\
& \text { - } \operatorname{Im} p_{n}^{*} \cong \mathbb{Z} / 2\left[w_{2}, w_{3}\right] / \ell_{n} \text {, where } J_{n}=p_{\infty}^{*}\left(I_{n}\right) \\
& \widetilde{G}_{n, 3} \xrightarrow[p_{n}]{ } G_{n, 3} \quad H^{*}\left(\widetilde{G}_{n, 3} ; \mathbb{Z} / 2\right) \leftharpoonup \stackrel{p_{n}^{*}}{\gtrless} \mathbb{Z} / 2\left[w_{1}, w_{2}, w_{3}\right] / I_{n} \\
& \begin{array}{c}
\stackrel{i}{\imath} \downarrow \\
B S O(3) \xrightarrow[p_{\infty}]{ } B O(3)
\end{array} \\
& \stackrel{\uparrow_{\tilde{i}^{*}}}{\mathbb{Z} / 2\left[w_{2}, w_{3}\right] \stackrel{p_{\infty}^{*}}{\leftrightarrows} \mathbb{Z} / 2\left[w_{1}, w_{2}, w_{3}\right]}
\end{aligned}
$$

Sketch of Proof

Cohomology of oriented Grassmann manifolds

- There are the double covering map $p_{n}: \widetilde{G}_{n, k} \rightarrow G_{n, k}$.
- $\operatorname{Im} p_{n}^{*} \cong H^{*}\left(\widetilde{G}_{n, 3} ; \mathbb{Z} / 2\right)(*<n)$.
- $\operatorname{Im} p_{n}^{*} \cong \mathbb{Z} / 2\left[w_{2}, w_{3}\right] / J_{n}$, where $J_{n}=p_{\infty}^{*}\left(I_{n}\right)$
$\widetilde{G}_{n, 3} \xrightarrow[p_{n}]{ } G_{n, 3} \quad H^{*}\left(\widetilde{G}_{n, 3} ; \mathbb{Z} / 2\right) \leftharpoonup \stackrel{p_{n}^{*}}{<} \mathbb{Z} / 2\left[w_{1}, w_{2}, w_{3}\right] / I_{n}$
$\stackrel{\tau}{\downarrow} \downarrow$
$B S O(3) \xrightarrow[p_{\infty}]{ } B O(3)$

Sketch of Proof

Cohomology of oriented Grassmann manifolds

- There are the double covering map $p_{n}: \widetilde{G}_{n, k} \rightarrow G_{n, k}$.
- $\operatorname{Im} p_{n}^{*} \cong H^{*}\left(\widetilde{G}_{n, 3} ; \mathbb{Z} / 2\right)(*<n)$.
$\because \widetilde{G}_{n, 3} \simeq{ }_{n} B S O(3) ; \quad p_{\infty}^{*}, i^{*}:$ epi.
- $\operatorname{Im} p_{n}^{*} \cong \mathbb{Z} / 2\left[w_{2}, w_{3}\right] / J_{n}$, where $J_{n}=p_{\infty}^{*}\left(I_{n}\right)$.
$\widetilde{G}_{n, 3} \xrightarrow[p_{n}]{ } G_{n, 3} \quad H^{*}\left(\widetilde{G}_{n, 3} ; \mathbb{Z} / 2\right) \leftharpoonup \stackrel{p_{n}^{*}}{\mathbb{Z}} / 2\left[w_{1}, w_{2}, w_{3}\right] / I_{n}$
$\stackrel{i}{\imath} \downarrow$
$B S O(3) \xrightarrow[p_{\infty}]{ } B O(3)$

Sketch of Proof

Cohomology of oriented Grassmann manifolds

- There are the double covering map $p_{n}: \widetilde{G}_{n, k} \rightarrow G_{n, k}$.
- $\operatorname{Im} p_{n}^{*} \cong H^{*}\left(\widetilde{G}_{n, 3} ; \mathbb{Z} / 2\right)(*<n)$.
- $\operatorname{Im} p_{n}^{*} \cong \mathbb{Z} / 2\left[w_{2}, w_{3}\right] / J_{n}$, where $J_{n}=p_{\infty}^{*}\left(I_{n}\right)$.
$\widetilde{G}_{n, 3} \xrightarrow[p_{n}]{ } G_{n, 3} \quad H^{*}\left(\widetilde{G}_{n, 3} ; \mathbb{Z} / 2\right) \leftharpoonup{ }^{p_{n}^{*}} \mathbb{Z} / 2\left[w_{1}, w_{2}, w_{3}\right] / I_{n}$
$\tilde{\imath} \downarrow$
$\mathrm{BSO}(3) \xrightarrow[p_{\infty}]{ }$
$B O(3)$
$\stackrel{\uparrow_{i^{*}}}{\mathbb{Z} / 2\left[w_{2}, w_{3}\right] \stackrel{p_{\infty}^{*}}{\leftrightarrows} \mathbb{Z} / 2\left[w_{1}, w_{2}, w_{3}\right]}$

