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Irrationally indifferent fixed points
We consider holomorphic functions of one variable with fixed point z=0.

f(z) = λz + a2z2 + . . .

1

|λ| = 1

1

If               ,  z=0 is called indifferent fixed point.
λ

1

If       is a root of unity,  parabolic; otherwise irrationally indifferent.

λ = e2πiα

1

α ∈ R ! Q

1

If conjugate to a rotation (linearizable), then it has a Siegel disk.
Otherwise, very complicated invariant sets (hedgehogs).  

Earlier works: Siegel, Bruno, Herman, Yoccoz, Perez Marco, 
Petersen, McMullen, Buff, Chéritat, ...

f0(z) = z + a2z2 + O(z3) a2 != 0

1

Consider

and its perturbation f(z) = e2πiαz + a2z2 + . . .
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Linearizability of irrationally indifferent fixed points
Siegel (under Diophantine cond.), Bruno (under Bruno condition), 
Yoccoz (a new proof using renormalization and converse);  
Cremer (nonlinearizable ex.)

Boundary of Siegel disks (Jordan curve in known cases)
Herman (quadratic polynomial, bouded type rotation number => J. curve)

Petersen (quad. poly., bouded type => locally connected J, measure 0)
Herman-Yoccoz, Petersen-Zackeri (weaker cond. for J. curve w. crit. pt.)
Herman (quadratic polynomial, no critical point on bdry)
Buff-Cheritat (various smoothness)

Universality/Rigidity at the boundary
Manton-Nauenberg (experiments, heuristic argument)
McMullen (quadratic-like map  => rigidity and differentiability)
This talk (a new class    ,  high type rotation number

=> rigidity and differentiability)



Physicists’ motivation
KAM torus Chaos

last KAM torus destroyed?
Physicists expect a “universal phenomenon” at critical parameter

Simpler model (no parameter, only in the phase space)
Irrationally indifferent fixed point

holomorphic near 0f(z) = e2πiαz + a2z2 + . . .

1

linearization

Siegel Disk boundary

Outside??
Julia set

Chaotic dynamics

.....

Boundary of Siegel Disk is the closure of critical orbit (for polynomials)

Physicists expect a “universal phenomenon” at the boundary of SD
Manton-Nauenberg (physicists),  McMullen (for bounded type)



Remark. The closure of critical orbit contains boundary of Siegel disk.
The above theorem follows from Rigidity result (Theorem 5) via a dif-
ferentiability result on quasiconformal mappings.

1

Theorem (McMullen). Let f and f̂ be quadratic-like maps with Siegel
disks of period one with the same rotation number α of bounded type.
Then f and f̂ are conjugate by a quasiconformal mapping ϕ which is
C1+γ-conformal on the boundary of the Siegel disk, i.e.

ϕ(z) = ϕ(z0) + A(z − z0) + O(|z − z0|1+γ) as z → z0

where z0 is on the boundary of the Siegel disk and A is a non-zero
constant.

1

Theorem. Let f = e2πiαh and f̂ = e2πiαĥ where h and ĥ are in the
class F1 which will be defined later, and the rotation number α is of
high type (N) with sufficiently large N (also defined later). Then f and
f̂ are asymptotically conformally conjugate on the closure of critical
orbit. Moreover the conjugacy is C1+γ-conformal on the critical orbit.
Furthermore there exists 0 < λ < 1 such that if the contunued fraction
coefficients of α satisfies an ≤ Cλn with some C > 0 then the conjugacy
is C1+γ′

-conformal on the closure of the critical orbit.
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Differentiable functions

graph looks 
like a line

In small scale...
homeomorphism:  can do anything
quasi-symmetric, quasi-conformal:  bounded ratio

asymptotically conformal:  ratio -> 1
C1+α

1

:  ratio -> 1  “fast”

For conjugacies between dynamical systems...
compare orbits
to see details, need to iterate many times



Return map
f

1

Rf

1

g

1

Rf = (first return map of f) after rescaling (1)

= g ◦ fk ◦ g−1 (if return time ≡ k) (2)

1

high iterates of f

1

fewer iterates of Rf

1

fine orbit structure for f

1

Rf

1

large scale orbit structure for 

Renormalization

Successive construction of Rf , R2f , . . . , helps to understand the
dynamics of f (orbits, invariant sets, rigidity, bifurcation, . . . )

1

If Rf = f (fixed point of renormalization),
then f = g ◦ fk ◦ g−1 (fixed point equation)

1



Renormalization and Rigidity (an oversimplified view)
Suppose f and f̃ have “the same combinatorial type” and
admit successive construction of renormalizations.

1

f̃0 = f̃

1

f̃1 = Rf̃0

1

f̃2 = Rf̃1

1

f̃3 = Rf̃2

1

g̃0

1

g̃1

1

g̃2

1

f0 = f

1

f1 = Rf0

1

f2 = Rf1

1

f3 = Rf2

1

g0

1

g2

1

g1

1

h3

1

h2

1

h1

1

h0

1

{hn} “bounded”

1

f and f̃ quasi-conformally conjugate

1

conjugacy is asymptotically 
conformal or smooth, etc.

d(fn, f̃n) → 0

1

hn → linear

1



Yoccoz renormalization for Siegel-Bruno Theorem
f(z) = e2πiαz + . . . ,

∑
n

log qn+1

qn
< ∞ where pn

qn
→ α (convergents)

=⇒ f is conjugate to z $→ e2πiαz

1

fn(z) = e2πiαnz + . . . ! fn+1(z) = e2πiαn+1z + . . .

= first return map of fn to a fundamental domain

up to uniformization

αn+1 ≡ − 1
αn

(mod Z)

1

uniformize

f(z) = e2πiαz + . . . ,
∑

log qn+1

qn
< ∞ =⇒ f is conjugate to z #→ e2πiαz

%

1

first return map

glue

fn fn+1

1

fn fn+1

1

Yoccoz’s proof:  construct the sequence of renormalizations fn

1

f0 = f , α0 = α, αn+1 = dist( 1
αn

, Z)

1



Yoccoz renormalization for Siegel-Bruno Theorem 
fn(z) = e2πiαnz + . . . ! fn+1(z) = e2πiαn+1z + . . .

= first return map of fn to a fundamental domain

up to uniformization

αn+1 ≡ − 1
αn

(mod Z)

1

uniformize

f(z) = e2πiαz + . . . ,
∑

log qn+1

qn
< ∞ =⇒ f is conjugate to z #→ e2πiαz

%

1

first return map

glue

fn fn+1

1

fn fn+1

1

Cylinder/Near-parabolic renormalization

glue 
& 

uniformize

C/Z

1

f

1

C∗ = C ! {0}

1

Exp!(z)
= exp(2πiz)

1

first return map

Rf

1

Rf can be defined when f(z) = e2πiαz + . . . is a small perturbation of
z + a2z2 + . . . (a2 != 0) and | arg α| < π/4.

