
On motives and `-adic Galois representations

associated to automorphic representations of GSp(4)

Tetsushi Ito1

1. Introduction

This is a write-up of my talk at the Hakuba workshop 2006. In the workshop, I

gave two introductory lectures on the Langlands correspondences and `-adic Galois

representations. Contrary to the title, I did not talk much about motives.

The aim of this article is to compensate the talk. In this article, I give an informal

introduction to the Langlands correspondences and the Principle of Functoriality from

the viewpoint of arithmetic geometry. I especially emphasized the role of `-adic Galois

representations (instead of complex representations of the hypothetical Langlands

dual group) in the theory of automorphic representations. This viewpoint is slightly

different from the usual one. I would not be surprised if this article looks strange for

‘automorphic’ people. However, I still believe this viewpoint is very natural, useful

and even necessary in some instances.

Although this is a survey article for non-specialists, I did not even try to give a

textbook-style introduction. One reason is that there are so many different aspects in

the topics. It is almost impossible (for me, at least) to give a reasonable introduction

in a reasonable size. Most ‘introductory’ books in this area are inevitably too heavy

(theoretically and physically). Another reason is that there have been already many

excellent articles and books (such as [PSPM33], [PSPM55], [AnnArbor], [Jerusalem],

[Toronto], [CKM]). There is no point in writing a similar article any more.

In this article, I do not give precise definitions concerning automorphic represen-

tations. I suppose most of them can be found in some articles in this volume (or

some references therein). On the other hand, I tried to give basic definitions con-

cerning Galois representations (see §2), which are certainly well-known for arithmetic

geometers, but do not seem so for usual ‘automorphic’ people.
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One thing I tried to stress in this article is that it is very convenient for you

to have a viewpoint from arithmetic geometry even if you are not at all interested

in it. Namely, “Galois representations are convenient tools to study automorphic

representations.” Many difficult theorems and problems in this area are easily and

precisely explained in terms of Galois representations. Of course, other people may

have an opposite viewpoint; “Automorphic representations are convenient tools to

study Galois representations.”

Acknowledgments. The author would like thank the organizer of this workshop,

Masaaki Furusawa (Osaka City Univ.), for giving me an opportunity to give talks at

the Hakuba workshop 2006. He also would like to thank Teruyoshi Yoshida (Harvard)

for comments on the local Langlands correspondences, and Jacques Tilouine (Paris-

Nord) for several suggestions on an earlier version of this article (especially, concerning

Remark 2.2 and §5).

2. Galois representations

In this section, we shall recall some basic definitions concerning Galois representa-

tions and their L-functions.

2.1. General definitions.

Definition 2.1. Let F be a field. In this paper, the absolute Galois group of F is

always denoted by ΓF := Gal(F/F ) because the usual notation ‘GF ’ may conflict

with reductive groups.

(1) An Artin representation of ΓF is a continuous homomorphism ρ : ΓF → GL(V ),

where V is a finite dimensional vector space over C.

(2) Let ` be a prime number. An `-adic representation of ΓF is a continuous

homomorphism ρ : ΓF → GL(V ), where V is a finite dimensional vector space

over a finite extension of Q`.

The Galois group ΓF has the Krull topology, and GL(V ) has the complex (resp.

`-adic) topology for Artin (resp. `-adic) representations. Since ΓF is a compact group,

for an Artin representation ρ, the image ρ(ΓF ) is a finite group. By fixing an isomor-

phism Q`
∼= C (by Axiom of Choice), an Artin representation can be considered as

an `-adic representation. The converse is not true. There are many important `-adic

representations with infinite image (see below).

Remark 2.2. A continuous homomorphism ρ : ΓF → GL(n,Q`) is also called an `-

adic representation, where GL(n,Q`) has the `-adic topology. In this case, the image

of ρ is automatically contained in GL(n, K) for a finite extension K/Q`. This can

be shown as follows. Since ΓF is compact, the image H = Im ρ is also compact.
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Moreover, H =
⋃

[K:Q`]<∞ H ∩ GL(n,K) is a countable union of closed subgroups.

By the Baire category theorem, the interior of H ∩GL(n,K) is nonempty for a finite

extension K/Q`. Then, H ∩ GL(n,K) ⊂ H is an open subgroup, hence is of finite

index. Therefore, H = H ∩GL(n,K ′) for a finite extension K ′/K.

Let us give several examples of Galois representations.

Example 2.3. Let L/F be a quadratic Galois extension. Then, the composite

ΓF −→ Gal(L/F ) ∼= {±1} ⊂ C×

is a 1-dimensional Artin representation. Similarly, for a finite Galois extension L/F

with Galois group G, and a complex representation G → GL(n,C), the composite

ΓF −→ Gal(L/F ) ∼= G −→ GL(n,C)

is an Artin representation. All Artin representations of ΓF are obtained in this way.

Example 2.4. For an integer n ≥ 1 invertible in F , let

µn :=
{
x ∈ F

∣∣ xn = 1
}

denote the group of n-th roots of unity. For a prime number ` invertible in F , ΓF

acts on the inverse limit

Z`(1) := lim
←−

µ`n ,

which is a free Z`-module of rank 1. This gives us an `-adic character (i.e. 1-

dimensional `-adic representation)

χ` : ΓF −→ AutZ`

(
Z`(1)

) ∼= Z×` ⊂ GL(1,Q`),

which is called the `-adic cyclotomic character. For an `-adic representation V and

n ∈ Z,

V (n) := V ⊗ χ⊗n
`

is called the Tate twist of V .

Example 2.5. For an elliptic curve E over F , and an integer n ≥ 1 invertible in F ,

the group of n-torsion points on E

E[n] := {P ∈ E(F ) | [n](P ) = O}
is a free Z/nZ-module of rank 2. For a prime number ` invertible in F , we define the

`-adic Tate modules by

T`E := lim
←−

E[`n], V`E := T`E ⊗Z`
Q`.