Sketch of Proof

Using Gröbner basis

- $\operatorname{Im} p_{n}^{*} \cong \mathbb{Z} / 2\left[w_{2}, w_{3}\right] / J_{n}$.
- By degree reason, $\operatorname{cup}\left(\operatorname{Imp} p_{n}^{*}\right)$ determines $\operatorname{cup}_{\mathbb{Z} / 2}\left(G_{n, 3}\right)$.
- computing $\operatorname{cup}\left(\operatorname{Im} p_{n}^{*}\right) \Leftrightarrow$ Ideal Membership Problem of J_{n}.
- By Borel, the generator of J_{n} is given.
- Computing Gröbner basis of J_{n}, we can solve the Ideal Membership Problem of J_{n}.
- I computed a Gröbner basis of J_{n} for $n=2^{m+1}-4(m \geq 2)$ and obtained Main Theorem.

Sketch of Proof

Using Gröbner basis

- $\operatorname{Im} p_{n}^{*} \cong \mathbb{Z} / 2\left[w_{2}, w_{3}\right] / J_{n}$.
- By degree reason, $\operatorname{cup}\left(\operatorname{Im} p_{n}^{*}\right)$ determines $\operatorname{cup}_{\mathbb{Z} / 2}\left(\widetilde{G}_{n, 3}\right)$.
- By Borel, the generator of J_{n} is given.
- Computing Gröbner basis of J_{n}, we can solve the Ideal Membership Problem of J_{n}.
- I computed a Gröbner basis of J_{n} for $n=2^{m+1}-4(m \geq 2)$ and obtained Main Theorem.

Sketch of Proof

Using Gröbner basis

- $\operatorname{Im} p_{n}^{*} \cong \mathbb{Z} / 2\left[w_{2}, w_{3}\right] / J_{n}$.
- By degree reason, $\operatorname{cup}\left(\operatorname{Im} p_{n}^{*}\right)$ determines $\operatorname{cup}_{\mathbb{Z} / 2}\left(\widetilde{G}_{n, 3}\right)$.
- computing $\operatorname{cup}\left(\operatorname{Im} p_{n}^{*}\right) \Leftrightarrow$ Ideal Membership Problem of J_{n}.
- By Borel, the generator of J_{n} is given
- Computing Gröbner basis of J_{n}, we can solve the Ideal Membership Problem of J_{n}.
- I computed a Gröbner basis of J_{n} for $n=2^{m+1}-4(m \geq 2)$ and obtained Main Theorem.

Sketch of Proof

Using Gröbner basis

- $\operatorname{Im} p_{n}^{*} \cong \mathbb{Z} / 2\left[w_{2}, w_{3}\right] / J_{n}$.
- By degree reason, $\operatorname{cup}\left(\operatorname{Im} p_{n}^{*}\right)$ determines $\operatorname{cup}_{\mathbb{Z} / 2}\left(\widetilde{G}_{n, 3}\right)$.
- computing $\operatorname{cup}\left(\operatorname{Im} p_{n}^{*}\right) \Leftrightarrow$ Ideal Membership Problem of J_{n}.
- By Borel, the generator of J_{n} is given.
- Computing Gröbner basis of J_{n}, we can solve the Ideal Membership Problem of J_{n}.
- I computed a Gröbner basis of J_{n} for $n=2^{m+1}-4(m \geq 2)$ and obtained Main Theorem.

Sketch of Proof

Using Gröbner basis

- $\operatorname{Im} p_{n}^{*} \cong \mathbb{Z} / 2\left[w_{2}, w_{3}\right] / J_{n}$.
- By degree reason, $\operatorname{cup}\left(\operatorname{Im} p_{n}^{*}\right)$ determines $\operatorname{cup}_{\mathbb{Z} / 2}\left(\widetilde{G}_{n, 3}\right)$.
- computing $\operatorname{cup}\left(\operatorname{Im} p_{n}^{*}\right) \Leftrightarrow$ Ideal Membership Problem of J_{n}.
- By Borel, the generator of J_{n} is given.
- Computing Gröbner basis of J_{n}, we can solve the Ideal Membership Problem of J_{n}.
- I computed a Gröbner basis of J_{n} for $n=2^{m+1}-4(m \geq 2)$ and obtained Main Theorem