1



Renormalization:  The Picture

f ↔ (α, f0) Rf(z) = e−2πi 1
αRαf0(z) R : (α, f0) "→ (− 1

α ,Rαf0)

f0 α α "→ − 1
α mod Z R0 R

R0 contracting? R hyperbolic? (Rα contracting?)

f = P ◦ ϕ−1

f = Q ◦ ϕ−1

0 ∞ (−∞,−1]

C R Z Q D H R ! Q C/Z C∗ D∗ C C ! D (−∞,−1]

z "→ e2πiz z "→ exp(2πiz)

f Rf R0f Rαf Rf χf

F0 F1 FQ
1

Q(z) = z

(
1 + 1

z

)6

(
1 − 1

z

)4 ,

Q satisfies Q = ψ−1
0 ◦ P ◦ ψ1 where ψ0(z) = −4

z
, ψ1(z) = − 4z

(1 + z)2
= 4fKoebe

(
−1

z

)

∞

2

f ↔ (α, f0) Rf(z) = e−2πi 1
αRαf0(z) R : (α, f0) "→ (− 1

α ,Rαf0)

f0 α α "→ − 1
α mod Z R0 R

R0 contracting? R hyperbolic? (Rα contracting?)

f = P ◦ ϕ−1

f = Q ◦ ϕ−1

0 ∞ (−∞,−1]

C R Z Q D H R ! Q C/Z C∗ D∗ C C ! D (−∞,−1]

z "→ e2πiz z "→ exp(2πiz)

f Rf R0f Rαf Rf χf

F0 F1 FQ
1

Q(z) = z

(
1 + 1

z

)6

(
1 − 1

z

)4 ,

Q satisfies Q = ψ−1
0 ◦ P ◦ ψ1 where ψ0(z) = −4

z
, ψ1(z) = − 4z

(1 + z)2
= 4fKoebe

(
−1

z

)

∞

2

f ↔ (α, f0) Rf(z) = e−2πi 1
αRαf0(z) R : (α, f0) "→ (− 1

α ,Rαf0)

f0 α α "→ − 1
α mod Z R0 R

R0 contracting? R hyperbolic? (Rα contracting?)

f = P ◦ ϕ−1

f = Q ◦ ϕ−1

0 ∞ (−∞,−1]

C R Z Q D H R ! Q C/Z C∗ D∗ C C ! D (−∞,−1]

z "→ e2πiz z "→ exp(2πiz)

f Rf R0f Rαf Rf χf

F0 F1 FQ
1

Q(z) = z

(
1 + 1

z

)6

(
1 − 1

z

)4 ,

Q satisfies Q = ψ−1
0 ◦ P ◦ ψ1 where ψ0(z) = −4

z
, ψ1(z) = − 4z

(1 + z)2
= 4fKoebe

(
−1

z

)

∞

2

f ↔ (α, f0) Rf(z) = e−2πi 1
αRαf0(z) R : (α, f0) "→ (− 1

α ,Rαf0)

f0 α α "→ − 1
α mod Z R0 R

R0 contracting? R hyperbolic? (Rα contracting?)

f = P ◦ ϕ−1

f = Q ◦ ϕ−1

0 ∞ (−∞,−1]

C R Z Q D H R ! Q C/Z C∗ D∗ C C ! D (−∞,−1]

z "→ e2πiz z "→ exp(2πiz)

f Rf R0f Rαf Rf χf

F0 F1 FQ
1

Q(z) = z

(
1 + 1

z

)6

(
1 − 1

z

)4 ,

Q satisfies Q = ψ−1
0 ◦ P ◦ ψ1 where ψ0(z) = −4

z
, ψ1(z) = − 4z

(1 + z)2
= 4fKoebe

(
−1

z

)

∞

2

f ↔ (α, f0) Rf(z) = e−2πi 1
αRαf0(z) R : (α, f0) "→ (− 1

α ,Rαf0)

f0 α α "→ − 1
α mod Z R0 R

R0 contracting? R hyperbolic? (Rα contracting?)

f = P ◦ ϕ−1

f = Q ◦ ϕ−1

0 ∞ (−∞,−1]

C R Z Q D H R ! Q C/Z C∗ D∗ C C ! D (−∞,−1]

z "→ e2πiz z "→ exp(2πiz)

f Rf R0f Rαf Rf χf

F0 F1 FQ
1

Q(z) = z

(
1 + 1

z

)6

(
1 − 1

z

)4 ,

Q satisfies Q = ψ−1
0 ◦ P ◦ ψ1 where ψ0(z) = −4

z
, ψ1(z) = − 4z

(1 + z)2
= 4fKoebe

(
−1

z

)

∞

2

YES for

f0(z) holomorphic near 0 f0(0) = 0 f ′
0(0) = λ

f0(z) = λz + a2z2 + . . .

f0(z) = e2πi p
q z + a2z2 + . . .

f0(z) = z + a2z2 + . . .

λ = e2πi p
q λ = 1 a2 != 0

f(z) = e2πiαz + . . .

f(z) = e2πiαz + O(z2)

f ′(0) = e2πiα, α small | arg α| < π
4

α ∈ C ! {0} small and | arg α| < π
4

α ∈ R ! Q

ai ∈ N ai ≥ N

F0(w) = w + 1 + o(1) w = − c

z
near 0 near ∞ T (w) = w + 1 Φattr Φrep C/Z C

mod Z Ef0 Ef

f0 ! R0f0 R0f0(z) = z + O(z2)

f ! Rf Rf(z) = e2πiβz + O(z2) β = − 1
α

mod Z

Φattr(f(z)) = Φattr(z) + 1 Φrep(f(z)) = Φrep(z) + 1 Φ...(f0(z)) = Φ...(z) + 1

Ef0(z) = Φattr ◦ Φ−1
rep χf χf (z) = z − 1

α
R̃f = χf ◦ Ef R̃f Rf = χf ◦ Ef '

Ef0(z) = z + o(1) (Im z → +∞)

Π Π(z) = e2πiz Π : C/Z #−→ C∗ R0f0 = Π ◦ Ef0 ◦ Π−1 R0f0 = Π ◦ Ef0 ◦ Π−1

R0f0 = Π ◦ Ef0 ◦ Π−1 Rf = Π ◦ R̃f ◦ Π−1 = Π ◦ χf ◦ Ef ◦ Π−1 = e2πiβz + O(z2)

where β = − 1
α

(mod Z) or α =
1

m − β
(m ∈ N)

f(z) = e2πiαz + O(z2) = e2πiαf0(z) where f0(z) = z + O(z2) 1-parabolic

1

Write f(z) = e2πiαz + O(z2) = e2πiαh(z) where h(z) = z + O(z2).