Then, T`E is a free Z`-module of rank 2, and V`E is a 2-dimensional vector space over

Q`. Since ΓF acts on V`E continuously, this gives us a 2-dimensional `-adic Galois

representation

ρE,` : ΓF −→ GL(V`E) ∼= GL(2,Q`).

In an arithmetic situation, ρE,` can be highly nontrivial. J.-P. Serre showed that,

if F is a number field and E has no complex multiplication, the image Im ρE,` is a
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finite index subgroup of GL(T`E) ∼= GL(2,Z`) for all `, and Im ρE,` = GL(T`E) ∼=
GL(2,Z`) for all but finitely many ` ([Se]).

Example 2.6. More generally, for an algebraic variety X over F and a prime number

` invertible in F , the i-th `-adic étale cohomology

H i
ét

(
XF , Q`

)

is a finite dimensional vector space over Q` with a continuous action of ΓF . If X is

an elliptic curve,

H1
ét

(
XF , Q`

)

is isomorphic to the dual of the Tate module V`X.

2.2. Local fields. Let F be a nonarchimedean local field with residue field Fq. Then,

F is a finite extension of Qp or Fp((t)), where p is a prime number and q is a power

of p. We have a canonical surjection ϕ : ΓF ³ ΓFq . The kernel IF := Ker (ϕ) is

called the inertia group. Let Frobq ∈ ΓFq be the geometric Frobenius element defined

by Frobq(x) = x1/q for x ∈ Fq. Then, ΓFq is topologically generated by Frobq and

isomorphic to the profinite completion Ẑ of Z. The Weil group WF := ϕ−1(〈Frobq〉)
is defined to be the inverse image by ϕ of the subgroup generated by Frobq. We have

the following exact sequences :

1 → IF → ΓF → ΓFq
∼= Ẑ→ 1, 1 → IF → WF → 〈Frobq〉 ∼= Z→ 1

We can define a topology on WF such that IF ⊂ WF is an open subgroup (see [Tat]

for details).

Fix a uniformizer π ∈ F . Local class field theory gives us a canonical isomorphism

called the reciprocity isomorphism :

Art : F× ∼=−−−−→ W ab
F .

In fact, there are two normalizations of this isomorphism. In this paper, we always

use geometric normalization. Namely, under this isomorphism, a uniformizer of F

corresponds to a lifting of the geometric Frobenius element. Some people working

in algebraic number theory use arithmetic Frobenius element instead, which is the

inverse of the geometric Frobenius element.

Let ` be a prime number. As usual, an `-adic representation of WF is a continuous

homomorphism ρ : WF → GL(V ), where V is a finite dimensional vector space over a

finite extension of Q`. For an `-adic representation ρ of ΓF , the restriction ρ|WF
is an

`-adic representation of WF . But not all `-adic representations of WF are constructed

in this way because the topology on WF is stronger than the induced topology from

ΓF (cf. [Tat]). An `-adic representation ρ of WF (or ΓF ) is said to be unramified if

ρ(IF ) is trivial.
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A typical example of an `-adic representation is

| · | : WF −→ Q×` , σ 7→ |σ| =
∣∣Art−1(σ)

∣∣
F

where | · |F denotes the normalized absolute value on F (i.e. |π|F = q−1).

Assume that ` does not divide q. Then, | · | is nothing but the `-adic cyclotomic

character. For an `-adic representation ρ : WF → GL(V ), we define the L-function of

ρ by

L(s, ρ) := det
(
1− q−sFrobq; V

IF
)−1

.

Remark 2.7. When ` divides q, we can define the L-function using p-adic Hodge

theory although we do not treat it in this article (cf. Fontaine’s Dpst-functor, [Fo].

see also [Tay2]).

2.3. Global fields. Here we fix a global field F (i.e. F is a finite extension of Q or

Fp(t)), and a prime number ` invertible in F .

Let ρ : ΓF → GL(V ) be an `-adic or Artin representation. For a finite place v of F ,

Fv denotes the completion of F at v and qv denotes the cardinality of the residue field

of Fv. For each v, we fix an embedding F ↪→ F v extending F ↪→ Fv. This defines an

embedding ΓFv ⊂ ΓF . We put ρv := ρ|WFv
.

The L-function of ρ is defined as

L(s, ρ) :=
∏

v : finite place of F

L(s, ρv).

We say ρ is pure of weight w ∈ Z if there is a finite set S of finite places of F such

that, for each finite place v /∈ S, ρv is unramified, and the eigenvalues of ρ(Frobqv)

are algebraic integers whose complex conjugates have complex absolute value q
w/2
v .

Artin representations are pure of weight 0. The `-adic cyclotomic character χ` is pure

of weight −2 (because Frobqv acts as multiplication by q−1
v ). For a projective smooth

variety X over F , the i-th `-adic étale cohomology

V := H i
ét

(
XF , Q`

)

is pure of weight i by basic properties of étale cohomology and the Weil conjectures.

Example 2.8. When F = Q, the L-function of the trivial representation of ΓQ is the

Riemann zeta function :

L(s, triv) =
∏

p : prime number

1

1− ps
= ζ(s).

Similarly, for a primitive Dirichlet character

χ : (Z/NZ)× −→ C×,

the composite χ ◦ ϕN is a 1-dimensional Artin representation of ΓQ, where

ϕN : ΓQ −→ (Z/NZ)×
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is defined by σ · x = xϕN (σ) for each σ ∈ ΓQ and x ∈ µN . The L-function L(s, χ ◦ϕN)

coincides with the Dirichlet L-function :

L(s, χ ◦ ϕN) =
∏

(p,N)=1

1

1− χ(p)p−s
=

∑

(n,N)=1

χ(n)

ns
=: L(s, χ).