Sketch of Proof

Using Gröbner basis

- $\operatorname{Im} p_{n}^{*} \cong \mathbb{Z} / 2\left[w_{2}, w_{3}\right] / J_{n}$.
- By degree reason, $\operatorname{cup}\left(\operatorname{Im} p_{n}^{*}\right)$ determines $\operatorname{cup}_{\mathbb{Z} / 2}\left(\widetilde{G}_{n, 3}\right)$.
- computing $\operatorname{cup}\left(\operatorname{Im} p_{n}^{*}\right) \Leftrightarrow$ Ideal Membership Problem of J_{n}.
- By Borel, the generator of J_{n} is given.
- Computing Gröbner basis of J_{n}, we can solve the Ideal Membership Problem of J_{n}.
- I computed a Gröbner basis of J_{n} for $n=2^{m+1}-4(m \geq 2)$ and obtained Main Theorem.

LS-category

Definition

Definition

For topological space X,
$\operatorname{cat}(X)=\min \left\{\left.n\right|^{\exists} U_{0}, \ldots, U_{n} \subset X\right.$ open, contractible;

$$
\text { s.t. } \left.X=\bigcup_{i=0}^{n} u_{i}\right\}
$$

- Any smooth fanction on a manifold X has at least $\operatorname{cat}(X)+1$ critical points.
- $\operatorname{cat}\left(S^{n}\right)=1$
- $\operatorname{cat}(S O(n))$ is not known for $n>10$.

LS-category

Definition

Definition

For topological space X,
$\operatorname{cat}(X)=\min \left\{\left.n\right|^{\exists} U_{0}, \ldots, U_{n} \subset X\right.$ open, contractible;

$$
\text { s.t. } \left.X=\bigcup_{i=0}^{n} U_{i}\right\}
$$

- Any smooth fanction on a manifold X has at least $\operatorname{cat}(X)+1$ critical points.
- $\operatorname{cat}\left(S^{n}\right)=1$.
- $\operatorname{cat}(S O(n))$ is not known for $n>10$.

LS-category

Definition

Definition

For topological space X,
$\operatorname{cat}(X)=\min \left\{\left.n\right|^{\exists} U_{0}, \ldots, U_{n} \subset X\right.$ open, contractible;

$$
\text { s.t. } \left.X=\bigcup_{i=0}^{n} U_{i}\right\}
$$

- Any smooth fanction on a manifold X has at least $\operatorname{cat}(X)+1$ critical points.
- $\operatorname{cat}\left(S^{n}\right)=1$.
- $\operatorname{cat}(S O(n))$ is not known for $n>10$.

LS-category

A smooth function on T^{2} which has three critical points. $\left(\operatorname{cat}\left(T^{2}\right)=2\right)$

Application of Gröbner basis

LS-category

Lower and upper bounds

- By Main Theorem, immediately we have a lower bound of $\operatorname{cat}\left(\widetilde{G}_{n, 3}\right)$.
- Using some obstruction theory and Main Theorem, we also have a upper bound of it.

Theorem

$n+1 \leq \operatorname{cat}\left(\widetilde{G}_{n, 3}\right)<\frac{3}{2} n$ for $n=2^{m+1}-4(m \geq 2)$.
Especially cat $\left(G_{4.3}\right)=5$.

LS-category
 Lower and upper bounds

- By Main Theorem, immediately we have a lower bound of $\operatorname{cat}\left(\widetilde{G}_{n, 3}\right)$.
- Using some obstruction theory and Main Theorem, we also have a upper bound of it.

Theorem

$n+1 \leq \operatorname{eat}\left(G_{n, 3}\right)<\frac{3}{2} n$ for $n=2^{m+1}-4(m \geq 2)$
Especially cat $\left(\mathcal{G}_{4,3}\right)=5$.

LS-category

Lower and upper bounds

- By Main Theorem, immediately we have a lower bound of $\operatorname{cat}\left(\widetilde{G}_{n, 3}\right)$.
- Using some obstruction theory and Main Theorem, we also have a upper bound of it.

Theorem

$n+1 \leq \operatorname{cat}\left(\widetilde{G}_{n, 3}\right)<\frac{3}{2} n$ for $n=2^{m+1}-4(m \geq 2)$.
Especially cat $\left(\widetilde{G}_{4,3}\right)=5$.

Immersion

Results

We give an another application of our Main Theorem to Immersion of $\widetilde{G}_{n, 3}$ into a Euclidean space.

Theorem

- $\widetilde{G}_{n, 3}$ immerses into $\mathbb{R}^{6 n-3}$ but not into $\mathbb{R}^{3 n+8}$ when $n=2^{m+1}-4(m \geq 3)$.
- $\widetilde{G}_{4,3}$ immerses into \mathbb{R}^{21} but not into \mathbb{R}^{17}

Immersion

Results

We give an another application of our Main Theorem to Immersion of $\widetilde{G}_{n, 3}$ into a Euclidean space.