1

f ←→ (α, h)

1

Hence R : (α, h) !→ (− 1
α ,Rαh) (skew product)

1

f ↔ (α, f0) Rf(z) = e−2πi 1
αRαf0(z) R : (α, f0) "→ (− 1

α ,Rαf0)

f0 α α "→ − 1
α mod Z R0 R

R0 contracting? R hyperbolic? (Rα contracting?)

f = P ◦ ϕ−1

f = Q ◦ ϕ−1

0 ∞ (−∞,−1]

C R Z Q D H R ! Q C/Z C∗ D∗ C C ! D (−∞,−1]

z "→ e2πiz z "→ exp(2πiz)

f Rf R0f Rαf Rf χf

F0 F1 FQ
1

Q(z) = z

(
1 + 1

z

)6

(
1 − 1

z

)4 ,

Q satisfies Q = ψ−1
0 ◦ P ◦ ψ1 where ψ0(z) = −4

z
, ψ1(z) = − 4z

(1 + z)2
= 4fKoebe

(
−1

z

)

∞

2

Rαh → R0h (α → 0)

1

f ↔ (α, f0) Rf(z) = e−2πi 1
αRαf0(z) R : (α, f0) "→ (− 1

α ,Rαf0)

f0 α α "→ − 1
α mod Z R0 R

R0 contracting? R hyperbolic? (Rα contracting?)

f = P ◦ ϕ−1

f = Q ◦ ϕ−1

0 ∞ (−∞,−1]

C R Z Q D H R ! Q C/Z C∗ D∗ C C ! D (−∞,−1]

z "→ e2πiz z "→ exp(2πiz)

f Rf R0f Rαf Rf χf

F0 F1 FQ
1

Q(z) = z

(
1 + 1

z

)6

(
1 − 1

z

)4 ,

Q satisfies Q = ψ−1
0 ◦ P ◦ ψ1 where ψ0(z) = −4

z
, ψ1(z) = − 4z

(1 + z)2
= 4fKoebe

(
−1

z

)

∞

2

h

1

Then Rf(z) = e−2πi 1
αRαh(z) where Rαh = Exp# ◦E(e2πiαh)◦(Exp#)−1.

1



Horn map and Parabolic Renormalization

f0(z) holomorphic near 0 f0(0) = 0 f ′
0(0) = λ

f0(z) = λz + a2z2 + . . .

f0(z) = e2πi p
q z + a2z2 + . . .

f0(z) = z + a2z2 + . . .

λ = e2πi p
q λ = 1 a2 != 0

f(z) = e2πiαz + . . .

f(z) = e2πiαz + O(z2)

f ′(0) = e2πiα, α small | arg α| < π
4

α ∈ C ! {0} small and | arg α| < π
4

α ∈ R ! Q

ai ∈ N ai ≥ N

F0(w) = w + 1 + o(1) w = − c

z
near 0 near ∞ T (w) = w + 1 Φattr Φrep C/Z C

mod Z Ef0 Ef

f0 ! R0f0 R0f0(z) = z + O(z2)

f ! Rf Rf(z) = e2πiβz + O(z2) β = − 1
α

mod Z

Φattr(f(z)) = Φattr(z) + 1 Φrep(f(z)) = Φrep(z) + 1 Φ...(f0(z)) = Φ...(z) + 1

Ef0(z) = Φattr ◦ Φ−1
rep χf χf (z) = z − 1

α
Rf = χf ◦ Ef

Ef0(z) = z + o(1) (Im z → +∞)

f = P ◦ ϕ−1

f = Q ◦ ϕ−1

0 ∞ (−∞,−1]

C R Z Q D H R ! Q C/Z C∗ D∗ C C ! D (−∞,−1]

z (→ e2πiz z (→ exp(2πiz)

1

Horn map

by normalization

The following text is drawn in white.

Φattr R1 = 239

e−2π = 0.00186 . . .

Exp" Exp"(z) = e2πiz Exp" : C/Z "−→ C∗

R0f0 = Exp" ◦Ef0 ◦ (Exp")−1 R0f0 = Exp" ◦Ef0 ◦ (Exp")−1

f0
R−→ f1

R−→ f2
R−→ f3

R−→ . . .

fi

Theorem (A consequence of Golusin inequalities). Let Ω be a disk or a
half plane in Ĉ (including the case of the complement of a closed disk). If
g : Ω → Ĉ is a univalent holomorphic mapping, then for z, ζ ∈ Ω with
z, ζ, g(z), g(ζ) %= ∞ and z %= ζ,

∣∣∣∣ log
g′(z)g′(ζ)(z − ζ)2

(g(z) − g(ζ))2

∣∣∣∣ ≤ 2 log cosh
dΩ(z, ζ)

2
.

Theorem (A general estimate on Fatou coordinate). Let Ω be a disk or a
half plane and f : Ω → C a holomorphic function with f(z) %= z. Suppose f
has a univalent Fatou coordinate Φ : Ω → C, i.e., Φ(f(z)) = Φ(z) + 1 when
z, f(z) ∈ Ω. If z ∈ Ω and f(z) ∈ Ω, then
∣∣∣∣ log Φ′(z) + log(f(z) − z) − 1

2
log f ′(z)

∣∣∣∣ ≤ log cosh
dΩ(z, f(z))

2
=

1
2

log
1

1 − r2
,

where r is a real number such that 0 ≤ r < 1 and dD(0, r) = dΩ(z, f(z)).

f g C X π

D0 D′
0 D−1 D′′

−1

1
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z, ζ, g(z), g(ζ) %= ∞ and z %= ζ,

∣∣∣∣ log
g′(z)g′(ζ)(z − ζ)2

(g(z) − g(ζ))2

∣∣∣∣ ≤ 2 log cosh
dΩ(z, ζ)

2
.