By the Kronecker-Weber theorem, all 1-dimensional Artin representations of ΓQ are

obtained in this way.

Example 2.9. Let F be a global field, and E an elliptic curve defined over F . Fix

a prime number ` invertible in F . The L-function of E is defined as

L(s, E) := L
(
s,H1

ét

(
EF , Q`

))
.

It is known that RHS is independent of the choice of ` and L(s, E) is well-defined.

For a finite place v of F where E has good reduction, let #E(κ(v)) be the number

of rational points of the reduction modulo v of E, and put av := qv + 1−#E(κ(v)).

Then, the L-function L(s, E) is written as follows :

L(s, E) =

( ∏

v : good

1

1− avq−s
v + q1−2s

v

)
· ( bad factors

)
.

More generally, for a projective smooth variety X over F , the Hasse-Weil zeta function

of X (at good places v) can be written as a product of L-functions (and inverses of

them) of `-adic representations of ΓF defined by the étale cohomology H i
ét

(
XF , Q`

)
.

Example 2.10. Let f =
∑∞

n=0 an(f)qn be a holomorphic modular form on Γ1(N) of

level k and character ε. Assume that f is a normalized cusp form (i.e. a0 = 0, a1 = 1).

Assume moreover that f is a common eigenvector of all Hecke operators. Let K be

a number field generated by an, and λ a finite place of K above `. M. Eichler, G.

Shimura, P. Deligne, J.-P. Serre constructed an `-adic representation

ρf,` : ΓQ −→ GL(2, Kλ)

satisfying

Tr(Frobp) = ap(f), det(Frobp) = ε(p)pk−1

for all p prime to `N ([De], [DS]). Usually, ρf,` is called the `-adic representation

associated to f . If k = 2, ε is trivial (i.e. f is a modular form on Γ0(N)), and

an ∈ Z for all n, ρf,` is constructed from the Tate module of an elliptic curve over Q
(Eichler-Shimura). For example, let

g(q) = q

∞∏
n=1

(1− qn)2(1− q11n)2 =
∞∑

n=1

an(g)qn

be a unique cusp form on Γ0(11). The `-adic representation associated to f is con-

structed from the Tate module of the elliptic curve

E : y2 + y = x3 − x2.

Namely, the relation ap(g) = p + 1 − #E(Fp) holds for all p 6= 11. Note that the

modular curve X0(11) is an elliptic curve, and isogenous to E.
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Remark 2.11. Conversely, when a 2-dimensional `-adic (or Artin) representation

ρ is given, it is a very important (but difficult) problem to prove ρ is associated

to a modular form (so called modularity problems). There are several traditional

conjectures of this type. The (strong) Artin conjecture predicts that, an irreducible

odd 2-dimensional Artin representation ρ : ΓQ → GL(2,C) is associated to a modular

form of weight 1 (Here ‘odd’ means the determinant of complex conjugate is equal to

−1). This was known to be true when the image of ρ is solvable (Langlands-Tunnell

theorem). Recently, this was (almost) proved by C. Khare and J.-P. Wintenberger

(cf. [Kh]). The Taniyama-Shimura conjecture predicts that, for an elliptic curve E

over Q, the Galois representation obtained from (the dual of) the Tate module of E

is associated to some modular form of weight 2 (i.e. All elliptic curves over Q are

modular). This was finally proved by C. Breuil-B. Conrad-F. Diamond-R. Taylor

([BCDT]).

3. The Langlands correspondence for GL(n)

Let F be a global field (i.e. finite extension of Q or Fp(t)), and AF the adèle ring

of F . We fix a prime number ` invertible in F . To simplify the notation, we fix an

isomorphism C ∼= Q` (by Axiom of Choice).

Roughly speaking, the global Langlands correspondence for GL(n) over F is a

conjectural correspondence preserving L-functions between

Automorphic side: (algebraic) automorphic representations of GL(n,AF ), and

Galois side: (geometric2) n-dimensional `-adic representations of the absolute

Galois group ΓF := Gal(F/F ).

An automorphic representation π of GL(n,AF ) and an n-dimensional `-adic rep-

resentation ρ of ΓF are said to be associated if there is an integer w ∈ Z and a finite

set S of finite places of F such that

L(s− w/2, πv) = L(s, ρv).

for each finite place v /∈ S. (The existence of w is just a matter of normalization.)

Examples of associated pairs (π, ρ) can be obtained via class field theory (n = 1),

or `-adic representations associated to modular forms (n = 2) ([De], [DS]). For each

π, there exists at most one ρ associated to π by the Chebotarev density theorem.

Also, for each ρ, there exists at most one π associated to ρ by the strong multiplicity

one theorem.

2in the sense of Fontaine-Mazur (This condition can be made precise using p-adic Hodge theory.)
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It is expected that cuspidal automorphic representations correspond to irreducible

Galois representations. The Ramanujan conjecture predicts that the `-adic represen-

tation associated to a cuspidal automorphic representation is pure.

It has been a serious problem which Galois representations should correspond to

automorphic representations. Recently, thanks to the development of p-adic Hodge

theory (theory of de Rham representations) and the Fontaine-Mazur conjecture, we

can now state a precise conjecture over number fields without assuming other conjec-

tures.

Conjecture 3.1 ([Tay2], Conjecture 3.5). Let ρ : ΓQ → GL(V ) be an irreducible n-

dimensional `-adic representation of ΓQ which is unramified at all but finitely many

places, and de Rham at p = `. Then, there is a cuspidal automorphic representation

π of GL(n,AQ) associated to ρ.

Remark 3.2. In the above statement, the existence of the Langlands dual group

‘LF ’ is not assumed!