Theorem

- $\widetilde{G}_{n, 3}$ immerses into $\mathbb{R}^{6 n-3}$ but not into $\mathbb{R}^{3 n+8}$ when $n=2^{m+1}-4(m \geq 3)$.
- $\widetilde{G}_{4,3}$ immerses into \mathbb{R}^{21} but not into \mathbb{R}^{17}.

Immersion

Proof: Lower bounds

- λ : canonical bundle over $\widetilde{G}_{n, 3}$.
- ν : stable normal bundle over $G_{n, 3}$.

$w(\nu)=$

$=1+w_{2}+w_{3}+w_{2}^{2}+w_{2}^{3}+w_{3}^{2}+w_{2}^{2} w_{3}+w_{2} w_{3}^{2}+w_{3}^{3}$.
- $w_{9}(\nu)=w_{3}^{3} \neq 0$ for $n=2^{m+1}-4,(m \geq 3)$;
$w_{6}(\nu)=w_{2}^{3} \neq 0$ for $n=4$.
- Then we have non immersion results.

Immersion

Proof: Lower bounds

- λ : canonical bundle over $\widetilde{G}_{n, 3}$.
- ν : stable normal bundle over $\widetilde{G}_{n, 3}$.

$w(\nu)=$

$=1+w_{2}+w_{3}+w_{2}^{2}+w_{2}^{3}+w_{3}^{2}+w_{2}^{2} w_{3}+w_{2} w_{3}^{2}+w_{3}^{3}$
- $w_{9}(\nu)=w_{3}^{3} \neq 0$ for $n=2^{m+1}-4,(m \geq 3)$;
$w_{6}(\nu)=w_{2}^{3} \neq 0$ for $n=4$.
- Then we have non immersion results.

Immersion

Proof: Lower bounds

- λ : canonical bundle over $\widetilde{G}_{n, 3}$.
- ν : stable normal bundle over $\widetilde{G}_{n, 3}$.
- $T \widetilde{G}_{n, 3} \cong \operatorname{Hom}\left(\lambda, \lambda^{\perp}\right) \cong \lambda \otimes \lambda^{\perp}$.

- $w_{9}(\nu)=w_{3}^{3} \neq 0$ for $n=2^{m+1}-4,(m \geq 3)$;
$w_{6}(\nu)=w_{2}^{3} \neq 0$ for $n=4$.
- Then we have non immersion results.

Immersion

Proof: Lower bounds

- λ : canonical bundle over $\widetilde{G}_{n, 3}$.
- ν : stable normal bundle over $\widetilde{G}_{n, 3}$.
- $T \widetilde{G}_{n, 3} \cong \operatorname{Hom}\left(\lambda, \lambda^{\perp}\right) \cong \lambda \otimes \lambda^{\perp}$.
- $T \widetilde{G}_{n, 3} \oplus \lambda \otimes \lambda \cong \lambda \otimes\left(\lambda \oplus \lambda^{\perp}\right) \cong(n+3) \lambda$.
$w(\nu)=$

$=1+w_{2}+w_{3}+w_{2}^{2}+w_{2}^{3}+w_{3}^{2}+w_{2}^{2} w_{3}+w_{2} w_{3}^{2}+w_{3}^{3}$
- $w_{9}(\nu)=w_{3}^{3} \neq 0$ for $n=2^{m+1}-4,(m \geq 3)$;
$w_{6}(\nu)=w_{2}^{3} \neq 0$ for $n=4$.
- Then we have non immersion results.

Immersion

Proof: Lower bounds

- λ : canonical bundle over $\widetilde{G}_{n, 3}$.
- ν : stable normal bundle over $\widetilde{G}_{n, 3}$.
- $T \widetilde{G}_{n, 3} \cong \operatorname{Hom}\left(\lambda, \lambda^{\perp}\right) \cong \lambda \otimes \lambda^{\perp}$.
- $T \widetilde{G}_{n, 3} \oplus \lambda \otimes \lambda \cong \lambda \otimes\left(\lambda \oplus \lambda^{\perp}\right) \cong(n+3) \lambda$.
- $\left(1+w_{2}+w_{3}\right)^{n+4}=1 . \quad \because$ Main Theorem.
$w(\nu)=$

$=1+w_{2}+w_{3}+w_{2}^{2}+w_{2}^{3}+w_{3}^{2}+w_{2}^{2} w_{3}+w_{2} w_{3}^{2}+w_{3}^{3}$.
- $w_{9}(\nu)=w_{3}^{3} \neq 0$ for $n=2^{m+1}-4,(m \geq 3)$; $w_{6}(\nu)=w_{2}^{3} \neq 0$ for $n=4$.
- Then we have non immersion results.

