Application of Groebner basis to computing some homotopy invariants

Tomohiro Fukaya

Department of Mathematics Kyoto University

JHU Topology Seminar, Nov 14 2007

(4月) (日) (日)

-

Outline

1 Brief Introduction to Gröbner basis

- What can Gröbner basis do?
- Monomial ordering and Division algorithm
- Gröbner basis
- 2 Application to cup-length
 - Cup-length
 - Main Theorem
 - Sketch of Proof
 - LS-category
 - Immersion problem
- 3 Non commutative Gröbner basis
 - Steenrod algebra
 - Free resolution

What can Gröbner basis do? Monomial ordering and Division algorithm Gröbner basis

《曰》 《圖》 《문》 《문》 문법

What can Gröbner basis do?

Let k be a field, $R = k[x_1, ..., x_n]$ be a polynomial ring. Let $f_1, ..., f_m \in R$ be polynomials and $I = \langle f_1, ..., f_m \rangle$ be an ideal of R.

 Ideal Membership Problem: For given f ∈ R, determine if f ∈ I.

What can Gröbner basis do? Monomial ordering and Division algorithm Gröbner basis

(日) (同) (三) (三) (三) (○) (○)

What can Gröbner basis do?

Let k be a field, $R = k[x_1, ..., x_n]$ be a polynomial ring. Let $f_1, ..., f_m \in R$ be polynomials and $I = \langle f_1, ..., f_m \rangle$ be an ideal of R.

Problem • Ideal Membership Problem: For given $f \in R$, determine if $f \in I$.

What can Gröbner basis do? Monomial ordering and Division algorithm Gröbner basis

(日) (同) (三) (三) (三) (○) (○)

What can Gröbner basis do?

Let k be a field, $R = k[x_1, ..., x_n]$ be a polynomial ring. Let $f_1, ..., f_m \in R$ be polynomials and $I = \langle f_1, ..., f_m \rangle$ be an ideal of R.

Problem

 Ideal Membership Problem: For given f ∈ R, determine if f ∈ I.

What can Gröbner basis do? Monomial ordering and Division algorithm Gröbner basis

◆□ → ◆□ → ◆ = → ◆ = = ◆ ○ ○ ○

What can Gröbner basis do?

Let k be a field, $R = k[x_1, ..., x_n]$ be a polynomial ring. Let $f_1, ..., f_m \in R$ be polynomials and $I = \langle f_1, ..., f_m \rangle$ be an ideal of R.

Problem

 Ideal Membership Problem: For given f ∈ R, determine if f ∈ I.

What can Gröbner basis do? Monomial ordering and Division algorithm Gröbner basis

《曰》《問》《曰》《曰》 [1]님

Monomial ordering Definition

Let k be a field, $R = k[x_1, ..., x_n]$ be a polynomial ring. We call an element $x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}$ of R as a power product of R.

Definition (Monomial ordering)

Let \geq be total ordering on the set of power products of R. \geq is called Monomial ordering if and only if

- For any power products X and Y, if X > Y then XZ > YZ for any power product Z.
- If Y divides X, then $X \ge Y$.

What can Gröbner basis do? Monomial ordering and Division algorithm Gröbner basis

(ロ) (同) (三) (三) (三) (○) (○)

Monomial ordering Definition

Let k be a field, $R = k[x_1, ..., x_n]$ be a polynomial ring. We call an element $x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}$ of R as a power product of R.

Definition (Monomial ordering)

Let \geq be total ordering on the set of power products of R. \geq is called Monomial ordering if and only if

- For any power products X and Y, if X > Y then XZ > YZ for any power product Z.
- If Y divides X, then $X \ge Y$.

What can Gröbner basis do? Monomial ordering and Division algorithm Gröbner basis

(ロ) (同) (三) (三) (三) (○) (○)

Monomial ordering Definition

Let k be a field, $R = k[x_1, ..., x_n]$ be a polynomial ring. We call an element $x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}$ of R as a **power product** of R.

Definition (Monomial ordering)

Let \geq be total ordering on the set of power products of R. \geq is called Monomial ordering if and only if

- For any power products X and Y, if X > Y then XZ > YZ for any power product Z.
- If Y divides X, then $X \ge Y$.

What can Gröbner basis do? Monomial ordering and Division algorithm Gröbner basis

(ロ) (同) (三) (三) (三) (○) (○)

Monomial ordering Definition

Let k be a field, $R = k[x_1, ..., x_n]$ be a polynomial ring. We call an element $x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}$ of R as a **power product** of R.

Definition (Monomial ordering)

Let \geq be total ordering on the set of power products of R. \geq is called Monomial ordering if and only if

- For any power products X and Y, if X > Y then XZ > YZ for any power product Z.
- If Y divides X, then $X \ge Y$.

What can Gröbner basis do? Monomial ordering and Division algorithm Gröbner basis

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Monomial ordering Definition

Let k be a field, $R = k[x_1, \ldots, x_n]$ be a polynomial ring. We call an element $x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}$ of R as a **power product** of R.

Definition (Monomial ordering)

Let \geq be total ordering on the set of power products of R. \geq is called Monomial ordering if and only if

- For any power products X and Y, if X > Y then XZ > YZ for any power product Z.
- If Y divides X, then $X \ge Y$.

What can Gröbner basis do? Monomial ordering and Division algorithm Gröbner basis

(日) (同) (三) (三) (三) (○) (○)

Monomial ordering Example

Example (Lexicographic ordering)

Let
$$X = x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}$$
 and $Y = x_1^{b_1} x_2^{b_2} \cdots x_n^{b_n}$ be power products.
 $X > Y \stackrel{\text{def}}{\Leftrightarrow}$ the left-most non zero entry of
 $(a_1 - b_1, \dots, a_n - b_n)$ is positive.

Then Lexicographic ordering is a monomial ordering.

What can Gröbner basis do? Monomial ordering and Division algorithm Gröbner basis

(ロ) (同) (三) (三) (三) (○) (○)

Monomial ordering Leading elements

Let $f = a_1X_1 + \cdots + a_nX_n$ for $a_1, \ldots, a_n \in k \setminus \{0\}$ and X_1, \ldots, X_n are power products satisfying $X_1 > \cdots > X_n$

- $lp(f) = X_1$ the leading power product of f.
- $lc(f) = a_1$ the leading coefficient of f
- $lt(f) = a_1 X_1$ the leading term of f.

What can Gröbner basis do? Monomial ordering and Division algorithm Gröbner basis

◆□ → ◆□ → ◆ = → ◆ = = ◆ ○ ○ ○

Monomial ordering Leading elements

Let
$$f = a_1X_1 + \cdots + a_nX_n$$
 for $a_1, \ldots, a_n \in k \setminus \{0\}$ and X_1, \ldots, X_n are power products satisfying $X_1 > \cdots > X_n$

- $lp(f) = X_1$ the leading power product of f.
- $lc(f) = a_1$ the leading coefficient of f.
- $lt(f) = a_1 X_1$ the leading term of f.

What can Gröbner basis do? Monomial ordering and Division algorithm Gröbner basis

◆□ → ◆□ → ◆ 三 → ◆ 10 → ◆ 0 へ 0

Monomial ordering Leading elements

Let
$$f = a_1X_1 + \cdots + a_nX_n$$
 for $a_1, \ldots, a_n \in k \setminus \{0\}$ and X_1, \ldots, X_n are power products satisfying $X_1 > \cdots > X_n$

- $lp(f) = X_1$ the leading power product of f.
- $lc(f) = a_1$ the leading coefficient of f.
- $lt(f) = a_1 X_1$ the leading term of f.