Remark 3.3. Conversely, for certain number fields F and certain automorphic repre-

sentations π of GL(n,AF ), the `-adic representations associated to π were constructed

by L. Clozel, R. Kottwitz, M. Harris-R. Taylor ([Cl], [Ko1], [HT], see also [Tay2]).

Remark 3.4. When F is a global field of characteristic p > 0 (i.e. F is a finite exten-

sion of Fp(t)), there is also a precise statement of the global Langlands correspondence

for GL(n) over F . This was proved by V. Drinfeld (for GL(2)) and L. Lafforgue (for

GL(n)) (cf. [Laf]).

Remark 3.5. Usually, the ‘statement’ of the Langlands correspondence (or conjec-

ture) uses complex representations of the (hypothetical) Langlands dual group ‘LF ’

(cf. [Co1]). It is expected that LF is a topological group and is an extension of the

absolute Galois group ΓF by a compact group :

1 −→ (
compact group

) −→ LF −→ ΓF −→ 1.

A tricky point is that the group LF is yet to be defined for a global field F ! Perhaps,

when char F > 0, we could define (a candidate of) LF using the global Langlands

correspondence proved by V. Drinfeld and L. Lafforgue. There is a definition of LF

for a local field F . If F is nonarchimedean, we define LF := WF × SU(2). On the

other hand, If F is archimedean (i.e. R or C), LF is the same as the Weil group WF ,

which is not treated in this paper (cf. [Tat], [Kn]).

Remark 3.6. You might be irritated with the ‘statement’ of the ‘Langlands conjec-

tures’ in a usual literature. A prescription for this is, whenever you read (or write)

articles containing LF , you replace ‘complex representations of LF ’ by ‘`-adic rep-

resentations of ΓF ’ and use p-adic Hodge theory (secretly in your mind). It seems

that the notion of `-adic representations of ΓF is essential to state precise conjectures

(without assuming other conjectures such as the existence of LF ).

8



3.1. The local Langlands correspondence for GL(n). Let F be a nonarchimedean

local field (i.e. finite extension of Qp or Fp((t))). We fix an isomorphism C ∼= Q` as

before.

An `-adic representation ρ of WF is said to be Frobenius semisimple if, for a lifting

σ ∈ WF of the geometric Frobenius element, ρ(σ) is semisimple (i.e. diagonalizable).

There is a notion of an irreducible admissible representation (over C) of GL(n, F ) (for

precise statements, see [LRS], [HT], [He]. see also [Ku]).

Theorem 3.7 (Local Langlands Correspondence for GL(n)). There exists a ‘nat-

ural’ bijection between the equivalence classes (over Q`) of Frobenius semisimple n-

dimensional `-adic representations of the Weil group WF , and the equivalence classes

(over C) of irreducible admissible representations of GL(n, F ).

The local Langlands correspondence for GL(1) is nothing but the local class field

theory. Of course, one has to explain what should be a ‘natural’ bijection. There is a

precise statement involving L-functions and ε-factors for pairs, and it was proved by

G. Laumon-M. Rapoport-U. Stuhler when char F > 0, and by M. Harris-R. Taylor,

G. Henniart when char F = 0

Remark 3.8. Usually, the local Langlands correspondence for GL(n) is formulated

in terms of complex representations of the (local) Langlands dual group LF := WF ×
SU(2) (or the Weil-Deligne group, equivalently). The above statement is equivalent

to the usual one (see [Tat], Theorem 4.2.1).

Remark 3.9. In contrast to the global case, over a local field, L-functions are not

strong enough to characterize representations. For example, for n ≥ 2 and a super-

cuspidal representation (which corresponds to an irreducible Galois representation)

π of GL(n, F ), the local L-function L(s, π) is always 1.

Remark 3.10. It is worth noting that although Theorem 3.7 is a local statement, no

local proof was known in general. Even for GL(2), a purely local proof was obtained

quite recently (cf. [BH]). All the proofs given in [LRS], [HT], [He] use (global) trace

formula arguments and the étale cohomology of Shimura varieties (or their function

field analogues).

Remark 3.11. In this article, we do not treat archimedean places (cf. [Kn]). There

is a statement of the local Langlands correspondence (for general reductive groups)

over archimedean local fields (i.e. R or C), and it was proved by R. Langlands himself

(Langlands classification, [Lan]).
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4. The case of general reductive groups

For general reductive groups, the statement of the Langlands correspondence is

much more ambiguous. In this section, let F be a global or local field, and G a

connected reductive group over F .

4.1. L-groups and dual groups. The L-group LG of G is of the form

LG = Ĝo ΓF ,

where Ĝ is a connected reductive group over C called the dual group of G, and

ΓF := Gal(F/F ) is the absolute Galois group of F as usual. Instead of giving the

definition, we give several examples (for a precise definition, see [Bo], [Co2]).

G Ĝ
GL(n) GL(n,C)
SL(n) PGL(n,C)
PGL(n) SL(n,C)
SO(2n) SO(2n,C)
SO(2n + 1) Sp(2n,C)
Sp(2n) SO(2n + 1,C)
GSp(2n) GSpin(2n + 1,C)

Roughly speaking, Ĝ is obtained from G by interchanging the roots and coroots.

If G is simply connected (resp. adjoint), the dual group Ĝ is adjoint (resp. simply

connected).

Since an inner automorphism acts trivially on roots and coroots, if G′ is an inner

form of G, we have canonical identifications LG = LG′, Ĝ = Ĝ′.

The action of ΓF on Ĝ is obtained from the action of ΓF on the set of roots and

coroots of G. Therefore, if G is an inner form of a split group, the action of ΓF on Ĝ

is trivial, and LG is just a direct product of Ĝ and ΓF :

LG = Ĝ× ΓF .