Immersion

Proof: Lower bounds

- λ : canonical bundle over $\widetilde{G}_{n, 3}$.
- ν : stable normal bundle over $\widetilde{G}_{n, 3}$.
- $T \widetilde{G}_{n, 3} \cong \operatorname{Hom}\left(\lambda, \lambda^{\perp}\right) \cong \lambda \otimes \lambda^{\perp}$.
- $T \widetilde{G}_{n, 3} \oplus \lambda \otimes \lambda \cong \lambda \otimes\left(\lambda \oplus \lambda^{\perp}\right) \cong(n+3) \lambda$.
- $\left(1+w_{2}+w_{3}\right)^{n+4}=1 . \quad \because$ Main Theorem.

$$
\begin{aligned}
w(\nu) & =\frac{1}{w\left(T \widetilde{G}_{n, 3}\right)}=\frac{w(\lambda \otimes \lambda)}{w((n+3) \lambda)} \\
& =1+w_{2}+w_{3}+w_{2}^{2}+w_{2}^{3}+w_{3}^{2}+w_{2}^{2} w_{3}+w_{2} w_{3}^{2}+w_{3}^{3}
\end{aligned}
$$

- $w_{9}(\nu)=w_{3}^{3} \neq 0$ for $n=2^{m+1}-4,(m \geq 3)$; $w_{6}(\nu)=w_{2}^{3} \neq 0$ for $n=4$.

Immersion

Proof: Lower bounds

- λ : canonical bundle over $\widetilde{G}_{n, 3}$.
- ν : stable normal bundle over $\widetilde{G}_{n, 3}$.
- $T \widetilde{G}_{n, 3} \cong \operatorname{Hom}\left(\lambda, \lambda^{\perp}\right) \cong \lambda \otimes \lambda^{\perp}$.
- $T \widetilde{G}_{n, 3} \oplus \lambda \otimes \lambda \cong \lambda \otimes\left(\lambda \oplus \lambda^{\perp}\right) \cong(n+3) \lambda$.
- $\left(1+w_{2}+w_{3}\right)^{n+4}=1 . \quad \because$ Main Theorem.

$$
\begin{aligned}
w(\nu) & =\frac{1}{w\left(T \widetilde{G}_{n, 3}\right)}=\frac{w(\lambda \otimes \lambda)}{w((n+3) \lambda)} \\
& =1+w_{2}+w_{3}+w_{2}^{2}+w_{2}^{3}+w_{3}^{2}+w_{2}^{2} w_{3}+w_{2} w_{3}^{2}+w_{3}^{3}
\end{aligned}
$$

- $w_{9}(\nu)=w_{3}^{3} \neq 0$ for $n=2^{m+1}-4,(m \geq 3)$;
$w_{6}(\nu)=w_{2}^{3} \neq 0$ for $n=4$.

Immersion

Proof: Lower bounds

- λ : canonical bundle over $\widetilde{G}_{n, 3}$.
- ν : stable normal bundle over $\widetilde{G}_{n, 3}$.
- $T \widetilde{G}_{n, 3} \cong \operatorname{Hom}\left(\lambda, \lambda^{\perp}\right) \cong \lambda \otimes \lambda^{\perp}$.
- $T \widetilde{G}_{n, 3} \oplus \lambda \otimes \lambda \cong \lambda \otimes\left(\lambda \oplus \lambda^{\perp}\right) \cong(n+3) \lambda$.
- $\left(1+w_{2}+w_{3}\right)^{n+4}=1 . \quad \because$ Main Theorem.

$$
\begin{aligned}
w(\nu) & =\frac{1}{w\left(T \widetilde{G}_{n, 3}\right)}=\frac{w(\lambda \otimes \lambda)}{w((n+3) \lambda)} \\
& =1+w_{2}+w_{3}+w_{2}^{2}+w_{2}^{3}+w_{3}^{2}+w_{2}^{2} w_{3}+w_{2} w_{3}^{2}+w_{3}^{3}
\end{aligned}
$$

- $w_{9}(\nu)=w_{3}^{3} \neq 0$ for $n=2^{m+1}-4,(m \geq 3)$;
$w_{6}(\nu)=w_{2}^{3} \neq 0$ for $n=4$.
- Then we have non immersion results.

Immersion

Proof: Upper bounds

Proposition (Hirsch)

Let M^{m} be m-dim manifold. The followings are equivalent.