What can Gröbner basis do? Monomial ordering and Division algorithm Gröbner basis

◆□ → ◆□ → ◆ = → ◆ = = ◆ ○ ○ ○

Monomial ordering Leading elements

Let
$$f = a_1X_1 + \cdots + a_nX_n$$
 for $a_1, \ldots, a_n \in k \setminus \{0\}$ and X_1, \ldots, X_n are power products satisfying $X_1 > \cdots > X_n$

- $lp(f) = X_1$ the leading power product of f.
- $lc(f) = a_1$ the leading coefficient of f.
- $lt(f) = a_1 X_1$ the leading term of f.

Application to cup-length Non commutative Gröbner basis

What can Gröbner basis do? Monomial ordering and Division algorithm Gröbner basis

> < = > < = > = = = < < < <

Division algorithm

Theorem

INPUT

 $f \in R$ and $F = (f_1, \dots, f_s)$: ordered s-tuple of polynomials in R. OUTPUT

$$f = a_1 f_1 + \dots + a_s f_s + r.$$

where $a_1, \ldots, a_s \in k \setminus \{0\}$, and either r = 0 or $r = \sum c_i Y_i$, $c_i \in k \setminus \{0\}$, Y_i is a power product, satisfying none of the Y_i is divisible by any of $lp(f_1), \ldots, lp(f_s)$.

Application to cup-length Non commutative Gröbner basis

What can Gröbner basis do? Monomial ordering and Division algorithm Gröbner basis

Division algorithm

Theorem

INPUT

 $f \in R$ and $F = (f_1, \ldots, f_s)$: ordered s-tuple of polynomials in R. OUTPUT

$$f=a_1f_1+\cdots+a_sf_s+r.$$

where $a_1, \ldots, a_s \in k \setminus \{0\}$, and either r = 0 or $r = \sum c_i Y_i$, $c_i \in k \setminus \{0\}$, Y_i is a power product, satisfying none of the Y_i is divisible by any of $lp(f_1), \ldots, lp(f_s)$.

Application to cup-length Non commutative Gröbner basis

What can Gröbner basis do? Monomial ordering and Division algorithm Gröbner basis

Division algorithm

Theorem

INPUT

 $f \in R$ and $F = (f_1, \ldots, f_s)$: ordered s-tuple of polynomials in R. OUTPUT

$$f = a_1 f_1 + \cdots + a_s f_s + r.$$

where $a_1, \ldots, a_s \in k \setminus \{0\}$, and either r = 0 or $r = \sum c_i Y_i$, $c_i \in k \setminus \{0\}$, Y_i is a power product, satisfying none of the Y_i is divisible by any of $lp(f_1), \ldots, lp(f_s)$.

Application to cup-length Non commutative Gröbner basis

What can Gröbner basis do? Monomial ordering and Division algorithm Gröbner basis

Division algorithm

Theorem

INPUT

 $f \in R$ and $F = (f_1, \ldots, f_s)$: ordered s-tuple of polynomials in R. OUTPUT

$$f = a_1 f_1 + \cdots + a_s f_s + r.$$

where $a_1, \ldots, a_s \in k \setminus \{0\}$, and either r = 0 or $r = \sum c_i Y_i$, $c_i \in k \setminus \{0\}$, Y_i is a power product, satisfying none of the Y_i is divisible by any of $lp(f_1), \ldots, lp(f_s)$.

Application to cup-length Non commutative Gröbner basis

What can Gröbner basis do? Monomial ordering and Division algorithm Gröbner basis

Division algorithm

Theorem

INPUT

 $f \in R$ and $F = (f_1, \ldots, f_s)$: ordered s-tuple of polynomials in R. OUTPUT

$$f = a_1 f_1 + \cdots + a_s f_s + r.$$

where $a_1, \ldots, a_s \in k \setminus \{0\}$, and either r = 0 or $r = \sum c_i Y_i$, $c_i \in k \setminus \{0\}$, Y_i is a power product, satisfying none of the Y_i is divisible by any of $lp(f_1), \ldots, lp(f_s)$.

Application to cup-length Non commutative Gröbner basis

What can Gröbner basis do? Monomial ordering and Division algorithm Gröbner basis

A = A = A = A = A = A = A

Division algorithm

Theorem

INPUT

 $f \in R$ and $F = (f_1, \ldots, f_s)$: ordered s-tuple of polynomials in R. OUTPUT

$$f = a_1 f_1 + \cdots + a_s f_s + r.$$

where $a_1, \ldots, a_s \in k \setminus \{0\}$, and either r = 0 or $r = \sum c_i Y_i$, $c_i \in k \setminus \{0\}$, Y_i is a power product, satisfying none of the Y_i is divisible by any of $lp(f_1), \ldots, lp(f_s)$.

Application to cup-length Non commutative Gröbner basis

What can Gröbner basis do? Monomial ordering and Division algorithm Gröbner basis

Division algorithm

Theorem

INPUT

 $f \in R$ and $F = (f_1, \ldots, f_s)$: ordered s-tuple of polynomials in R. OUTPUT

$$f = a_1 f_1 + \cdots + a_s f_s + r.$$

where $a_1, \ldots, a_s \in k \setminus \{0\}$, and either r = 0 or $r = \sum c_i Y_i$, $c_i \in k \setminus \{0\}$, Y_i is a power product, satisfying none of the Y_i is divisible by any of $lp(f_1), \ldots, lp(f_s)$.

What can Gröbner basis do? Monomial ordering and Division algorithm Gröbner basis

We can overcome this difficulty by choosing a Gröbner basis.

Definition

Let I be an ideal of R. A finite subset $G = \{g_1, \ldots, g_s\} \subset I$ is a Gröbner basis of I if

 $\langle \{ \operatorname{lt}(f) | f \in I \} \rangle = \langle \operatorname{lt}(g_1), \ldots, \operatorname{lt}(g_s) \rangle.$

What can Gröbner basis do? Monomial ordering and Division algorithm Gröbner basis

We can overcome this difficulty by choosing a Gröbner basis.

Definition

Let I be an ideal of R. A finite subset $G = \{g_1, \ldots, g_s\} \subset I$ is a Gröbner basis of I if

$$\langle \{ \operatorname{lt}(f) | f \in I \} \rangle = \langle \operatorname{lt}(g_1), \ldots, \operatorname{lt}(g_s) \rangle.$$

Application to cup-length Non commutative Gröbner basis

What can Gröbner basis do? Monomial ordering and Division algorithm Gröbner basis

Gröbner basis Basics properties

Proposition

Let *I* be an ideal of *R* and $G = \{g_1, \ldots, g_s\}$ be a Gröbner basis of *I*. Then, for $f \in R$ a This independent of an ordering on the G and This unique $g_1 \in I$ as $T_1 = 0$. Heat identicating from the G

Application to cup-length Non commutative Gröbner basis

What can Gröbner basis do? Monomial ordering and Division algorithm Gröbner basis

Gröbner basis Basics properties

Proposition

Let I be an ideal of R and $G = \{g_1, \ldots, g_s\}$ be a Gröbner basis of I. Then, for $f \in R$

; independent of an ordering on the G and f^{arphi} is unique

 $f \in I \Leftrightarrow \overline{f}^{\circ} = 0$. Ideal Membership Problem.

Application to cup-length Non commutative Gröbner basis

What can Gröbner basis do? Monomial ordering and Division algorithm Gröbner basis

Gröbner basis Basics properties

Proposition

Let *I* be an ideal of *R* and $G = \{g_1, \dots, g_s\}$ be a Gröbner basis of *I*. Then, for $f \in R$ • \overline{f}^G is independent of an ordering on the *G* and \overline{f}^G is unique. • $f \in I \Leftrightarrow \overline{f}^G = 0$. Ideal Membership Problem.