4.2. The Langlands correspondence for G. Let F be a global field (although the

local version should exist as well). Roughly speaking, the Langlands correspondence

for G over F is a conjectural correspondence between

Automorphic side: (certain) automorphic representations of G(AF ), and

Galois side: (certain) homomorphisms ρ : LF → LG, called L-parameters, such

that the composite pr2 ◦ ρ : LF → ΓF is the canonical one.

It is not bijective for general G. It is also conjectured that the set of equivalence

classes of automorphic representations of G(AF ) should be partitioned into a set of
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‘L-packets’, and an L-packet should correspond to an L-parameter. This is a vague

statement because neither the notion of L-packets nor L-parameters are defined. (The

Langlands dual group LF is yet to be defined!)

To obtain a reasonable (and practical) statement, it seems necessary to consider

`-adic representations of ΓF (instead of complex representations of ‘LF ’).

For simplicity, we assume G is an inner form of a split group. Then, the L-group
LG is the product of Ĝ and ΓF . Since the complex reductive group Ĝ is defined over

Z, we consider the set of Q`-rational points of it. We denote it by Ĝ(Q`) here. Then,

a continuous homomorphism

ρ : ΓF −→ Ĝ(Q`)

is an ‘`-adic avatar’ of ρ : LF → LG.

For an automorphic representation π of G(AF ) and a representation of Ĝ as a

reductive group

r : Ĝ −→ GL(n),

the theory of Satake parameters enable us to define the L-function L(s, r, πv) for all

but finitely many v (cf. [Bo]).

In the Galois side, L-functions are defined as follows. For each finite place v of F ,

we fix an embedding F ⊂ F v. This gives us an embedding ΓFv ⊂ ΓF as usual. For

each ρ : ΓF → Ĝ(Q`) and r : Ĝ → GL(n), the composite

(r ◦ ρ)|ΓFv
: ΓFv

ρ−−−−→ Ĝ(Q`)
r−−−−→ GL(n,Q`)

is an n-dimensional `-adic representation of ΓFv . Then, the L-function L(s, r, ρv) is

defined to be the L-function of (r ◦ ρ)|ΓFv
:

L(s, r, ρv) := L
(
s, (r ◦ ρ)|ΓFv

)
.

Then, an `-adic version of the Langlands correspondence for G over F is a conjec-

tural correspondence between

Automorphic side: (L-packets of) automorphic representations π of G(AF ),

and

Galois side: continuous homomorphisms ρ : ΓF → Ĝ(Q`).

such that, for all r : Ĝ → GL(n), there exists an integer w ∈ Z satisfying the equality

L(s− w/2, r, πv) = L(s, r, ρv)

for all but finitely many v (If it is satisfied, we say π and ρ are associated). This is

still an ambiguous statement because the notion of ‘L-packets’ is yet to be defined

(even locally). However, it makes sense to conjecture the following direction :

Conjecture 4.1. For an automorphic representation π of G(AF ), there exist a con-

tinuous homomorphism ρ : ΓF → Ĝ(Q`) associated to π.
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Of course, once this is established, it is natural to consider the correspondence

πv ↔ ρv for all v (including bad places).

Remark 4.2. There should exist a similar statement over a local field F . When F is

archimedean, it was formulated and proved by Langlands (Langlands classification,

[Lan]). Also, when F is nonarchimedean, it was formulated and proved for unramified

representations (Satake parameters, [Bo]).

5. Principle of Functoriality

Let F be a global field (although the local version should exist as well), and G,G′

connected reductive groups over F . For simplicity, we assume G,G′ are inner forms

of split groups as before.

Let us believe (an `-adic version of) the Langlands correspondence explained in

§4.2 for the moment. For an automorphic representation π of G(AF ), there should

exist a Ĝ-valued `-adic representation

ρ : ΓF −→ Ĝ(Q`)

associated to π. For a homomorphism f : Ĝ → Ĝ′ of reductive groups, the composite

ΓF
ρ−−−−→ Ĝ(Q`)

f−−−−→ Ĝ′(Q`)

is a Ĝ′-valued `-adic representation. Then, by the Langlands correspondence for G′,
f ◦ρ should be associated to (an L-packet containing) an automorphic representation

f∗π of G′(AF ).

By this way, it is expected that each homomorphism f : Ĝ → Ĝ′ should induce

an operation π 7→ f∗π from the set of (L-packets of) automorphic representations of

G(AF ) to that of G′(AF ) satisfying

L(π, r ◦ f, s) = L(f∗π, r, s)

for all r : Ĝ′ → GL(n). This is called the Principle of Functoriality, and such f∗π
is called the lifting (or transfer) of π. Note that, although the above explanation

uses (an `-adic version of) the Langlands correspondence, the (conjectural) operation

‘π 7→ f∗π’ can be described without `-adic representations (at least for all but finitely

many v) (cf. [Co2]).

The full version of the Principle of Functoriality is actually described in terms

of L-groups rather than dual groups. The Langlands correspondence itself can be

considered as a special case of the Principle of Functoriality (between the trivial

group and G). To establish some cases of the Principle of Functoriality is one of the

most important problems in this area.

We give several (conjectural) examples (see [Co2]).
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Example 5.1. For a finite extension F ′/F , the restriction ρ 7→ ρ|ΓF ′ should induce an

operation from automorphic representations of G(AF ) to automorphic representations

of G(AF ′). This operation is called base change.

Example 5.2. For simplicity, consider the case of GL(n). For a finite extension F ′/F
of degree d, the induction ρ 7→ IndΓF

ΓF ′
ρ should induce an operation from automorphic

representations of GL(n,AF ′) to automorphic representations of GL(nd,AF ). This

operation is called automorphic induction.