Theorem (A general estimate on Fatou coordinate). Let Ω be a disk or a
half plane and f : Ω → C a holomorphic function with f(z) %= z. Suppose f
has a univalent Fatou coordinate Φ : Ω → C, i.e., Φ(f(z)) = Φ(z) + 1 when
z, f(z) ∈ Ω. If z ∈ Ω and f(z) ∈ Ω, then
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∣∣∣∣ ≤ log cosh
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2
=

1
2

log
1

1 − r2
,

where r is a real number such that 0 ≤ r < 1 and dD(0, r) = dΩ(z, f(z)).

f g C X π

D0 D′
0 D−1 D′′

−1

1

Parabolic Renormalization
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Theorem (A general estimate on Fatou coordinate). Let Ω be a disk or a
half plane and f : Ω → C a holomorphic function with f(z) %= z. Suppose f
has a univalent Fatou coordinate Φ : Ω → C, i.e., Φ(f(z)) = Φ(z) + 1 when
z, f(z) ∈ Ω. If z ∈ Ω and f(z) ∈ Ω, then
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2
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,

where r is a real number such that 0 ≤ r < 1 and dD(0, r) = dΩ(z, f(z)).

f g C X π

D0 D′
0 D−1 D′′

−1

1

f0

f0(z) holomorphic near 0 f0(0) = 0 f ′
0(0) = λ

f0(z) = λz + a2z2 + . . .

f0(z) = e2πi p
q z + a2z2 + . . .

f0(z) = z + a2z2 + . . .

λ = e2πi p
q λ = 1 a2 != 0

f(z) = e2πiαz + . . .

f(z) = e2πiαz + O(z2)

f ′(0) = e2πiα, α small

α ∈ C ! {0} small and | arg α| <
π

4

α ∈ R ! Q

ai ∈ N ai ≥ N

F0(w) = w + 1 + o(1) w = − c

w
near 0 near ∞ T (w) = w + 1 Φattr Φrep C/Z C

mod Z Ef0

f0 ! R0f0 R0f0(z) = z + O(z2)

f ! Rf Rf(z) = e2πiβz + O(z2) β = − 1
α

mod Z

Φattr(f(z)) = Φattr(z) + 1 Φrep(f(z)) = Φrep(z) + 1 Φ...(f0(z)) = Φ...(z) + 1

Ef0(z) = Φattr ◦ Φ−1
rep

f = P ◦ ϕ−1

f = Q ◦ ϕ−1

0 ∞ (−∞,−1]

C R Z Q D H R ! Q C/Z C∗ D∗ C C ! D (−∞,−1]

z '→ e2πiz z '→ exp(2πiz)

f Rf R0f Rαf Rf

1

f0(z) holomorphic near 0 f0(0) = 0 f ′
0(0) = λ

f0(z) = λz + a2z2 + . . .

f0(z) = e2πi p
q z + a2z2 + . . .

f0(z) = z + a2z2 + . . .

λ = e2πi p
q λ = 1 a2 != 0

f(z) = e2πiαz + . . .

f(z) = e2πiαz + O(z2)

f ′(0) = e2πiα, α small

α ∈ C ! {0} small and | arg α| <
π

4

α ∈ R ! Q

ai ∈ N ai ≥ N

F0(w) = w + 1 + o(1) w = − c

w
near 0 near ∞ T (w) = w + 1 Φattr Φrep C/Z C

mod Z Ef0

f0 ! R0f0 R0f0(z) = z + O(z2)

f ! Rf Rf(z) = e2πiβz + O(z2) β = − 1
α

mod Z

Φattr(f(z)) = Φattr(z) + 1 Φrep(f(z)) = Φrep(z) + 1 Φ(f(z)) = Φ(z) + 1

Ef (z) = Φattr ◦ Φ−1
rep

f = P ◦ ϕ−1

f = Q ◦ ϕ−1

0 ∞ (−∞,−1]

C R Z Q D H R ! Q C/Z C∗ D∗ C C ! D (−∞,−1]

z '→ e2πiz z '→ exp(2πiz)

f Rf R0f Rαf Rf

1

f0(z) holomorphic near 0 f0(0) = 0 f ′
0(0) = λ

f0(z) = λz + a2z2 + . . .

f0(z) = e2πi p
q z + a2z2 + . . .

f0(z) = z + a2z2 + . . .

λ = e2πi p
q λ = 1 a2 != 0

f(z) = e2πiαz + . . .

f(z) = e2πiαz + O(z2)

f ′(0) = e2πiα, α small

α ∈ C ! {0} small and | arg α| <
π

4

α ∈ R ! Q

ai ∈ N ai ≥ N

F0(w) = w + 1 + o(1) w = − c

w
near 0 near ∞ T (w) = w + 1 Φattr Φrep C/Z C

mod Z Ef0

f0 ! R0f0 R0f0(z) = z + O(z2)

f ! Rf Rf(z) = e2πiβz + O(z2) β = − 1
α

mod Z

Φattr(f(z)) = Φattr(z) + 1 Φrep(f(z)) = Φrep(z) + 1 Φ(f(z)) = Φ(z) + 1

Ef (z) = Φattr ◦ Φ−1
rep

f = P ◦ ϕ−1

f = Q ◦ ϕ−1

0 ∞ (−∞,−1]

C R Z Q D H R ! Q C/Z C∗ D∗ C C ! D (−∞,−1]

z '→ e2πiz z '→ exp(2πiz)

f Rf R0f Rαf Rf

1

an ≥ N

Ef0 = Φattr ◦ Φ−1
rep

1

C/Z ! z, Ef0(z), E 2
f0

(z), E 3
f0

(z), . . .

Exp!(z) = e2πiz : C/Z !−→ C∗

f0
R−→ f1

R−→ f2
R−→ f3

R−→ . . .

fi

1

an ≥ N

R0f0(z) = z + . . .

1

f0(z) = z + a2z2

a2 != 0

an ≥ N

1

f0(z) = z + a2z2 + . . .

a2 != 0

an ≥ N

1



Perturbation (Douady-Hubbard-Lavaurs)

f0(z) holomorphic near 0 f0(0) = 0 f ′
0(0) = λ

f0(z) = λz + a2z2 + . . .

f0(z) = e2πi p
q z + a2z2 + . . .

f0(z) = z + a2z2 + . . .