Application to cup-length Non commutative Gröbner basis

What can Gröbner basis do? Monomial ordering and Division algorithm Gröbner basis

Gröbner basis Basics properties

Proposition

Let *I* be an ideal of *R* and $G = \{g_1, \ldots, g_s\}$ be a Gröbner basis of *I*. Then, for $f \in R$ • \overline{f}^G is independent of an ordering on the *G* and \overline{f}^G is unique. • $f \in I \Leftrightarrow \overline{f}^G = 0$. Ideal Membership Problem.

What can Gröbner basis do? Monomial ordering and Division algorithm Gröbner basis

Gröbner basis How to obtain Gröbner basis?

Let
$$f, g \in R$$
, $lp(f) = x_1^{a_1} \cdots x_n^{a_n}$ and $lp(g) = x_1^{b_1} \cdots x_n^{b_n}$.
Then the least common multiple of f and g is

$$\operatorname{lcm}(f,g) = x_1^{\max(a_1,b_1)} \cdots x_n^{\max(a_n,b_n)}$$

The S-polynomial of f and g is

$$S(f,g) = rac{\operatorname{lcm}(\operatorname{lp}(f),\operatorname{lp}(g))}{\operatorname{lt}(f)}f - rac{\operatorname{lcm}(\operatorname{lp}(f),\operatorname{lp}(g))}{\operatorname{lt}(g)}g.$$

Theorem (Buchberger's test

For $G = \{g_1, \ldots, g_s\} \subset R$, $I = \langle G \rangle$, the followings are equivalent:

• G is a Gröbner basis of I.

• $\overline{S(g_i,g_j)}^G = 0$ for each pair i,j s.t. $i \neq j$.

What can Gröbner basis do? Monomial ordering and Division algorithm Gröbner basis

Gröbner basis How to obtain Gröbner basis?

Let $f, g \in R$, $lp(f) = x_1^{a_1} \cdots x_n^{a_n}$ and $lp(g) = x_1^{b_1} \cdots x_n^{b_n}$. Then the least common multiple of f and g is

$$\operatorname{lcm}(f,g) = x_1^{\max(a_1,b_1)} \cdots x_n^{\max(a_n,b_n)}$$

The S-polynomial of f and g is

$$S(f,g) = \frac{\operatorname{lcm}(\operatorname{lp}(f),\operatorname{lp}(g))}{\operatorname{lt}(f)}f - \frac{\operatorname{lcm}(\operatorname{lp}(f),\operatorname{lp}(g))}{\operatorname{lt}(g)}g$$

Theorem (Buchberger's test

For $G = \{g_1, \ldots, g_s\} \subset R$, $I = \langle G \rangle$, the followings are equivalent:

- G is a Gröbner basis of I.
- $\overline{S(g_i,g_j)}^G = 0$ for each pair i,j s.t. $i \neq j$.

What can Gröbner basis do? Monomial ordering and Division algorithm Gröbner basis

Gröbner basis How to obtain Gröbner basis?

Let $f, g \in R$, $lp(f) = x_1^{a_1} \cdots x_n^{a_n}$ and $lp(g) = x_1^{b_1} \cdots x_n^{b_n}$. Then the least common multiple of f and g is

$$\operatorname{lcm}(f,g) = x_1^{\max(a_1,b_1)} \cdots x_n^{\max(a_n,b_n)}$$

The S-polynomial of f and g is

$$S(f,g) = rac{\operatorname{lcm}(\operatorname{lp}(f),\operatorname{lp}(g))}{\operatorname{lt}(f)}f - rac{\operatorname{lcm}(\operatorname{lp}(f),\operatorname{lp}(g))}{\operatorname{lt}(g)}g.$$

Theorem (Buchberger's test

For $G = \{g_1, \ldots, g_s\} \subset R$, $I = \langle G \rangle$, the followings are equivalent:

• G is a Gröbner basis of I.

• $\overline{S(g_i, g_j)}^G = 0$ for each pair $i, j \, s.t. \, i \neq j$.

What can Gröbner basis do? Monomial ordering and Division algorithm Gröbner basis

Gröbner basis How to obtain Gröbner basis?

Let $f, g \in R$, $lp(f) = x_1^{a_1} \cdots x_n^{a_n}$ and $lp(g) = x_1^{b_1} \cdots x_n^{b_n}$. Then the least common multiple of f and g is

$$\operatorname{lcm}(f,g) = x_1^{\max(a_1,b_1)} \cdots x_n^{\max(a_n,b_n)}$$

The S-polynomial of f and g is

$$S(f,g) = rac{\operatorname{lcm}(\operatorname{lp}(f),\operatorname{lp}(g))}{\operatorname{lt}(f)}f - rac{\operatorname{lcm}(\operatorname{lp}(f),\operatorname{lp}(g))}{\operatorname{lt}(g)}g.$$

Theorem (Buchberger's test)

For $G = \{g_1, \ldots, g_s\} \subset R$, $I = \langle G \rangle$, the followings are equivalent:

- G is a Gröbner basis of I.
- $\overline{S(g_i,g_j)}^G = 0$ for each pair i,j s.t. $i \neq j$.

What can Gröbner basis do? Monomial ordering and Division algorithm Gröbner basis

Gröbner basis Buchberger's algorithm

Theorem

Let $I = \langle f_1, \ldots, f_s \rangle$ be a ideal. Then a Gröbner basis for I can be constructed in a finite number of steps by the following algorithm: INPUT $F = (f_1, \ldots, f_s)$ OUTPUT a Gröbner basis $G = \{g_1, \ldots, g_t\}$ for I

G := F

REPEAT

UNT

$$G' := G$$

FOR each pair {p, q}, p \neq q in G' DO

$$S := \overline{S(p,q)}^{G'}$$

IF S \neq 0 THEN G := G \cup {S}
TIL G = G'

Cup-length Main Theorem Sketch of Proof LS-category Immersion problem

Cup-length cup-length and LS-category

Let R be a commutative ring. We define the cup-length of R as

$$\operatorname{cup}(R) := \max\left\{n|^{\exists}x_1, \ldots, x_n \in R \setminus R^{\times} \text{ s.t. } x_1 \cdots x_n \neq 0\right\}.$$

This invariant is useful in algebraic topology. Let X be a space and A be a commutative ring

$$\operatorname{cup}_A(X) := \operatorname{cup}(\tilde{H}^*(X; A)).$$

Theorem

 $\operatorname{cup}_A(X) \leq \operatorname{cat}(X).$

Where cat(X) is LS-category of X normalized as cat(*) = 0.

Cup-length Main Theorem Sketch of Proof LS-category Immersion problem

Cup-length cup-length and LS-category

Let R be a commutative ring. We define the cup-length of R as

$$\operatorname{cup}(R) := \max\left\{n|^{\exists}x_1, \ldots, x_n \in R \setminus R^{\times} \text{ s.t. } x_1 \cdots x_n \neq 0\right\}.$$

This invariant is useful in algebraic topology. Let X be a space and A be a commutative ring

 $\operatorname{cup}_{A}(X) := \operatorname{cup}(\tilde{H}^{*}(X; A)).$

Theorem

 $\operatorname{cup}_{\mathcal{A}}(X) \leq \operatorname{cat}(X).$

Where cat(X) is LS-category of X normalized as cat(*) = 0.

Tomohiro Fukaya Application of Gröbner basis
Cup-length Main Theorem Sketch of Proof LS-category Immersion problem

Cup-length cup-length and LS-category

Let R be a commutative ring. We define the cup-length of R as

$$\operatorname{cup}(R) := \max\left\{n|^{\exists}x_1, \ldots, x_n \in R \setminus R^{\times} \text{ s.t. } x_1 \cdots x_n \neq 0\right\}.$$

This invariant is useful in algebraic topology. Let X be a space and A be a commutative ring.

$$\operatorname{cup}_A(X) := \operatorname{cup}(\tilde{H}^*(X;A)).$$

Theorem

 $\operatorname{cup}_{\mathcal{A}}(X) \leq \operatorname{cat}(X).$

Where cat(X) is LS-category of X normalized as cat(*) = 0.