Example 5.3. If G is an inner form of G′, the L-groups (and dual groups) of G,G′

are the same. Assume moreover that G′ is quasi-split. The identity Ĝ = Ĝ′ should

induce an operation from automorphic representations of G(AF ) to automorphic rep-

resentations of G′(AF ). This operation is called transfer to quasi-split inner forms.

When G′ = GL(2) and G = B× for a quaternion algebra B over F , this operation is

also called the Jacquet-Langlands(-Shimizu) correspondence. Note that this operation

is not a bijection. For example, an automorphic representation π of GL(2,AF ) comes

from B×(AF ) if and only if πv is discrete series for all v such that B⊗F Fv is a division

algebra.

Example 5.4. Let G = GL(2) and G′ = GL(n + 1). There is a symmetric power

homomorphism

Symn : GL(2,C) −→ GL(n + 1,C).

This should induce an operation from automorphic representations of GL(2,AF ) to

automorphic representations of GL(n+1,AF ). This operation is called the symmetric

power lifting.

Why is the Principle of Functoriality important? There are several reasons. One

reason is that it explains many difficult theorems in a uniform way. It also predicts

many difficult conjectures. The Principle of Functoriality gives us a collection of

(very difficult) problems with an answer sheet. (However, naturally, it does not tell

us how to solve them.) Another reason is that, since the Principle of Functoriality is

widely believed, it gives us a strong evidence to other number theoretic problems. For

example, it has been known that the (weak) Artin conjecture (i.e. entireness of L(s, ρ)

for irreducible nontrivial Artin representations ρ) is a consequence of the Langlands

correspondence for GL(n) for Artin representations, Fermat’s Last Theorem is a

consequence of the Taniyama-Shimura conjecture, and the Sato-Tate conjecture is

a consequence of the Taniyama-Shimura conjecture and the existence of symmetric

power liftings (as in Example 5.4, see also [Tay3]).

Contrary to its name, there is no ‘principle’ to establish the Principle of Functorial-

ity. One reason seems that we do not know many methods to construct automorphic

representations from group theoretic data. Nevertheless, today, there are several tech-

niques to construct automorphic representations, and most of them can be used to

establish the Principle of Functoriality in some cases. Let us list a few of them.
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• Some automorphic forms are explicitly constructed (e.g. Eisenstein series, Ra-

manujan’s ∆-function). For GL(n), Eisenstein series corresponds to a direct

sum of Galois representations. Although explicit construction is important in

its own right, there seems no hope to construct all automorphic representa-

tions by this way.

• Theta series (or theta correspondence) is a traditional and powerful method

to construct automorphic representations. There are many important and

impressive results concerning this. It is applicable only for special (pairs of)

groups.

• For GL(n), once we know nice analytic properties of L-functions, we can con-

struct automorphic representations of GL(n,AF ) by the Converse Theorem.

Recently, this method is studied in detail to establish the Principle of Functo-

riality for ‘generic’ representations of classical groups ([CKPSS], [AS1], [AS2]).

This is also used in Lafforgue’s work ([Laf]).

• Trace formula (stabilized or twisted) is a general powerful method. Up to now,

it works well only for GL(n) and related groups. One of the major difficulty is

so called the Fundamental Lemma. Contrary to its name, it is not a lemma,

but a collection of conjectural identities between orbital integrals. Recently,

great progress has been made with (some versions of) this Lemma for GSp(4)

([Wh1], [Wh2]) and unitary groups ([LN]). It would be expected that, thanks

to these results, many cases of the Principle of Functoriality will be established

in the near future.

• We can sometimes construct automorphic representations using Galois rep-

resentations. For example, we can construct automorphic representations of

GL(n) using (known cases of) the Artin conjecture (e.g. Langlands-Tunnell

theorem). A non-Galois (global) automorphic induction, which was con-

structed by M. Harris using Galois representations, is crucially used in the

proof of the local Langlands correspondence for GL(n) over p-adic fields ([HT],

[He]). After Taylor-Wiles ([TW], [Wi]), the ‘R = T method’ becomes a very

powerful tool in arithmetic geometry. By this method, A. Wiles proved some

cases of the Taniyama-Shimura conjecture (which is a special case of the

Langlands correspondence for GL(2)) and proved Fermat’s Last Theorem.

L. Clozel, M. Harris, N. Shepherd-Barron, R. Taylor established the existence

of (a ‘potential’ version of) the (even dimensional) symmetric power liftings

and proved many cases of the Sato-Tate conjecture ([HSBT], [CHT], [Tay3]).

C. Khare and J.-P. Wintenberger proved (almost) all cases of the Artin con-

jecture for GL(2) over Q (cf. [Kh]). The ‘R = T method’ for GSp(4) has been

studied by A. Genestier and J. Tilouine ([GT], [Ti]).
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6. Motivating examples — the case of GSp(4)

In this section, we give several results and expectations concerning automorphic

representations of GSp(4) from the viewpoint of `-adic Galois representations and the

Principle of Functoriality. We hope that the content of this section would motivate

the participants of the workshop (and the readers of this volume) to study the case

of GSp(4) in detail.

6.1. Definition of GSp(4). To fix the notation, let J ∈ M4(Q) be the 4× 4 matrix

defined by

J :=




1
1

−1
−1


 .

We define the symplectic similitude group GSp(4) over Q by

GSp(4, R) :=
{
(X,λ) ∈ M4(R)×R× ∣∣ tXJX = λJ

}
,

where R is a Q-algebra.

Remark 6.1. There are several different conventions in the literature according to

different backgrounds. The group GSp(4) is also written as GSp(2) because its

semisimple rank is equal to 2. Perhaps it may be a natural scene in a workshop

that one asks “What is the size of the matrices for your GSp?”, “Is your GSp(2) the

same as my GSp(4)?”,... etc. Instead of J , one can also use

J ′ :=




1
1

−1
−1




to obtain another group, which is isomorphic to GSp(4). This seems the official

definition of GSp(4) in this workshop according to the webpage 3. In fact, to discuss

the relation between automorphic representations and classical Siegel modular forms,

J ′ seems more convenient than J .