λ = e2πi p
q λ = 1 a2 != 0

f(z) = e2πiαz + . . .

f(z) = e2πiαz + O(z2)

f ′(0) = e2πiα, α small | arg α| < π
4

α ∈ C ! {0} small and | arg α| < π
4

α ∈ R ! Q

ai ∈ N ai ≥ N

F0(w) = w + 1 + o(1) w = − c

w
near 0 near ∞ T (w) = w + 1 Φattr Φrep C/Z C

mod Z Ef0

f0 ! R0f0 R0f0(z) = z + O(z2)

f ! Rf Rf(z) = e2πiβz + O(z2) β = − 1
α

mod Z

Φattr(f(z)) = Φattr(z) + 1 Φrep(f(z)) = Φrep(z) + 1 Φ...(f0(z)) = Φ...(z) + 1

Ef0(z) = Φattr ◦ Φ−1
rep

f = P ◦ ϕ−1

f = Q ◦ ϕ−1

0 ∞ (−∞,−1]

C R Z Q D H R ! Q C/Z C∗ D∗ C C ! D (−∞,−1]

z '→ e2πiz z '→ exp(2πiz)

f Rf R0f Rαf Rf

1

f0

f0(z) holomorphic near 0 f0(0) = 0 f ′
0(0) = λ

f0(z) = λz + a2z2 + . . .

f0(z) = e2πi p
q z + a2z2 + . . .

f0(z) = z + a2z2 + . . .

λ = e2πi p
q λ = 1 a2 != 0

f(z) = e2πiαz + . . .

f(z) = e2πiαz + O(z2)

f ′(0) = e2πiα, α small

α ∈ C ! {0} small and | arg α| <
π

4

α ∈ R ! Q

ai ∈ N ai ≥ N

F0(w) = w + 1 + o(1) w = − c

w
near 0 near ∞ T (w) = w + 1 Φattr Φrep C/Z C

mod Z Ef0

f0 ! R0f0 R0f0(z) = z + O(z2)

f ! Rf Rf(z) = e2πiβz + O(z2) β = − 1
α

mod Z

Φattr(f(z)) = Φattr(z) + 1 Φrep(f(z)) = Φrep(z) + 1 Φ...(f0(z)) = Φ...(z) + 1

Ef0(z) = Φattr ◦ Φ−1
rep

f = P ◦ ϕ−1

f = Q ◦ ϕ−1

0 ∞ (−∞,−1]

C R Z Q D H R ! Q C/Z C∗ D∗ C C ! D (−∞,−1]

z '→ e2πiz z '→ exp(2πiz)

f Rf R0f Rαf Rf

1

f

f0(z) holomorphic near 0 f0(0) = 0 f ′
0(0) = λ

f0(z) = λz + a2z2 + . . .

f0(z) = e2πi p
q z + a2z2 + . . .

f0(z) = z + a2z2 + . . .

λ = e2πi p
q λ = 1 a2 != 0

f(z) = e2πiαz + . . .

f(z) = e2πiαz + O(z2)

f ′(0) = e2πiα, α small | arg α| < π
4

α ∈ C ! {0} small and | arg α| < π
4

α ∈ R ! Q

ai ∈ N ai ≥ N

F0(w) = w + 1 + o(1) w = − c

w
near 0 near ∞ T (w) = w + 1 Φattr Φrep C/Z C

mod Z Ef0 Ef

f0 ! R0f0 R0f0(z) = z + O(z2)

f ! Rf Rf(z) = e2πiβz + O(z2) β = − 1
α

mod Z

Φattr(f(z)) = Φattr(z) + 1 Φrep(f(z)) = Φrep(z) + 1 Φ...(f0(z)) = Φ...(z) + 1

Ef0(z) = Φattr ◦ Φ−1
rep

f = P ◦ ϕ−1

f = Q ◦ ϕ−1

0 ∞ (−∞,−1]

C R Z Q D H R ! Q C/Z C∗ D∗ C C ! D (−∞,−1]

z '→ e2πiz z '→ exp(2πiz)

f Rf R0f Rαf Rf

1

f0(z) holomorphic near 0 f0(0) = 0 f ′
0(0) = λ

f0(z) = λz + a2z2 + . . .

f0(z) = e2πi p
q z + a2z2 + . . .

f0(z) = z + a2z2 + . . .

λ = e2πi p
q λ = 1 a2 != 0

f(z) = e2πiαz + . . .

f(z) = e2πiαz + O(z2)

f ′(0) = e2πiα, α small | arg α| < π
4

α ∈ C ! {0} small and | arg α| < π
4

α ∈ R ! Q

ai ∈ N ai ≥ N

F0(w) = w + 1 + o(1) w = − c

w
near 0 near ∞ T (w) = w + 1 Φattr Φrep C/Z C

mod Z Ef0 Ef

f0 ! R0f0 R0f0(z) = z + O(z2)

f ! Rf Rf(z) = e2πiβz + O(z2) β = − 1
α

mod Z

Φattr(f(z)) = Φattr(z) + 1 Φrep(f(z)) = Φrep(z) + 1 Φ...(f0(z)) = Φ...(z) + 1

Ef0(z) = Φattr ◦ Φ−1
rep χf χf (z) = z − 1

α
Rf = χf ◦ Ef

f = P ◦ ϕ−1

f = Q ◦ ϕ−1

0 ∞ (−∞,−1]

C R Z Q D H R ! Q C/Z C∗ D∗ C C ! D (−∞,−1]

z '→ e2πiz z '→ exp(2πiz)

f Rf R0f Rαf Rf χf

1
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q λ = 1 a2 != 0

f(z) = e2πiαz + . . .

f(z) = e2πiαz + O(z2)

f ′(0) = e2πiα, α small | arg α| < π
4

α ∈ C ! {0} small and | arg α| < π
4

α ∈ R ! Q

ai ∈ N ai ≥ N

F0(w) = w + 1 + o(1) w = − c

w
near 0 near ∞ T (w) = w + 1 Φattr Φrep C/Z C

mod Z Ef0 Ef

f0 ! R0f0 R0f0(z) = z + O(z2)

f ! Rf Rf(z) = e2πiβz + O(z2) β = − 1
α

mod Z

Φattr(f(z)) = Φattr(z) + 1 Φrep(f(z)) = Φrep(z) + 1 Φ...(f0(z)) = Φ...(z) + 1

Ef0(z) = Φattr ◦ Φ−1
rep

f = P ◦ ϕ−1

f = Q ◦ ϕ−1
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C R Z Q D H R ! Q C/Z C∗ D∗ C C ! D (−∞,−1]

z '→ e2πiz z '→ exp(2πiz)

f Rf R0f Rαf Rf

1

f0(z) holomorphic near 0 f0(0) = 0 f ′
0(0) = λ

f0(z) = λz + a2z2 + . . .

f0(z) = e2πi p
q z + a2z2 + . . .

f0(z) = z + a2z2 + . . .