Cup-length Main Theorem Sketch of Proof LS-category Immersion problem

Cup-length cup-length and LS-category

Let R be a commutative ring. We define the cup-length of R as

$$\operatorname{cup}(R) := \max\left\{n|^{\exists}x_1, \ldots, x_n \in R \setminus R^{\times} \text{ s.t. } x_1 \cdots x_n \neq 0\right\}.$$

This invariant is useful in algebraic topology. Let X be a space and A be a commutative ring.

$$\operatorname{cup}_A(X) := \operatorname{cup}(\tilde{H}^*(X;A)).$$

Theorem

 $\operatorname{cup}_{\mathcal{A}}(X) \leq \operatorname{cat}(X).$

Where cat(X) is LS-category of X normalized as cat(*) = 0.

Cup-length Main Theorem Sketch of Proof LS-category Immersion problem

Cup-length Oriented Grassmann manifolds

We will compute a cup-length of oriented Grassmann manifolds.

$$\widetilde{G}_{n,k} := SO(n+k)/SO(n) imes SO(k)$$

consists of oriented k-dimensional vector subspace in \mathbb{R}^{n+k} .

• When k = 2, the cohomology of $G_{n,2}$ is well-known.

• When $k \ge 3$, that of $G_{n,k}$ is in vague.

In this talk, we will compute the $\mathbb{Z}/2$ cup-length of oriented Grassmann manifold for

$$k = 3; \ n = 2^{m+1} - 4 \ (m \ge 2).$$

Cup-length Main Theorem Sketch of Proof LS-category Immersion problem

Cup-length Oriented Grassmann manifolds

We will compute a cup-length of oriented Grassmann manifolds.

$$\widetilde{G}_{n,k} := SO(n+k)/SO(n) imes SO(k)$$

consists of oriented k-dimensional vector subspace in \mathbb{R}^{n+k} .

• When k = 2, the cohomology of $G_{n,2}$ is well-known.

• When $k \ge 3$, that of $G_{n,k}$ is in vague.

In this talk, we will compute the $\mathbb{Z}/2$ cup-length of oriented Grassmann manifold for

$$k = 3; \ n = 2^{m+1} - 4 \ (m \ge 2).$$

= 200

Cup-length Main Theorem Sketch of Proof LS-category Immersion problem

Cup-length Oriented Grassmann manifolds

We will compute a cup-length of oriented Grassmann manifolds.

$$\widetilde{G}_{n,k} := SO(n+k)/SO(n) imes SO(k)$$

consists of oriented k-dimensional vector subspace in \mathbb{R}^{n+k} .

• When k = 2, the cohomology of $G_{n,2}$ is well-known.

• When
$$k \ge 3$$
, that of $\widetilde{G}_{n,k}$ is in vague.

In this talk, we will compute the $\mathbb{Z}/2$ cup-length of oriented Grassmann manifold for

$$k = 3; \ n = 2^{m+1} - 4 \ (m \ge 2).$$

Cup-length Main Theorem Sketch of Proof LS-category Immersion problem

Cup-length Oriented Grassmann manifolds

We will compute a cup-length of oriented Grassmann manifolds.

$$\widetilde{G}_{n,k} := SO(n+k)/SO(n) imes SO(k)$$

consists of oriented k-dimensional vector subspace in \mathbb{R}^{n+k} .

- When k = 2, the cohomology of $\widetilde{G}_{n,2}$ is well-known.
- When $k \geq 3$, that of $\widetilde{G}_{n,k}$ is in vague.

In this talk, we will compute the $\mathbb{Z}/2$ cup-length of oriented Grassmann manifold for

$$k = 3; n = 2^{m+1} - 4 (m \ge 2).$$

Cup-length Main Theorem Sketch of Proof LS-category Immersion problem

Main Theorem Notion of Theorem

Theorem

$$\sup_{\mathbb{Z}/2} (\widetilde{G}_{n,3}) = n+1$$
 for $n = 2^{m+1} - 4 (m \ge 2)$.

Tomohiro Fukaya Application of Gröbner basis

<ロ> <0><</p>

Cup-length Main Theorem Sketch of Proof LS-category Immersion problem

Sketch of Proof Cohomology of oriented Grassmann manifolds

- There are the double covering map $p_n: G_{n,k} \to G_{n,k}$.
- $\operatorname{Im} p_n^* \cong H^*(\widetilde{G}_{n,3}; \mathbb{Z}/2) \ (* < n).$ $\therefore \widetilde{G}_{n,3} \simeq_n BSO(3); \quad p_{\infty}^*, i^*: epi.$
- $\operatorname{Im} p_n^* \cong \mathbb{Z}/2[w_2, w_3]/J_n$, where $J_n = p_\infty^*(I_n)$.

Cup-length Main Theorem Sketch of Proof LS-category Immersion problem

Sketch of Proof Cohomology of oriented Grassmann manifolds

- There are the double covering map $p_n \colon G_{n,k} \to G_{n,k}$.
- $\operatorname{Im} p_n^* \cong H^*(\widetilde{G}_{n,3}; \mathbb{Z}/2) \ (* < n).$

• $\operatorname{Im} p_n^* \cong \mathbb{Z}/2[w_2, w_3]/J_n$, where $J_n = p_{\infty}^*(I_n)$.

Cup-length Main Theorem Sketch of Proof LS-category Immersion problem

Sketch of Proof Cohomology of oriented Grassmann manifolds

- There are the double covering map $p_n \colon G_{n,k} \to G_{n,k}$.
- $\operatorname{Im} p_n^* \cong H^*(\widetilde{G}_{n,3}; \mathbb{Z}/2) \ (* < n).$ $\therefore \widetilde{G}_{n,3} \simeq_n BSO(3); \quad p_{\infty}^*, i^*: epi.$
- $\operatorname{Im} p_n^* \cong \mathbb{Z}/2[w_2, w_3]/J_n$, where $J_n = p_{\infty}^*(I_n)$.

$$\begin{array}{ccc} \widetilde{G}_{n,3} & \xrightarrow{p_n} & G_{n,3} & H^*(\widetilde{G}_{n,3}; \mathbb{Z}/2) & \stackrel{p_n^*}{\longleftarrow} \mathbb{Z}/2[w_1, w_2, w_3]/I_n \\ & i & & & & & \\ \widetilde{i} & & & & & & \\ i & & & & & & \\ BSO(3) & \xrightarrow{p_\infty} & BO(3) & \mathbb{Z}/2[w_2, w_3] & \stackrel{p_\infty^*}{\longleftarrow} \mathbb{Z}/2[w_1, w_2, w_3] \end{array}$$

Cup-length Main Theorem Sketch of Proof LS-category Immersion problem

Sketch of Proof Cohomology of oriented Grassmann manifolds

- There are the double covering map $p_n \colon G_{n,k} \to G_{n,k}$.
- $\operatorname{Im} p_n^* \cong H^*(\widetilde{G}_{n,3}; \mathbb{Z}/2) \ (* < n).$ $:: \widetilde{G}_{n,3} \simeq_n BSO(3); \quad p_{\infty}^*, i^*: epi.$
- $\operatorname{Im} p_n^* \cong \mathbb{Z}/2[w_2, w_3]/J_n$, where $J_n = p_\infty^*(I_n)$.