6.2. The Langlands correspondence for GSp(4). Let F be a global or a local

field. Let us consider GSp(4) as an algebraic group over F . The dual group ĜSp(4) of

GSp(4) is isomorphic to GSpin(5,C). Since GSpin(5,C) is isomorphic to GSp(4,C)

via the spinor representation provided by Clifford algebra theory, we have :

ĜSp(4) = GSpin(5,C) ∼= GSp(4,C), LGSp(4) ∼= GSp(4,C)× ΓF .

The spinor representation

spin : ĜSp(4) = GSpin(5,C) ∼= GSp(4,C) ⊂ GL(4,C)

3http://math01.sci.osaka-cu.ac.jp/~furusawa/Hakuba2006/Hakuba%202006.html
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is denoted by spin. For an automorphic representation π of GSp(4,AF ), the L-

function L(s, spin, π) is called the spinor L-function. On the other hand, a natural

map GSpin(5,C) → GL(5,C) is denoted by st (standard). The L-function L(s, st, π)

is called the standard L-function.

Let F be a global field. We fix a prime number ` invertible in F , and an isomorphism

Q`
∼= C. Then, the global Langlands correspondence for GSp(4) is a conjectural

correspondence between

Automorphic side: (L-packets of) automorphic representations π of GSp(4,AF ),

and

Galois side: continuous homomorphisms ρ : ΓF → GL(4,Q`).

If ρ corresponds to π, one hopes the following equality holds

L(s, ρv) = L(s, spin, πv)

for all but finitely many v.

It seems to the author that, up to now, the local Langlands correspondence for

GSp(4) is not completely known although great progress has been made in recent

years when π is generic ([AS1], [AS2], [JS]). The local L-factor L(s, spin, πv) is yet

to be defined for all v (without assuming other conjectures). A notion of L-packets

for GSp(4) is yet to be defined (even locally). Once everything is defined and the

local Langlands correspondence is established for GSp(4), it is natural to hope that

the L-factors are equal for all v, and, moreover, the correspondence ρv ↔ πv is the

local Langlands correspondence for all v (i.e. compatibility of the local and global

Langlands correspondences).

6.3. Results of R. Taylor, G. Laumon, R. Weissauer. When F = Q, the fol-

lowing results are known ([Tay1], [Lau1], [Lau2], [Wei]).

Theorem 6.2 (R. Taylor, R. Weissauer, G. Laumon (see [Wei], Theorem I)). Let π be

a cuspidal automorphic representation of GSp(4,AQ) such that π∞ is a holomorphic

discrete series of weight (k1, k2), k1 ≥ k2 ≥ 3 (This means, in a classical language,

the automorphy factor of the corresponding (vector valued if k1 > k2) Siegel modular

form is Symk1−k2 ⊗ det⊗k2 as a representation of GL(2,C)). For each prime number

`, there exists a finite extension Eπ,` of Q` and a 4-dimensional `-adic representation

ρ = ρπ,` : ΓQ −→ GL(4, Eπ,`)

such that the equality

L(s, ρp) = L
(
s− (k1 + k2 − 3)/2, spin, πp

)

holds for all but finitely many prime number p.
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We say ρ is an `-adic representation associated to π (this explains a part of the

title of this article).

R. Taylor constructed ρπ,` under certain hypothesis using the congruence relation.

On the other hand, G. Laumon and R. Weissauer (independently) calculated the

Hasse-Weil zeta function of Siegel 3-folds by comparing the Selberg and Lefschetz

trace formulae (Ihara-Langlands methods). Then, they constructed ρπ,` from the

étale cohomology of Siegel 3-folds. Note that the Fundamental Lemma in this case

was proved by T. Hales and R. Weissauer.

Remark 6.3. It is natural to expect that the image of ρπ,` should be contained in

GSp(4, Eπ,`). This does not seem to be known, up to now. However, this would be

a consequence of the Poincaré duality for the étale cohomology of Siegel 3-folds, and

the multiplicity one property of automorphic representations of GSp(4) (see [Wei],

Theorem IV). One also hopes that, in the near future, the development of the (twisted

stabilized) trace formula for GSp(4) would enable us to establish this property ([Ar2]).

Remark 6.4. Conversely, when a 4-dimensional `-adic representation of ΓF is given,

it is natural to ask whether it is associated to an automorphic representation of

GSp(4,AF ). In [RS], D. Ramakrishnan and F. Shahidi studied this problem for

Galois representations obtained as a symmetric cube of the Tate module of an elliptic

curve. In [Ti], J. Tilouine studied 4-dimensional `-adic representations of ΓQ defined

by the Tate modules of abelian surfaces.

6.4. Transfers concerning GSp(4). We give several important examples of trans-

fers, which are predicted by the Principle of Functoriality, concerning GSp(4) over a

global field F . (Of course, there should be a local analogue. But we do not consider

it here.)

Example 6.5 (Transfer from GSp(4) to GL(4)). Consider the spinor representation

spin : ĜSp(4) = GSpin(5,C) ∼= GSp(4,C) ⊂ GL(4,C).

The Principle of Functoriality predicts that, for an automorphic representation π of

GSp(4,AF ), there should exist an automorphic representation τ of GL(4,AF ) satis-

fying

L(s, spin, π) = L(s, τ).

If it exists, it is called the transfer of π to GL(4). In recent years, great progress

has been made in the construction of this transfer either by the Converse Theorem

and the Langlands-Shahidi method ([AS1], [AS2]), or the (twisted stabilized) trace

formula ([Wh1], [Wh2]).

