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Theorem (A consequence of Golusin inequalities). Let Ω be a disk or a
half plane in Ĉ (including the case of the complement of a closed disk). If
g : Ω → Ĉ is a univalent holomorphic mapping, then for z, ζ ∈ Ω with
z, ζ, g(z), g(ζ) $= ∞ and z $= ζ,

∣∣∣∣ log
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Theorem (A general estimate on Fatou coordinate). Let Ω be a disk or a
half plane and f : Ω → C a holomorphic function with f(z) $= z. Suppose f
has a univalent Fatou coordinate Φ : Ω → C, i.e., Φ(f(z)) = Φ(z) + 1 when
z, f(z) ∈ Ω. If z ∈ Ω and f(z) ∈ Ω, then
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where r is a real number such that 0 ≤ r < 1 and dD(0, r) = dΩ(z, f(z)).
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