Cup-length Main Theorem **Sketch of Proof** LS-category Immersion problem

Sketch of Proof Using Gröbner basis

• $\operatorname{Im} p_n^* \cong \mathbb{Z}/2[w_2, w_3]/J_n$.

- By degree reason, $\operatorname{cup}(\operatorname{Im} p_n^*)$ determines $\operatorname{cup}_{\mathbb{Z}/2}(\widetilde{G}_{n,3})$.
- computing $cup(Imp_n^*) \Leftrightarrow$ Ideal Membership Problem of J_n .
- By Borel, the generator of J_n is given.
- Computing Gröbner basis of J_n , we can solve the Ideal Membership Problem of J_n .
- I computed a Gröbner basis of J_n for $n = 2^{m+1} 4(m \ge 2)$ and obtained Main Theorem.

Cup-length Main Theorem Sketch of Proof LS-category Immersion problem

Sketch of Proof Using Gröbner basis

- $\operatorname{Im} p_n^* \cong \mathbb{Z}/2[w_2, w_3]/J_n$.
- By degree reason, $\operatorname{cup}(\operatorname{Im} p_n^*)$ determines $\operatorname{cup}_{\mathbb{Z}/2}(\widetilde{G}_{n,3})$.
- computing $cup(Imp_n^*) \Leftrightarrow$ Ideal Membership Problem of J_n .
- By Borel, the generator of J_n is given.
- Computing Gröbner basis of J_n , we can solve the Ideal Membership Problem of J_n .
- I computed a Gröbner basis of J_n for $n = 2^{m+1} 4(m \ge 2)$ and obtained Main Theorem.

Cup-length Main Theorem Sketch of Proof LS-category Immersion problem

Sketch of Proof Using Gröbner basis

- $\operatorname{Im} p_n^* \cong \mathbb{Z}/2[w_2, w_3]/J_n$.
- By degree reason, $cup(Imp_n^*)$ determines $cup_{\mathbb{Z}/2}(\widetilde{G}_{n,3})$.
- computing $cup(Imp_n^*) \Leftrightarrow$ Ideal Membership Problem of J_n .
- By Borel, the generator of J_n is given.
- Computing Gröbner basis of J_n , we can solve the Ideal Membership Problem of J_n .
- I computed a Gröbner basis of J_n for $n = 2^{m+1} 4(m \ge 2)$ and obtained Main Theorem.

Cup-length Main Theorem Sketch of Proof LS-category Immersion problem

Sketch of Proof Using Gröbner basis

- $\operatorname{Im} p_n^* \cong \mathbb{Z}/2[w_2, w_3]/J_n$.
- By degree reason, $\operatorname{cup}(\operatorname{Im} p_n^*)$ determines $\operatorname{cup}_{\mathbb{Z}/2}(\widetilde{G}_{n,3})$.
- computing $cup(Imp_n^*) \Leftrightarrow$ Ideal Membership Problem of J_n .
- By Borel, the generator of J_n is given.
- Computing Gröbner basis of J_n , we can solve the Ideal Membership Problem of J_n .
- I computed a Gröbner basis of J_n for $n = 2^{m+1} 4(m \ge 2)$ and obtained Main Theorem.

Cup-length Main Theorem Sketch of Proof LS-category Immersion problem

Sketch of Proof Using Gröbner basis

- $\operatorname{Im} p_n^* \cong \mathbb{Z}/2[w_2, w_3]/J_n$.
- By degree reason, $\operatorname{cup}(\operatorname{Im} p_n^*)$ determines $\operatorname{cup}_{\mathbb{Z}/2}(\widetilde{G}_{n,3})$.
- computing $cup(Imp_n^*) \Leftrightarrow$ Ideal Membership Problem of J_n .
- By Borel, the generator of J_n is given.
- Computing Gröbner basis of J_n , we can solve the Ideal Membership Problem of J_n .
- I computed a Gröbner basis of J_n for $n = 2^{m+1} 4(m \ge 2)$ and obtained Main Theorem.

Cup-length Main Theorem Sketch of Proof LS-category Immersion problem

Sketch of Proof Using Gröbner basis

- $\operatorname{Im} p_n^* \cong \mathbb{Z}/2[w_2, w_3]/J_n$.
- By degree reason, $\operatorname{cup}(\operatorname{Im} p_n^*)$ determines $\operatorname{cup}_{\mathbb{Z}/2}(\widetilde{G}_{n,3})$.
- computing $cup(Imp_n^*) \Leftrightarrow$ Ideal Membership Problem of J_n .
- By Borel, the generator of J_n is given.
- Computing Gröbner basis of J_n , we can solve the Ideal Membership Problem of J_n .
- I computed a Gröbner basis of J_n for $n = 2^{m+1} 4(m \ge 2)$ and obtained Main Theorem.

Cup-length Main Theorem Sketch of Proof LS-category Immersion problem

LS-category Definition

Definition

For topological space X,

$$cat(X) = \min \left\{ n \Big|^{\exists} U_0, \dots, U_n \subset X \text{ open, contractible;}
ight.$$

s.t. $X = \bigcup_{i=0}^n U_i$.

- Any smooth fanction on a manifold X has at least cat(X) + 1 critical points.
- $\operatorname{cat}(S^n) = 1$.
- cat(SO(n)) is not known for n > 10.

Cup-length Main Theorem Sketch of Proof LS-category Immersion problem

LS-category Definition

Definition

For topological space X,

$$cat(X) = \min \left\{ n \Big|^{\exists} U_0, \dots, U_n \subset X \text{ open, contractible;}
ight.$$

s.t. $X = \bigcup_{i=0}^n U_i$.

- Any smooth fanction on a manifold X has at least cat(X) + 1 critical points.
- $\operatorname{cat}(S^n) = 1$.
- cat(SO(n)) is not known for n > 10.

Cup-length Main Theorem Sketch of Proof LS-category Immersion problem

LS-category Definition

Definition

For topological space X,

$$cat(X) = \min \left\{ n \Big|^{\exists} U_0, \dots, U_n \subset X \text{ open, contractible;}
ight.$$

s.t. $X = \bigcup_{i=0}^n U_i$.

- Any smooth fanction on a manifold X has at least cat(X) + 1 critical points.
- $\operatorname{cat}(S^n) = 1$.
- cat(SO(n)) is not known for n > 10.

= 9QQ

Cup-length Main Theorem Sketch of Proof LS-category Immersion problem

LS-category A smooth function on T^2 which has three critical points. $(cat(T^2) = 2)$

-

Cup-length Main Theorem Sketch of Proof LS-category Immersion problem

• By Main Theorem, immediately we have a lower bound of $\operatorname{cat}(\widetilde{G}_{n,3})$.

• Using some obstruction theory and Main Theorem, we also have a upper bound of it.

Theorem

$$n+1 \leq \operatorname{cat}(\widetilde{G}_{n,3}) < \frac{3}{2}n$$
 for $n = 2^{m+1} - 4(m \geq 2)$.
Especially $\operatorname{cat}(\widetilde{G}_{4,3}) = 5$.

Cup-length Main Theorem Sketch of Proof LS-category Immersion problem

- By Main Theorem, immediately we have a lower bound of $\operatorname{cat}(\widetilde{G}_{n,3})$.
- Using some obstruction theory and Main Theorem, we also have a upper bound of it.

Theorem

$$n+1 \leq \operatorname{cat}(\widetilde{G}_{n,3}) < \frac{3}{2}n$$
 for $n = 2^{m+1} - 4(m \geq 2)$.
Especially $\operatorname{cat}(\widetilde{G}_{4,3}) = 5$.

Cup-length Main Theorem Sketch of Proof LS-category Immersion problem

- By Main Theorem, immediately we have a lower bound of $\operatorname{cat}(\widetilde{G}_{n,3})$.
- Using some obstruction theory and Main Theorem, we also have a upper bound of it.