Example 6.6 (Transfer from an inner form of GSp(4) to GSp(4)). Let G be an

inner form of GSp(4). Such G is called a quaternion unitary group, and constructed

from a quaternion algebra as follows. Let B be a quaternion algebra over F , and
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B 3 b 7→ b ∈ B the main involution. Then, the reduced trace of b ∈ B is b + b and

the reduced norm of b is b · b. When B is split (i.e. isomorphic to the matrix algebra

M2(F )), the main involution is
(

x y
z w

)
7→

(
w −y
−z x

)
.

The quaternion unitary group GB is defined as

GB(R) :=

{(
a b
c d

)
∈ M2(B ⊗F R)

∣∣∣∣
(

a c
b d

)(
0 1
−1 0

)(
a b
c d

)
=

(
0 1
−1 0

)}

for an F -algebra R. When B = M2(F ), GB is isomorphic to GSp(4). The L-groups

of GB and GSp(4) are the same. Since GSp(4) is quasi-split (in fact, it is split),

for an automorphic representation π of GB(AF ), there should exist an automorphic

representation τ of GSp(4,AF ) whose L-functions are the same. This is an analogue

of the Jacquet-Langlands-Shimizu correspondence.

Example 6.7 (Endoscopic transfer). Let

H :=
(
GL(2)×GL(2)

)
/GL(1)

be a unique nontrivial elliptic endoscopic group of GSp(4), where the embedding of

GL(1) into GL(2)×GL(2) is given by

GL(1) 3 x 7→
((

x
x

)
,

(
x−1

x−1

))
∈ GL(2)×GL(2).

The dual group Ĥ of H is given by

Ĥ :=
{
(A,B) ∈ GL(2,C)×GL(2,C)

∣∣ det A = det B
}
,

and it is embedded into ĜSp(4) = GSp(4,C) by

Ĥ 3
((

a1 b1

c1 d1

)
,

(
a2 b2

c2 d2

))
7→




a1 b1

a2 b2

c2 d2

c1 d1


 ∈ ĜSp(4).

Let π be an automorphic representation of H(AF ), which is identified with a pair

(π1, π2) of automorphic representations of GL(2,AF ) with same central character.

Then, the Principle of Functoriality predicts there should exist an automorphic rep-

resentation τ of GSp(4,AF ) satisfying

L(s, spin, τ) = L(s, π1) · L(s, π2).

Examples of such representations are obtained via the Yoshida lifting (or Saito-

Kurokawa lifting when one of π1, π2 is an Eisenstein series). In terms of the associated

Galois representations, this operation corresponds to a direct sum :

ρτ,` = ρπ1,` ⊕ ρπ2,`.
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6.5. Arthur’s classification for GSp(4). Finally, we show, for a global field F ,

how Arthur’s (conjectural) classification (cf. [Ar2]) of automorphic representations of

GSp(4,AF ) in the discrete spectrum of L2
(
GSp(4, F )\GSp(4,AF )

)
can be explained

in terms of Galois representations. This is a ‘non-canonical’ explanation. Usually,

as in [Ar2], it is explained in terms of ‘A-packets’ (for A-packets, see Hiraga’s article

[Hi]).

Let π be a (discrete) automorphic representation of GSp(4,AF ). As usual, we

expect there should exist a 4-dimensional `-adic Galois representation ρ = ρπ,` asso-

ciated to π. Then, it seems natural to classify π according to the decomposition of ρ

into irreducible representations as follows.

(1) (General type) ρ is 4-dimensional, irreducible, pure of weight w.

(2) (Yoshida type) ρ = τ ⊕ τ ′ is a direct sum of τ and τ ′. Both are 2-dimensional,

irreducible, and pure of weight w.

(3) (Soudry type) ρ = τ ⊕ τ(1), where τ(1) is the Tate twist of τ , and τ is 2-

dimensional, irreducible, pure of weight w + 1. Hence, τ(1) is pure of weight

w − 1.

(4) (Saito-Kurokawa type) ρ = τ⊕χ⊕χ(1), where τ is 2-dimensional, irreducible,

pure of weight w, and χ is 1-dimensional, pure of weight w + 1.

(5) (Howe, Piatetski-Shapiro type) ρ = χ ⊕ χ(1) ⊕ χ′ ⊕ χ(1), where χ, χ′ are

1-dimensional and pure of weight w + 1.

(6) (1-dimensional type) ρ = χ ⊕ χ(1) ⊕ χ(2) ⊕ χ(3), where χ is 1-dimensional

and pure of weight w + 3.

These names are taken from [Ar2]. The readers should not confuse ‘general type’

with ‘generic’, which is a different notion concerning the existence of Whittaker mod-

els (see Ichino’s article [Ic]). One naturally expects that, geometrically, the above

classification should correspond to the Lefschetz decomposition of the étale cohomol-

ogy of Siegel 3-folds (cf. [Ar1], §9, see also [Ko2]).

In contrast to the case of GL(n), many cuspidal automorphic representations of

GSp(4) correspond to reducible Galois representations. Some of them do not even

satisfy the Ramanujan conjecture (i.e. the associated 4-dimensional Galois represen-

tations are not pure). Examples of such representations are obtained via the Saito-

Kurokawa lifting (cf. [Sch]).

An automorphic representation π of type (1) or (2) satisfies the Ramanujan con-

jecture. Sometimes, π of type (2) is called endoscopic (examples are obtained via the

Yoshida lifting), and π of type (3),(4), or (5) is called CAP (Cuspidal Associated with

Parabolic). Precisely speaking, π of type (3) is associated with the Klingen parabolic

subgroup, π of type (4) is associated with the Siegel parabolic subgroup, and π of

type (5) is associated with the Borel subgroup.
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