- M^{m} can immerse into \mathbb{R}^{m+p}.
- M^{m} has a normal bundle ν which is a p-plane bundle.
- The classifying map $\nu: M^{m} \rightarrow B O$ lifts $\nu_{p}: M^{m} \rightarrow B O(p)$.

Investigating the fibration $B S O(3 n-3) \rightarrow B S O(\infty)$,
we obtain that $\nu: \widetilde{G}_{n, 3} \rightarrow B S O(\infty)$ lifts $\nu_{p}: \widetilde{G}_{n, 3} \rightarrow B S O(3 n-3)$.

Immersion

Proof: Upper bounds

Proposition (Hirsch)

Let M^{m} be m-dim manifold. The followings are equivalent.

- M^{m} can immerse into \mathbb{R}^{m+p}.
- M^{m} has a normal bundle ν which is a p-plane bundle.
- The classifying map $\nu: M^{m} \rightarrow B O$ lifts $\nu_{p}: M^{m} \rightarrow B O(p)$.

Investigating the fibration $B S O(3 n-3) \rightarrow B S O(\infty)$, we obtain that $\nu: \widetilde{G}_{n, 3} \rightarrow B S O(\infty)$ lifts $\nu_{p}: \widetilde{G}_{n, 3} \rightarrow B S O(3 n-3)$.

Steenrod algebra

Motivation

- I would like to do calculations on the Steenrod algebra and modules over it, with computer.
- We consider the Steenrod algebra \mathcal{A}_{2} as follow.

Let

be a free associative non commutative algebra. Let

be a two-side ideal of A generated by the Adem relations. Then $\mathcal{A}_{2}=\Lambda^{\prime} /$ IAdem $^{\prime}$

Steenrod algebra

Motivation

- I would like to do calculations on the Steenrod algebra and modules over it, with computer.
- We consider the Steenrod algebra \mathcal{A}_{2} as follow.
be a free associative non commutative algebra. Let

be a two-side ideal of A generated by the Adem relations. Then $A_{2}=A / I_{\text {Adom }}$.

Steenrod algebra

Motivation

- I would like to do calculations on the Steenrod algebra and modules over it, with computer.
- We consider the Steenrod algebra \mathcal{A}_{2} as follow.

Let

$$
A=\mathbb{Z} / 2\left\langle\mathrm{Sq}^{1}, \ldots, \mathrm{Sq}^{i}, \ldots\right\rangle
$$

be a free associative non commutative algebra.

be a two-side ideal of A generated by the Adem relations. Then $A_{2}=A / I_{\text {Adem }}$.

Steenrod algebra

Motivation

- I would like to do calculations on the Steenrod algebra and modules over it, with computer.
- We consider the Steenrod algebra \mathcal{A}_{2} as follow.

Let

$$
A=\mathbb{Z} / 2\left\langle\mathrm{Sq}^{1}, \ldots, \mathrm{Sq}^{i}, \ldots\right\rangle
$$

be a free associative non commutative algebra. Let

$$
I_{\text {Adem }}=\left\langle\left.\mathrm{Sq}^{a} \mathrm{Sq}^{b}-\sum_{i=0}^{[a / 2]}\binom{b-1-i}{a-2 i} \mathrm{Sq}^{a+b-i} \mathrm{Sq}^{i} \right\rvert\, a<2 b\right\rangle
$$

be a two-side ideal of A generated by the Adem relations. \qquad
$\mathcal{A}_{2}=A / I_{\text {Adem }}$.

Steenrod algebra

Motivation

- I would like to do calculations on the Steenrod algebra and modules over it, with computer.
- We consider the Steenrod algebra \mathcal{A}_{2} as follow.

Let

$$
A=\mathbb{Z} / 2\left\langle\mathrm{Sq}^{1}, \ldots, \mathrm{Sq}^{i}, \ldots\right\rangle
$$

be a free associative non commutative algebra. Let

$$
I_{\text {Adem }}=\left\langle\left.\mathrm{Sq}^{a} \mathrm{Sq}^{b}-\sum_{i=0}^{[a / 2]}\binom{b-1-i}{a-2 i} \mathrm{Sq}^{a+b-i} \mathrm{Sq}^{i} \right\rvert\, a<2 b\right\rangle
$$

be a two-side ideal of A generated by the Adem relations. Then

$$
\mathcal{A}_{2}=A / I_{\text {Adem }} .
$$

Steenrod algebra

Non commutative Gröbner basis

$$
\begin{aligned}
A & =\mathbb{Z} / 2\left\langle\mathrm{Sq}^{1}, \ldots, \mathrm{Sq}^{i}, \ldots\right\rangle \\
I_{\text {Adem }} & =\left\langle\left.\mathrm{Sq}^{\mathrm{a}} \mathrm{Sq}^{b}-\sum_{i=0}^{[\mathrm{a} / 2]}\binom{b-1-i}{a-2 i} \mathrm{Sq}^{a+b-i} \mathrm{Sq}^{i} \right\rvert\, a<2 b\right\rangle \\
\mathcal{A}_{2} & =A / I_{\text {Adem }} .
\end{aligned}
$$