Theorem

$$n+1 \leq \operatorname{cat}(\widetilde{G}_{n,3}) < \frac{3}{2}n$$
 for $n = 2^{m+1} - 4(m \geq 2)$.
Especially $\operatorname{cat}(\widetilde{G}_{4,3}) = 5$.

Cup-length Main Theorem Sketch of Proof LS-category Immersion problem

Immersion Results

We give an another application of our Main Theorem to Immersion of $\widetilde{G}_{n,3}$ into a Euclidean space.

Theorem

•
$$\widehat{G}_{n,3}$$
 immerses into \mathbb{R}^{6n-3} but not into \mathbb{R}^{3n+8} when $n = 2^{m+1} - 4 \ (m \ge 3)$.

• $G_{4,3}$ immerses into \mathbb{R}^{21} but not into \mathbb{R}^{17} .

Cup-length Main Theorem Sketch of Proof LS-category Immersion problem

Immersion Results

We give an another application of our Main Theorem to Immersion of $\widetilde{G}_{n,3}$ into a Euclidean space.

Theorem

Cup-length Main Theorem Sketch of Proof LS-category Immersion problem

Immersion Proof: Lower bounds

- λ : canonical bundle over $G_{n,3}$.
- ν : stable normal bundle over $G_{n,3}$.
- $T\widetilde{G}_{n,3} \cong \operatorname{Hom}(\lambda, \lambda^{\perp}) \cong \lambda \otimes \lambda^{\perp}.$
- $T\widetilde{G}_{n,3} \oplus \lambda \otimes \lambda \cong \lambda \otimes (\lambda \oplus \lambda^{\perp}) \cong (n+3)\lambda.$
- $(1 + w_2 + w_3)^{n+4} = 1$. : Main Theorem.

$$w(\nu) = \frac{1}{w(T\widetilde{G}_{n,3})} = \frac{w(\lambda \otimes \lambda)}{w((n+3)\lambda)}$$

= 1 + w_2 + w_3 + w_2^2 + w_3^3 + w_2^2 w_3 + w_2 w_3^2 + w_3^3.

•
$$w_9(\nu) = w_3^3 \neq 0$$
 for $n = 2^{m+1} - 4, (m \ge 3);$
 $w_6(\nu) = w_2^3 \neq 0$ for $n = 4.$

• Then we have non immersion results.

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Cup-length Main Theorem Sketch of Proof LS-category Immersion problem

Immersion Proof: Lower bounds

- λ : canonical bundle over $G_{n,3}$.
- ν : stable normal bundle over $\widetilde{G}_{n,3}$.
- $T\widetilde{G}_{n,3} \cong \operatorname{Hom}(\lambda, \lambda^{\perp}) \cong \lambda \otimes \lambda^{\perp}$.
- $T\widetilde{G}_{n,3} \oplus \lambda \otimes \lambda \cong \lambda \otimes (\lambda \oplus \lambda^{\perp}) \cong (n+3)\lambda.$
- $(1 + w_2 + w_3)^{n+4} = 1$. : Main Theorem.

$$w(\nu) = \frac{1}{w(T\widetilde{G}_{n,3})} = \frac{w(\lambda \otimes \lambda)}{w((n+3)\lambda)}$$

= 1 + w_2 + w_3 + w_2^2 + w_3^3 + w_2^2 w_3 + w_2 w_3^2 + w_3^3.

•
$$w_9(\nu) = w_3^3 \neq 0$$
 for $n = 2^{m+1} - 4, (m \ge 3);$
 $w_6(\nu) = w_2^3 \neq 0$ for $n = 4.$

• Then we have non immersion results.

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Cup-length Main Theorem Sketch of Proof LS-category Immersion problem

Immersion Proof: Lower bounds

- λ : canonical bundle over $G_{n,3}$.
- ν : stable normal bundle over $G_{n,3}$.
- $T\widetilde{G}_{n,3}\cong \operatorname{Hom}(\lambda,\lambda^{\perp})\cong\lambda\otimes\lambda^{\perp}.$
- $T \widetilde{G}_{n,3} \oplus \lambda \otimes \lambda \cong \lambda \otimes (\lambda \oplus \lambda^{\perp}) \cong (n+3)\lambda.$
- $(1 + w_2 + w_3)^{n+4} = 1$. : Main Theorem.

$$w(\nu) = \frac{1}{w(T\widetilde{G}_{n,3})} = \frac{w(\lambda \otimes \lambda)}{w((n+3)\lambda)}$$

= 1 + w_2 + w_3 + w_2^2 + w_2^3 + w_3^2 + w_2^2w_3 + w_2w_3^2 + w_3^3.

•
$$w_9(\nu) = w_3^3 \neq 0$$
 for $n = 2^{m+1} - 4, (m \ge 3);$
 $w_6(\nu) = w_2^3 \neq 0$ for $n = 4.$

• Then we have non immersion results.

◆□> ◆□> ◆三> ◆三> 三日 のへの

Cup-length Main Theorem Sketch of Proof LS-category Immersion problem

Immersion Proof: Lower bounds

- λ : canonical bundle over $G_{n,3}$.
- ν : stable normal bundle over $\widetilde{G}_{n,3}$.
- $T\widetilde{G}_{n,3}\cong \operatorname{Hom}(\lambda,\lambda^{\perp})\cong\lambda\otimes\lambda^{\perp}.$
- $T\widetilde{G}_{n,3} \oplus \lambda \otimes \lambda \cong \lambda \otimes (\lambda \oplus \lambda^{\perp}) \cong (n+3)\lambda.$
- $(1 + w_2 + w_3)^{n+4} = 1$. : Main Theorem.

$$w(\nu) = \frac{1}{w(T\widetilde{G}_{n,3})} = \frac{w(\lambda \otimes \lambda)}{w((n+3)\lambda)}$$

= 1 + w_2 + w_3 + w_2^2 + w_2^3 + w_3^2 + w_2^2w_3 + w_2w_3^2 + w_3^3.

•
$$w_9(\nu) = w_3^3 \neq 0$$
 for $n = 2^{m+1} - 4, (m \ge 3);$
 $w_6(\nu) = w_3^2 \neq 0$ for $n = 4.$

• Then we have non immersion results.

Cup-length Main Theorem Sketch of Proof LS-category Immersion problem

Immersion Proof: Lower bounds

- λ : canonical bundle over $G_{n,3}$.
- ν : stable normal bundle over $G_{n,3}$.
- $T\widetilde{G}_{n,3} \cong \operatorname{Hom}(\lambda, \lambda^{\perp}) \cong \lambda \otimes \lambda^{\perp}.$
- $T\widetilde{G}_{n,3} \oplus \lambda \otimes \lambda \cong \lambda \otimes (\lambda \oplus \lambda^{\perp}) \cong (n+3)\lambda.$
- $(1 + w_2 + w_3)^{n+4} = 1$. : Main Theorem.

 $w(\nu) = \frac{1}{w(T\widetilde{G}_{n,3})} = \frac{w(\lambda \otimes \lambda)}{w((n+3)\lambda)}$ = 1 + w_2 + w_3 + w_2^2 + w_3^3 + w_2^2 w_3 + w_2 w_3^2 + w_3^3.

- $w_9(\nu) = w_3^3 \neq 0$ for $n = 2^{m+1} 4, (m \ge 3);$ $w_6(\nu) = w_3^3 \neq 0$ for n = 4.
- Then we have non immersion results.