λ = e2πi p
q λ = 1 a2 != 0

f(z) = e2πiαz + . . .

f(z) = e2πiαz + O(z2)

f ′(0) = e2πiα, α small | arg α| < π
4

α ∈ C ! {0} small and | arg α| < π
4

α ∈ R ! Q

ai ∈ N ai ≥ N

F0(w) = w + 1 + o(1) w = − c

w
near 0 near ∞ T (w) = w + 1 Φattr Φrep C/Z C

mod Z Ef0 Ef

f0 ! R0f0 R0f0(z) = z + O(z2)

f ! Rf Rf(z) = e2πiβz + O(z2) β = − 1
α

mod Z

Φattr(f(z)) = Φattr(z) + 1 Φrep(f(z)) = Φrep(z) + 1 Φ...(f0(z)) = Φ...(z) + 1

Ef0(z) = Φattr ◦ Φ−1
rep

f = P ◦ ϕ−1

f = Q ◦ ϕ−1

0 ∞ (−∞,−1]

C R Z Q D H R ! Q C/Z C∗ D∗ C C ! D (−∞,−1]

z '→ e2πiz z '→ exp(2πiz)

f Rf R0f Rαf Rf

1

(after a suitable normalization)

f0(z) holomorphic near 0 f0(0) = 0 f ′
0(0) = λ

f0(z) = λz + a2z2 + . . .

f0(z) = e2πi p
q z + a2z2 + . . .

f0(z) = z + a2z2 + . . .

λ = e2πi p
q λ = 1 a2 != 0

f(z) = e2πiαz + . . .

f(z) = e2πiαz + O(z2)

f ′(0) = e2πiα, α small | arg α| < π
4

α ∈ C ! {0} small and | arg α| < π
4

α ∈ R ! Q

ai ∈ N ai ≥ N

F0(w) = w + 1 + o(1) w = − c

w
near 0 near ∞ T (w) = w + 1 Φattr Φrep C/Z C

mod Z Ef0 Ef

f0 ! R0f0 R0f0(z) = z + O(z2)

f ! Rf Rf(z) = e2πiβz + O(z2) β = − 1
α

mod Z

Φattr(f(z)) = Φattr(z) + 1 Φrep(f(z)) = Φrep(z) + 1 Φ...(f0(z)) = Φ...(z) + 1

Ef0(z) = Φattr ◦ Φ−1
rep χf χf (z) = z − 1

α
Rf = χf ◦ Ef

f = P ◦ ϕ−1

f = Q ◦ ϕ−1

0 ∞ (−∞,−1]

C R Z Q D H R ! Q C/Z C∗ D∗ C C ! D (−∞,−1]

z '→ e2πiz z '→ exp(2πiz)

f Rf R0f Rαf Rf χf

1

f0(z) holomorphic near 0 f0(0) = 0 f ′
0(0) = λ

f0(z) = λz + a2z2 + . . .

f0(z) = e2πi p
q z + a2z2 + . . .

f0(z) = z + a2z2 + . . .

λ = e2πi p
q λ = 1 a2 != 0

f(z) = e2πiαz + . . .

f(z) = e2πiαz + O(z2)

f ′(0) = e2πiα, α small | arg α| < π
4

α ∈ C ! {0} small and | arg α| < π
4

α ∈ R ! Q

ai ∈ N ai ≥ N

F0(w) = w + 1 + o(1) w = − c

z
near 0 near ∞ T (w) = w + 1 Φattr Φrep C/Z C

mod Z Ef0 Ef

f0 ! R0f0 R0f0(z) = z + O(z2)

f ! Rf Rf(z) = e2πiβz + O(z2) β = − 1
α

mod Z

Φattr(f(z)) = Φattr(z) + 1 Φrep(f(z)) = Φrep(z) + 1 Φ...(f0(z)) = Φ...(z) + 1

Ef0(z) = Φattr ◦ Φ−1
rep χf χf (z) = z − 1

α
Rf = χf ◦ Ef '

Ef0(z) = z + o(1) (Im z → +∞)

Π Π(z) = e2πiz Π : C/Z #−→ C∗

f = P ◦ ϕ−1

f = Q ◦ ϕ−1

0 ∞ (−∞,−1]

C R Z Q D H R ! Q C/Z C∗ D∗ C C ! D (−∞,−1]

1

first return map

f0(z) holomorphic near 0 f0(0) = 0 f ′
0(0) = λ

f0(z) = λz + a2z2 + . . .

f0(z) = e2πi p
q z + a2z2 + . . .

f0(z) = z + a2z2 + . . .

λ = e2πi p
q λ = 1 a2 != 0

f(z) = e2πiαz + . . .

f(z) = e2πiαz + O(z2)

f ′(0) = e2πiα, α small | arg α| < π
4

α ∈ C ! {0} small and | arg α| < π
4

α ∈ R ! Q

ai ∈ N ai ≥ N

F0(w) = w + 1 + o(1) w = − c

z
near 0 near ∞ T (w) = w + 1 Φattr Φrep C/Z C

mod Z Ef0 Ef

f0 ! R0f0 R0f0(z) = z + O(z2)

f ! Rf Rf(z) = e2πiβz + O(z2) β = − 1
α

mod Z

Φattr(f(z)) = Φattr(z) + 1 Φrep(f(z)) = Φrep(z) + 1 Φ...(f0(z)) = Φ...(z) + 1

Ef0(z) = Φattr ◦ Φ−1
rep χf χf (z) = z − 1

α
R̃f = χf ◦ Ef R̃f Rf = χf ◦ Ef '

Ef0(z) = z + o(1) (Im z → +∞)

Π Π(z) = e2πiz Π : C/Z #−→ C∗ R0f0 = Π ◦ Ef0 ◦ Π−1 R0f0 = Π ◦ Ef0 ◦ Π−1 R0f0 =
Π ◦ Ef0 ◦ Π−1

f = P ◦ ϕ−1

f = Q ◦ ϕ−1

0 ∞ (−∞,−1]

1



Theorem 1.

We define a class of functions F1, (and F ′
1 ⊂ F1) such that

if f ∈ F1, then f is holomorphic, f(0) = 0, f ′(0) = 1, f has a unique
critical point cf in its domain of definition and the critical value f(cf ) =
− 4

27 (fixed). Moreover f ′′(0) $= 0.

1

Main Theorems 1-4 (with H. Inou)

Theorem 1. F1
R0−−−−−→ F ′

1 ⊂ F1.

Moreover R0 is “holomorphic” and R0(z + z2) ∈ F ′
1.

1

Theorem 2. For small α (∈ R), F1
Rα−−−−−→ F ′

1 ⊂ F1.