- There exists the theory of a non commutative Gröbner basis and we can define the Gröbner basis of $I_{\text {Adem }}$.
- It is well-known that admissible products Sq^{\prime} forms a basis of the $\mathbb{Z} / 2$-vector space \mathcal{A}_{2}, it follows that the Adem relations are Gröbner basis of $I_{\text {Adem }}$

Steenrod algebra

Non commutative Gröbner basis

$$
\begin{aligned}
A & =\mathbb{Z} / 2\left\langle\mathrm{Sq}^{1}, \ldots, \mathrm{Sq}^{i}, \ldots\right\rangle \\
I_{\text {Adem }} & =\left\langle\left.\mathrm{Sq}^{a} \mathrm{Sq}^{b}-\sum_{i=0}^{[\mathrm{a} / 2]}\binom{b-1-i}{a-2 i} \mathrm{Sq}^{a+b-i} \mathrm{Sq}^{i} \right\rvert\, a<2 b\right\rangle \\
\mathcal{A}_{2} & =A / I_{\text {Adem }} .
\end{aligned}
$$

- There exists the theory of a non commutative Gröbner basis and we can define the Gröbner basis of $I_{\text {Adem }}$.
- It is well-known that admissible products Sq^{\prime} forms a basis of the $\mathbb{Z} / 2$-vector space \mathcal{A}_{2}, it follows that the Adem relations are Gröbner basis of $I_{\text {Adem }}$.

Brief Introduction to Gröbner basis
Application to cup-length
Non commutative Gröbner basis

Free resolution

Commutative and non Commutative case

- Let $R=k\left[x_{1}, \ldots, x_{n}\right]$ be free commutative ring.
- It is well-known that there is an algorithm using Gröbner basis for calculating a free resolution of R-module M.
- I generalized the above algorithm for a module over non commutative ring $A=k\left\langle x_{1}, \ldots, x_{n}\right\rangle$ using non commutative Gröbner basis.
- I would like to apply it to free resolution of \mathcal{A}_{2}-module and computing E_{2} terms of the Adams spectral sequence.

Free resolution

Commutative and non Commutative case

- Let $R=k\left[x_{1}, \ldots, x_{n}\right]$ be free commutative ring.
- It is well-known that there is an algorithm using Gröbner basis for calculating a free resolution of R-module M.

$$
\cdots \rightarrow R^{a_{2}} \rightarrow R^{a_{1}} \rightarrow M
$$

- I generalized the above algorithm for a module over non commutative ring $A=k\left\langle x_{1}, \ldots, x_{n}\right\rangle$ using non commutative Gröbner basis.
- I would like to apply it to free resolution of \mathcal{A}_{2}-module and computing E_{2} terms of the Adams spectral sequence.

Free resolution

Commutative and non Commutative case

- Let $R=k\left[x_{1}, \ldots, x_{n}\right]$ be free commutative ring.
- It is well-known that there is an algorithm using Gröbner basis for calculating a free resolution of R-module M.

$$
\cdots \rightarrow R^{a_{2}} \rightarrow R^{a_{1}} \rightarrow M
$$

- I generalized the above algorithm for a module over non commutative ring $A=k\left\langle x_{1}, \ldots, x_{n}\right\rangle$ using non commutative Gröbner basis.
- I would like to apply it to free resolution of \mathcal{A}_{2}-module and computing E_{2} terms of the Adams spectral sequence.

Free resolution

Commutative and non Commutative case

- Let $R=k\left[x_{1}, \ldots, x_{n}\right]$ be free commutative ring.
- It is well-known that there is an algorithm using Gröbner basis for calculating a free resolution of R-module M.

$$
\cdots \rightarrow R^{a_{2}} \rightarrow R^{a_{1}} \rightarrow M
$$

- I generalized the above algorithm for a module over non commutative ring $A=k\left\langle x_{1}, \ldots, x_{n}\right\rangle$ using non commutative Gröbner basis.
- I would like to apply it to free resolution of \mathcal{A}_{2}-module and computing E_{2} terms of the Adams spectral sequence.