Cup-length Main Theorem Sketch of Proof LS-category Immersion problem

Immersion Proof: Lower bounds

- λ : canonical bundle over $G_{n,3}$.
- ν : stable normal bundle over $G_{n,3}$.
- $T\widetilde{G}_{n,3} \cong \operatorname{Hom}(\lambda, \lambda^{\perp}) \cong \lambda \otimes \lambda^{\perp}.$
- $T\widetilde{G}_{n,3} \oplus \lambda \otimes \lambda \cong \lambda \otimes (\lambda \oplus \lambda^{\perp}) \cong (n+3)\lambda.$
- $(1 + w_2 + w_3)^{n+4} = 1$. : Main Theorem.

$$w(\nu) = \frac{1}{w(T\widetilde{G}_{n,3})} = \frac{w(\lambda \otimes \lambda)}{w((n+3)\lambda)}$$

= 1 + w_2 + w_3 + w_2^2 + w_3^3 + w_2^2 w_3 + w_2 w_3^2 + w_3^3.

- $w_9(\nu) = w_3^3 \neq 0$ for $n = 2^{m+1} 4, (m \ge 3);$
 - $w_6(\nu) = w_2^3 \neq 0$ for n = 4.
- Then we have non immersion results.

Cup-length Main Theorem Sketch of Proof LS-category Immersion problem

Immersion Proof: Lower bounds

- λ : canonical bundle over $G_{n,3}$.
- ν : stable normal bundle over $G_{n,3}$.
- $T\widetilde{G}_{n,3} \cong \operatorname{Hom}(\lambda, \lambda^{\perp}) \cong \lambda \otimes \lambda^{\perp}.$
- $T \widetilde{G}_{n,3} \oplus \lambda \otimes \lambda \cong \lambda \otimes (\lambda \oplus \lambda^{\perp}) \cong (n+3)\lambda.$
- $(1 + w_2 + w_3)^{n+4} = 1$. : Main Theorem.

$$w(\nu) = \frac{1}{w(T\widetilde{G}_{n,3})} = \frac{w(\lambda \otimes \lambda)}{w((n+3)\lambda)}$$

= 1 + w_2 + w_3 + w_2^2 + w_2^3 + w_3^2 + w_2^2w_3 + w_2w_3^2 + w_3^3.

•
$$w_9(\nu) = w_3^3 \neq 0$$
 for $n = 2^{m+1} - 4$, $(m \ge 3)$;
 $w_6(\nu) = w_2^3 \neq 0$ for $n = 4$.

Then we have non immersion results.

Immersion problem

Immersion Proof: Lower bounds

• λ : canonical bundle over $G_{n,3}$. • ν : stable normal bundle over $G_{n,3}$. • $TG_{n,3} \cong \operatorname{Hom}(\lambda, \lambda^{\perp}) \cong \lambda \otimes \lambda^{\perp}$. • $T G_{n,3} \oplus \lambda \otimes \lambda \cong \lambda \otimes (\lambda \oplus \lambda^{\perp}) \cong (n+3)\lambda$. • $(1 + w_2 + w_3)^{n+4} = 1$. \therefore Main Theorem. 1 $w(\lambda \otimes \lambda)$ W(1)

$$\begin{aligned} (\mathcal{V}) &= \frac{1}{w(T\widetilde{G}_{n,3})} = \frac{1}{w((n+3)\lambda)} \\ &= 1 + w_2 + w_3 + w_2^2 + w_2^3 + w_3^2 + w_2^2 w_3 + w_2 w_3^2 + w_3^3. \end{aligned}$$

•
$$w_9(\nu) = w_3^3 \neq 0$$
 for $n = 2^{m+1} - 4$, $(m \ge 3)$;
 $w_6(\nu) = w_2^3 \neq 0$ for $n = 4$.

Then we have non immersion results.

Cup-length Main Theorem Sketch of Proof LS-category Immersion problem

Immersion Proof: Upper bounds

Proposition (Hirsch)

Let M^m be *m*-dim manifold. The followings are equivalent.

- M^m can immerse into \mathbb{R}^{m+p} .
- M^m has a normal bundle ν which is a *p*-plane bundle.
- The classifying map $\nu: M^m \to BO$ lifts $\nu_p: M^m \to BO(p)$.

Investigating the fibration $BSO(3n-3) \rightarrow BSO(\infty)$, we obtain that $\nu \colon \widetilde{G}_{n,3} \rightarrow BSO(\infty)$ lifts $\nu_{\rho} \colon \widetilde{G}_{n,3} \rightarrow BSO(3n-3)$.

Cup-length Main Theorem Sketch of Proof LS-category Immersion problem

Immersion Proof: Upper bounds

Proposition (Hirsch)

Let M^m be *m*-dim manifold. The followings are equivalent.

- M^m can immerse into \mathbb{R}^{m+p} .
- M^m has a normal bundle ν which is a *p*-plane bundle.
- The classifying map $\nu: M^m \to BO$ lifts $\nu_p: M^m \to BO(p)$.

Investigating the fibration $BSO(3n-3) \rightarrow BSO(\infty)$, we obtain that $\nu : \widetilde{G}_{n,3} \rightarrow BSO(\infty)$ lifts $\nu_p : \widetilde{G}_{n,3} \rightarrow BSO(3n-3)$.
Steenrod algebra Free resolution

Steenrod algebra

- I would like to do calculations on the Steenrod algebra and modules over it, with computer.
- We consider the Steenrod algebra \mathcal{A}_2 as follow.

Let

$$A = \mathbb{Z}/2\langle \operatorname{Sq}^1, \dots, \operatorname{Sq}^i, \dots \rangle$$

be a free associative non commutative algebra. Let

$$I_{Adem} = \left\langle \operatorname{Sq}^{a} \operatorname{Sq}^{b} - \sum_{i=0}^{[a/2]} \binom{b-1-i}{a-2i} \operatorname{Sq}^{a+b-i} \operatorname{Sq}^{i} \middle| a < 2b \right\rangle$$

be a two-side ideal of A generated by the Adem relations. Then

$$A_2 = A/I_{Adem}$$
.

Steenrod algebra Free resolution

Steenrod algebra

- I would like to do calculations on the Steenrod algebra and modules over it, with computer.
- \bullet We consider the Steenrod algebra \mathcal{A}_2 as follow.

Let

$$A = \mathbb{Z}/2\langle \operatorname{Sq}^1, \dots, \operatorname{Sq}^i, \dots \rangle$$

be a free associative non commutative algebra. Let

$$I_{Adem} = \left\langle \operatorname{Sq}^{a} \operatorname{Sq}^{b} - \sum_{i=0}^{[a/2]} {\binom{b-1-i}{a-2i}} \operatorname{Sq}^{a+b-i} \operatorname{Sq}^{i} \middle| a < 2b \right\rangle$$

be a two-side ideal of A generated by the Adem relations. Then

$$A_2 = A/I_{Adem}$$
.

Steenrod algebra Free resolution

Steenrod algebra

- I would like to do calculations on the Steenrod algebra and modules over it, with computer.
- We consider the Steenrod algebra \mathcal{A}_2 as follow.

Let

$$A=\mathbb{Z}/2\langle \mathrm{Sq}^1,\ldots,\mathrm{Sq}^i,\ldots\rangle$$

be a free associative non commutative algebra. Let

$$I_{Adem} = \left\langle \operatorname{Sq}^{a} \operatorname{Sq}^{b} - \sum_{i=0}^{[a/2]} {\binom{b-1-i}{a-2i}} \operatorname{Sq}^{a+b-i} \operatorname{Sq}^{i} \middle| a < 2b \right\rangle$$

be a two-side ideal of A generated by the Adem relations. Then

$$A_2 = A/I_{Adem}$$
.

Steenrod algebra Free resolution

Steenrod algebra

- I would like to do calculations on the Steenrod algebra and modules over it, with computer.
- We consider the Steenrod algebra \mathcal{A}_2 as follow.