Hence there exists a large N such that if f = e2πiαh with α of high
type (N) and h ∈ F1, then the sequence of renormalizations

f = f0
R−→ f1

R−→ f2
R−→ f3

R−→ . . .

is defined so that fn = e2πiαnhn(z), hn ∈ F1. (Here αn+1 = || 1
αn
|| and

hn+1 = Rαnhn, possibly after complex conjugation.)

1



α =
1

a1 ±
1

a2 ±
1

a3 ±
1
. . .

where ai ≥ N

1

“Irrational numbers of high type” (N)



Let P (z) = z(1 + z)2. We take specific simply connected open sets V
and V ′ with 0 ∈ V ⊂ V ⊂ V ′ ⊂ C.

F1 =

{
f = P ◦ ϕ−1 : ϕ(V ) → C

∣∣∣∣
ϕ : V → C is univalent

ϕ(0) = 0, ϕ′(0) = 1

}

Define F ′
1 with V replaced by V ′.

1

Definition of F1 and F ′
1

1

Theorem 1 Let P (z) = z(1 + z)2. There exist bounded simply connected
open sets V and V ′ with 0 ∈ V ⊂ V ⊂ V ′ ⊂ C such that the class

F1 =
{

f = P ◦ ϕ−1 : ϕ(V ) → C
∣∣∣∣

ϕ : V → C is univalent
ϕ(0) = 0, ϕ′(0) = 1

}

satisfies the following:

(0) every f ∈ F1 is non-degenerate;

(i) F0 ! {quadratic polynomial} can be naturally embedded into F1 (in par-
ticular, Rn

0 (z + z2) ∈ F1 n = 1, 2, . . . );

(ii) The renormalization R0 is well defined on F1 so that R0(F1) ⊂ F1 ;

(iii) If we write R0f = P ◦ ψ−1, then ψ can be extended univalently to V ′;

(iv) f %→ R0f is “holomorphic.”

univalent = holomorphic and injective

Theorem 2 The above statements hold for Rα for α small. Hence there
exists an N such that the above holds for

α =
1

m + β
with m ∈ N, β ∈ C and |β| ≤ 1.

P (z) = z(1 + z)2 and V , V ′

P (z) = z(1 + z)2 P (0) = 0, P ′(0) = 1 critical points: −1
3

and −1

critical values: P (−1
3) = − 4

27 and P (−1) = 0

η = 2 4
27e2πη 4

27e−2πη

V slightly smaller domain than V ′

f = P ◦ ϕ−1

f = Q ◦ ϕ−1

0 ∞ (−∞,−1]

C R Z Q D H R!Q C/Z C∗ D∗ C C!D (−∞,−1]

z %→ e2πiz z %→ exp(2πiz)
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Theorem 3. After modifying the definition slightly, F1 is in one to one
correspondence with the Teichmüller space of a punctured disk. With
respect to the Teichmüller distance (which is complete), R0 is a uniform
contraction.

1

(Royden-Gardiner Theorem: Teichmüller distance = Kobayashi distance)

Teichmüller space is like the unit disk with Poincaré metric.
holomorphic self map does not expand the distance.  

Theorem 4. The same statement for small α (∈ R).
Hence when restricted to the subset where |α| is small, the renormaliza-
tion R is hyperbolic.

1

F1
R0−−−−−→ F ′

1 ⊂ F1

1

F ′
1 ↪→ F1

1

Estimate of contraction of                  via cotangent space which is the space 
of integrable holomorphic quadratic differentials.  + modulus-area inequality



Theorem 1.

Theorem 2.

Corollary. Under the assumption of Theorem 2’, the critical orbit stays
in the domain of f and can be iterated infinitely many times. Moreover
if f is (a part of) a rational map, then the critical orbit is not dense.

Theorem (Buff-Chéritat). There exists an irrational number α such
that the Julia set of the quadratic polynomial Pα(z) = e2πiαz + z2 has
positive Lebesgue measure.

1

Applications
Theorem. Under the assumption of Theorem 2, the critical orbit stays
in the domain of f and can be iterated infinitely many times. Moreover
if f is (a part of) a rational map, then the critical orbit is not dense.

1

Theorem. Suppose f and f ′ satisfy the assumption of Theorem 2, with
the same rotation number α. Then they have small periodic cycles ζn

and ζ ′
n around 0 with period qn. Let λ(ζn), λ(ζ ′

n) be their multipliers.
The differences

|λ(ζn) − λ(ζ ′
n)| and

∣∣∣∣
1

1 − λ(ζn)
− 1

1 − λ(ζ ′
n)

∣∣∣∣

tends to 0 exponentially fast as n → ∞ with a uniform rate.

1



Theorem 5 (Rigidity). If h, h̃ ∈ F1 and α satisfies the hypothesis of
Theorem 2, then there exists a quasiconformal homeomorphism ϕ which
conjugates f = e2πiαh and f̃ = e2πiαh̃ along their critical orbits, and
asymptotically conformal on the closure of critical orbits.

1

Application 2: Rigidity 

Within this class of maps, the same rotation number implies a better 
conjugacy.  

f

f0(z) holomorphic near 0 f0(0) = 0 f ′
0(0) = λ

f0(z) = λz + a2z2 + . . .

f0(z) = e2πi p
q z + a2z2 + . . .

f0(z) = z + a2z2 + . . .

λ = e2πi p
q λ = 1 a2 != 0

f(z) = e2πiαz + . . .

f(z) = e2πiαz + O(z2)

f ′(0) = e2πiα, α small | arg α| < π
4

α ∈ C ! {0} small and | arg α| < π
4

α ∈ R ! Q

ai ∈ N ai ≥ N

F0(w) = w + 1 + o(1) w = − c

w
near 0 near ∞ T (w) = w + 1 Φattr Φrep C/Z C

mod Z Ef0 Ef

f0 ! R0f0 R0f0(z) = z + O(z2)

f ! Rf Rf(z) = e2πiβz + O(z2) β = − 1
α

mod Z

Φattr(f(z)) = Φattr(z) + 1 Φrep(f(z)) = Φrep(z) + 1 Φ...(f0(z)) = Φ...(z) + 1

Ef0(z) = Φattr ◦ Φ−1
rep

f = P ◦ ϕ−1

f = Q ◦ ϕ−1
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R̃f = χf ◦ Ef R̃f Rf = χf ◦ Ef '

Ef0(z) = z + o(1) (Im z → +∞)

Π Π(z) = e2πiz Π : C/Z #−→ C∗ R0f0 = Π ◦ Ef0 ◦ Π−1 R0f0 = Π ◦ Ef0 ◦ Π−1 R0f0 =
Π ◦ Ef0 ◦ Π−1

f = P ◦ ϕ−1

f = Q ◦ ϕ−1

0 ∞ (−∞,−1]

1

The following text is drawn in white.