Free resolution

Calculation example

- I wrote a computer program which compute the Free resolution of \mathbb{F}_{2}.
- The following is the free resolution of \mathbb{F}_{2} in degree less than 8

$$
\varphi_{i}=\varphi_{8} \text { for } i \geq 8 .
$$

Now I am trying to compute $E_{2}^{*, *}=\operatorname{Ext}_{\mathcal{A}_{2}}^{*, *}\left(H^{*}(X), H^{*}(Y)\right)$ which converges to $\{Y, X\}_{*}$, for $X, Y=S^{n}, \mathbb{R} P^{n}, \mathbb{C} P^{n}, O(n), U(n)$ etc..

Free resolution

Calculation example

- I wrote a computer program which compute the Free resolution of \mathbb{F}_{2}.
- The following is the free resolution of \mathbb{F}_{2} in degree less than 8

Now I am trying to compute $E_{2}^{*, *}=\operatorname{Ext}_{\mathcal{A}_{2}}^{*, *}\left(H^{*}(X), H^{*}(Y)\right)$ which converges to $\{Y, X\}_{*}$, for $X, Y=S^{n}, \mathbb{R} P^{n}, \mathbb{C} P^{n}, O(n), U(n)$ etc..

Free resolution

Calculation example

- I wrote a computer program which compute the Free resolution of \mathbb{F}_{2}.
- The following is the free resolution of \mathbb{F}_{2} in degree less than 8

Now I am trying to compute $E_{2}^{*, *}=\operatorname{Ext}_{\mathcal{A}_{2}}^{*, *}\left(H^{*}(X), H^{*}(Y)\right)$ which converges to $\{Y, X\}_{*}$, for $X, Y=S^{n}, \mathbb{R} P^{n}, \mathbb{C} P^{n}, O(n), U(n)$ etc..

Free resolution

Calculation example

- I wrote a computer program which compute the Free resolution of \mathbb{F}_{2}.
- The following is the free resolution of \mathbb{F}_{2} in degree less than 8

$$
\begin{aligned}
\cdots \xrightarrow{\varphi_{9}} \mathcal{A}_{2}^{6} \xrightarrow{\varphi_{8}} \mathcal{A}_{2}^{6} \xrightarrow{\varphi_{7}} \mathcal{A}_{2}^{7} & \xrightarrow{\varphi_{6}} \\
& \xrightarrow{\varphi_{5}} \mathcal{A}_{2}^{14} \\
& \xrightarrow{\varphi_{4}} \\
\varphi_{i}=\varphi_{8} & \text { for } i \geq 8 .
\end{aligned}
$$

Now I am trying to compute $E_{2}^{*, *}=\operatorname{Ext}_{\mathcal{A}_{2}}^{* *}\left(H^{*}(X), H^{*}(Y)\right)$ which converges to $\{Y, X\}_{*}$, for $X, Y=S^{n}, \mathbb{R} P^{n}, \mathbb{C} P^{n}, O(n), U(n)$ etc..

Free resolution

Calculation example

- I wrote a computer program which compute the Free resolution of \mathbb{F}_{2}.
- The following is the free resolution of \mathbb{F}_{2} in degree less than 8

$$
\begin{aligned}
& \cdots \xrightarrow{\varphi_{9}} \mathcal{A}_{2}^{6} \xrightarrow{\varphi_{8}} \mathcal{A}_{2}^{6} \xrightarrow{\varphi_{7}} \mathcal{A}_{2}^{7} \\
& \xrightarrow{\varphi_{5}} \mathcal{A}_{2}^{9} \\
& \xrightarrow{\varphi_{6}} \\
& \varphi_{i}=\mathcal{A}_{8} \text { for } i \geq 8 . \mathcal{A}_{2}^{8} \xrightarrow{\varphi_{3}} \\
& \mathcal{A}_{2}^{4} \xrightarrow{\varphi_{2}} \mathcal{A}_{2} \xrightarrow{\varphi_{1}} \mathbb{F}_{2}
\end{aligned}
$$

Now I am trying to compute $E_{2}^{*, *}=\operatorname{Ext}_{\mathcal{A}_{2}}^{*, *}\left(H^{*}(X), H^{*}(Y)\right)$ which converges to $\{Y, X\}_{*}$, for $X, Y=S^{n}, \mathbb{R} P^{n}, \mathbb{C} P^{n}, O(n), U(n)$ etc...

For Further Reading I

Q William W. Adams and Philippe Loustaunau.
An introduction to Gröbner bases, volume 3 of Graduate Studies in Mathematics.
American Mathematical Society, Providence, RI, 1994.
Q Huishi Li.
Noncommutative Gröbner bases and filtered-graded transfer, volume 1795 of Lecture Notes in Mathematics.
Springer-Verlag, Berlin, 2002.