Let

$$A = \mathbb{Z}/2\langle \operatorname{Sq}^1, \dots, \operatorname{Sq}^i, \dots \rangle$$

be a free associative non commutative algebra. Let

$$I_{\mathsf{Adem}} = \left\langle \left. \mathrm{Sq}^{a} \mathrm{Sq}^{b} - \sum_{i=0}^{[a/2]} \binom{b-1-i}{a-2i} \mathrm{Sq}^{a+b-i} \mathrm{Sq}^{i} \right| a < 2b \right\rangle$$

be a two-side ideal of A generated by the Adem relations. Then

$$A_2 = A/I_{Adem}$$
.

- 4 同 2 4 三 2 4 三 2 4

Steenrod algebra Free resolution

Steenrod algebra

- I would like to do calculations on the Steenrod algebra and modules over it, with computer.
- We consider the Steenrod algebra \mathcal{A}_2 as follow.

Let

$$A = \mathbb{Z}/2\langle \mathrm{Sq}^1, \dots, \mathrm{Sq}^i, \dots \rangle$$

be a free associative non commutative algebra. Let

$$I_{\mathsf{Adem}} = \left\langle \left. \mathrm{Sq}^{a} \mathrm{Sq}^{b} - \sum_{i=0}^{[a/2]} \binom{b-1-i}{a-2i} \mathrm{Sq}^{a+b-i} \mathrm{Sq}^{i} \right| a < 2b \right\rangle$$

be a two-side ideal of A generated by the Adem relations. Then

$$A_2 = A/I_{Adem}.$$

Steenrod algebra Free resolution

Steenrod algebra Non commutative Gröbner basis

• There exists the theory of a non commutative Gröbner basis and we can define the Gröbner basis of *I*_{Adem}.

 It is well-known that admissible products Sq¹ forms a basis of the ℤ/2-vector space A₂, it follows that the Adem relations are Gröbner basis of I_{Adem}.

Steenrod algebra Free resolution

Steenrod algebra Non commutative Gröbner basis

- There exists the theory of a non commutative Gröbner basis and we can define the Gröbner basis of *I*_{Adem}.
- It is well-known that admissible products Sq^I forms a basis of the ℤ/2-vector space 𝒜₂, it follows that the Adem relations are Gröbner basis of I_{Adem}.

Steenrod algebra Free resolution

Free resolution Commutative and non Commutative case

- Let $R = k[x_1, \ldots, x_n]$ be free commutative ring.
- It is well-known that there is an algorithm using Gröbner basis for calculating a free resolution of *R*-module *M*.

$$\cdots \to R^{a_2} \to R^{a_1} \to M.$$

- I generalized the above algorithm for a module over non commutative ring A = k⟨x₁,...,x_n⟩ using non commutative Gröbner basis.
- I would like to apply it to free resolution of A₂-module and computing E₂ terms of the Adams spectral sequence.

Steenrod algebra Free resolution

Free resolution Commutative and non Commutative case

- Let $R = k[x_1, \ldots, x_n]$ be free commutative ring.
- It is well-known that there is an algorithm using Gröbner basis for calculating a free resolution of *R*-module *M*.

$$\cdots \rightarrow R^{a_2} \rightarrow R^{a_1} \rightarrow M.$$

- I generalized the above algorithm for a module over non commutative ring A = k⟨x₁,...,x_n⟩ using non commutative Gröbner basis.
- I would like to apply it to free resolution of A₂-module and computing E₂ terms of the Adams spectral sequence.

Steenrod algebra Free resolution

Free resolution Commutative and non Commutative case

- Let $R = k[x_1, \ldots, x_n]$ be free commutative ring.
- It is well-known that there is an algorithm using Gröbner basis for calculating a free resolution of *R*-module *M*.

$$\cdots \to R^{a_2} \to R^{a_1} \to M.$$

- I generalized the above algorithm for a module over non commutative ring A = k⟨x₁,...,x_n⟩ using non commutative Gröbner basis.
- I would like to apply it to free resolution of A₂-module and computing E₂ terms of the Adams spectral sequence.

Steenrod algebra Free resolution

Free resolution Commutative and non Commutative case

- Let $R = k[x_1, \ldots, x_n]$ be free commutative ring.
- It is well-known that there is an algorithm using Gröbner basis for calculating a free resolution of *R*-module *M*.

$$\cdots \rightarrow R^{a_2} \rightarrow R^{a_1} \rightarrow M.$$

- I generalized the above algorithm for a module over non commutative ring A = k⟨x₁,...,x_n⟩ using non commutative Gröbner basis.
- I would like to apply it to free resolution of A₂-module and computing E₂ terms of the Adams spectral sequence.

Steenrod algebra Free resolution

Free resolution Calculation example

- I wrote a computer program which compute the Free resolution of $\mathbb{F}_2.$
- The following is the free resolution of \mathbb{F}_2 in degree less than 8

Now I am trying to compute $E_2^{*,*} = \operatorname{Ext}_{\mathcal{A}_2}^{*,*}(H^*(X), H^*(Y))$ which converges to $\{Y, X\}_*$, for $X, Y = S^n, \mathbb{R}P^n, \mathbb{C}P^n, O(n), U(n)$ etc...

Steenrod algebra Free resolution

Free resolution Calculation example

- I wrote a computer program which compute the Free resolution of $\mathbb{F}_2.$
- \bullet The following is the free resolution of \mathbb{F}_2 in degree less than 8

Now I am trying to compute $E_2^{*,*} = \operatorname{Ext}_{\mathcal{A}_2}^{*,*}(H^*(X), H^*(Y))$ which converges to $\{Y, X\}_*$, for $X, Y = S^n, \mathbb{R}P^n, \mathbb{C}P^n, O(n), U(n)$ etc...

Steenrod algebra Free resolution

Free resolution Calculation example

- I wrote a computer program which compute the Free resolution of $\mathbb{F}_2.$
- \bullet The following is the free resolution of \mathbb{F}_2 in degree less than 8

Now I am trying to compute $E_2^{*,*} = \operatorname{Ext}_{\mathcal{A}_2}^{*,*}(H^*(X), H^*(Y))$ which converges to $\{Y, X\}_*$, for $X, Y = S^n, \mathbb{R}P^n, \mathbb{C}P^n, O(n), U(n)$ etc...

Steenrod algebra Free resolution

Free resolution Calculation example

- I wrote a computer program which compute the Free resolution of $\mathbb{F}_2.$
- \bullet The following is the free resolution of \mathbb{F}_2 in degree less than 8

Now I am trying to compute $E_2^{*,*} = \operatorname{Ext}_{\mathcal{A}_2}^{*,*}(H^*(X), H^*(Y))$ which converges to $\{Y, X\}_*$, for $X, Y = S^n, \mathbb{R}P^n, \mathbb{C}P^n, O(n), U(n)$ etc...

Steenrod algebra Free resolution

Free resolution Calculation example

- I wrote a computer program which compute the Free resolution of $\mathbb{F}_2.$
- $\bullet\,$ The following is the free resolution of \mathbb{F}_2 in degree less than 8

Now I am trying to compute $E_2^{*,*} = \operatorname{Ext}_{\mathcal{A}_2}^{*,*}(H^*(X), H^*(Y))$ which converges to $\{Y, X\}_*$, for $X, Y = S^n, \mathbb{R}P^n, \mathbb{C}P^n, O(n), U(n)$ etc...

For Further Reading I

💊 William W. Adams and Philippe Loustaunau.

An introduction to Gröbner bases, volume 3 of Graduate Studies in Mathematics.

American Mathematical Society, Providence, RI, 1994.

🛸 Huishi Li.

Noncommutative Gröbner bases and filtered-graded transfer, volume 1795 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2002.