Φattr R1 = 239

e−2π = 0.00186 . . .

Exp" Exp"(z) = e2πiz Exp" : C/Z "−→ C∗

R0f0 = Exp" ◦Ef0 ◦ (Exp")−1 R0f0 = Exp" ◦Ef0 ◦ (Exp")−1

f0
R−→ f1

R−→ f2
R−→ f3

R−→ . . .

fi

Theorem (A consequence of Golusin inequalities). Let Ω be a disk or a
half plane in Ĉ (including the case of the complement of a closed disk). If
g : Ω → Ĉ is a univalent holomorphic mapping, then for z, ζ ∈ Ω with
z, ζ, g(z), g(ζ) %= ∞ and z %= ζ,

∣∣∣∣ log
g′(z)g′(ζ)(z − ζ)2

(g(z) − g(ζ))2

∣∣∣∣ ≤ 2 log cosh
dΩ(z, ζ)

2
.

Theorem (A general estimate on Fatou coordinate). Let Ω be a disk or a
half plane and f : Ω → C a holomorphic function with f(z) %= z. Suppose f
has a univalent Fatou coordinate Φ : Ω → C, i.e., Φ(f(z)) = Φ(z) + 1 when
z, f(z) ∈ Ω. If z ∈ Ω and f(z) ∈ Ω, then
∣∣∣∣ log Φ′(z) + log(f(z) − z) − 1

2
log f ′(z)

∣∣∣∣ ≤ log cosh
dΩ(z, f(z))

2
=

1
2

log
1

1 − r2
,

where r is a real number such that 0 ≤ r < 1 and dD(0, r) = dΩ(z, f(z)).

f g C X π

D0 D′
0 D−1 D′′

−1
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where β = − 1
α

(mod Z) or α =
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m − β
(m ∈ N)

f = P ◦ ϕ−1

f = Q ◦ ϕ−1

1

gn’s, g̃n’s are “exponential-like”
(very expanding).

1

f̃0 = f̃

1

f̃1 = Rf̃0

1

f̃2 = Rf̃1

1

f̃3 = Rf̃2

1

g̃0

1

g̃1

1

g̃2

1

f0 = f

1

f1 = Rf0

1

f2 = Rf1

1

f3 = Rf2

1

g0

1

g2

1

g1

1

h3

1

h2

1

h1

1

h0

1



Various Renormalizations
Feigenbaum Circle map Near-parabolic

proper subintervals
-> Cantor set

partition of interval covering  by sector or 
croissant-like domains
gluing/identification 
needed to define the 

renormalization
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1

Return to Theorem 5
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f0(z) = z + a2z2 + . . .

λ = e2πi p
q λ = 1 a2 != 0

f(z) = e2πiαz + . . .

f(z) = e2πiαz + O(z2)

f ′(0) = e2πiα, α small | arg α| < π
4

α ∈ C ! {0} small and | arg α| < π
4

α ∈ R ! Q

ai ∈ N ai ≥ N

F0(w) = w + 1 + o(1) w = − c

w
near 0 near ∞ T (w) = w + 1 Φattr Φrep C/Z C

mod Z Ef0 Ef

f0 ! R0f0 R0f0(z) = z + O(z2)

f ! Rf Rf(z) = e2πiβz + O(z2) β = − 1
α

mod Z

Φattr(f(z)) = Φattr(z) + 1 Φrep(f(z)) = Φrep(z) + 1 Φ...(f0(z)) = Φ...(z) + 1

Ef0(z) = Φattr ◦ Φ−1
rep χf χf (z) = z − 1

α
Rf = χf ◦ Ef

f = P ◦ ϕ−1

f = Q ◦ ϕ−1

0 ∞ (−∞,−1]
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α
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Π Π(z) = e2πiz Π : C/Z #−→ C∗ R0f0 = Π ◦ Ef0 ◦ Π−1 R0f0 = Π ◦ Ef0 ◦ Π−1 R0f0 =
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The following text is drawn in white.

Φattr R1 = 239

e−2π = 0.00186 . . .

Exp" Exp"(z) = e2πiz Exp" : C/Z "−→ C∗

R0f0 = Exp" ◦Ef0 ◦ (Exp")−1 R0f0 = Exp" ◦Ef0 ◦ (Exp")−1

f0
R−→ f1

R−→ f2
R−→ f3

R−→ . . .

fi

Theorem (A consequence of Golusin inequalities). Let Ω be a disk or a
half plane in Ĉ (including the case of the complement of a closed disk). If
g : Ω → Ĉ is a univalent holomorphic mapping, then for z, ζ ∈ Ω with
z, ζ, g(z), g(ζ) %= ∞ and z %= ζ,

∣∣∣∣ log
g′(z)g′(ζ)(z − ζ)2

(g(z) − g(ζ))2

∣∣∣∣ ≤ 2 log cosh
dΩ(z, ζ)

2
.

Theorem (A general estimate on Fatou coordinate). Let Ω be a disk or a
half plane and f : Ω → C a holomorphic function with f(z) %= z. Suppose f
has a univalent Fatou coordinate Φ : Ω → C, i.e., Φ(f(z)) = Φ(z) + 1 when
z, f(z) ∈ Ω. If z ∈ Ω and f(z) ∈ Ω, then
∣∣∣∣ log Φ′(z) + log(f(z) − z) − 1

2
log f ′(z)

∣∣∣∣ ≤ log cosh
dΩ(z, f(z))

2
=

1
2

log
1

1 − r2
,

where r is a real number such that 0 ≤ r < 1 and dD(0, r) = dΩ(z, f(z)).
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gn’s, g̃n’s are “exponential-like”
(very expanding).
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Need to reconstruct the dynamics of      in subdomains (with control on 
geometry) from                  .  

f

1

fn = Rnf

1

Because the relation between     and                   is less obvious.f

1

fn = Rnf

1



Difficulty in proving rigidity for irrationally indiff. fixed pts.

Knowing       , what can be said about    ?Rf

1

f

1

How to transfer information (e.g. geometry) on      
  to previous generations of renormalizations                                        ?

Rnf

1

Rn−1f, Rn−2f, . . . , f

1

Fundamental domains (and their boundary curves) are not unique.

Need to cover previous fund. regions with next generation fund. regions 
WITH OVERLAP.   (not partition)

Need to reconstruct the dynamics of      from that of        
so that one can understand      better.  

Rf

1

f

1

f

1

this is like ...



Thank you!


