Discontinuity of straightening maps

Hiroyuki Inou (Kyoto University)

September 4, 2007

Douady and Hubbard introduced the notion of polynomial-like mappings to describe renormalizations of quadratic polynomials and to study the structure of the Mandelbrot set.

Definition. A *polynomial-like map* is a proper holomorphic map $f : U' \to U$ such that U, U' are topological disks, and $U' \Subset U$. Define the *filled Julia set* K(f) = K(f; U', U) and the *Julia set* J(f) = J(f; U', U) as follows:

$$K(f) = \bigcup_{n \ge 0} f^{-n}(U'), \qquad \qquad J(f) = \partial K(f)$$

We say two polynomial-like maps $f : U' \to U$ and $g : V' \to V$ are *hybrid equivalent* if there exists a quasiconformal map $\psi : U'' \to V''$ such that U'' (resp. V'') is a neighborhood of K(f) (resp. K(g)), $\bar{\partial}\psi \equiv 0$ a.e. on K(f), and $\psi \circ f = g \circ \psi$.

The most basic result on polynomial-like maps is the following.

Theorem (Straightening theorem). For any polynomial-like map $f : U' \to U$ of degree $d \ge 2$, there exists a polynomial g of the same degree hybrid equivalent to it. Furthermore, if K(f) is connected, then g is unique up to affine conjugacy.

By this theorem, we can construct a correspondence between families of polynomial-like maps and polynomials, when restricted to the connectedness loci. For $d \ge 2$, let Poly_d be the set of affine conjugacy classes of polynomials of degree d and $C_d = \{P \in \text{Poly}_d | K(P) \text{ is connected}\}$ be its *connectedness locus*. We also denote

$$C\mathcal{K}_d = \{(g, z) \in C_d \times \mathbb{C}; \ z \in K(g)\}.$$

Definition. Let $(f_{\lambda} : U'_{\lambda} \to U_{\lambda})_{\lambda \in \Lambda}$ be an analytic family of polynomial-like maps of degree $d \ge 2$. Let us denote the *connectedness locus* by

$$C_{\Lambda} = C_{(f_{\lambda})} = \{\lambda \in \Lambda; K(f_{\lambda}) \text{ is connected}\},\$$

and define the *straightening map* $S_{\Lambda} : C_{\Lambda} \to C_d$ by $S_{\Lambda}(\lambda) = g$ if f_{λ} is hybrid equivalent to g.

An analytic family of polynomial-like maps with marked point is a family of pairs $(f_{\lambda}, x_{\lambda})_{\lambda \in \Lambda}$ such that $(f_{\lambda} : U'_{\lambda} \to U_{\lambda})_{\lambda \in \Lambda}$ is an analytic family of polynomial-like maps of degree d and $x : \Lambda \to \mathbb{C}$ is a holomorphic map with $x_{\lambda} \in U'_{\lambda}$. Let

$$C_{\Lambda} = C_{(f_{\lambda}, x_{\lambda})} = \{\lambda \in \Lambda; K(f_{\lambda}) \text{ is connected and } x_{\lambda} \in K(f_{\lambda})\}.$$

The straightening map $S_{\Lambda} = S_{(f_{\lambda}, x_{\lambda})} : C_{\Lambda} \to C\mathcal{K}_d$ for a family $(f_{\lambda}, x_{\lambda})_{\lambda \in \Lambda}$ of polynomial-like maps with marked point is defined as follows: We have $S_{\Lambda}(\lambda) = (g, z)$ if $f_{\lambda} : U'_{\lambda} \to U_{\lambda}$ is hybrid equivalent to g with conjugacy ψ_{λ} and $z = \psi_{\lambda}(x_{\lambda})$ (note that $\psi|_{K(f)}$ is uniquely determined).

In the case of quadratic-like maps (i.e., when the degree d = 2), Douady and Hubbard proved that the straightening map is always continuous. Furthermore, in the Mandelbrot set $\mathcal{M} = C_2$, there exist many homeomorphic copies of itself (called *baby Mandelbrot sets*) and the homeomorphism is given by the straightening map of renormalizations.

However, they also construct a discontinuous straightening map of a cubic-like family. Hence it is natural to ask what happens in the case of renormalizations of higher degree polynomials.

Let us denote the set of critical points of $f \in \text{Poly}_d$ by Crit(f).

Definition. We say a polynomial $f_0 \in C_d$ ($d \ge 3$) satisfies the condition (P) if the following hold;

- 1. there exists a quadratic-like restriction $f_0^p: W_0' \to W_0$ hybrid equivalent to $z + z^2$;
- 2. there exist critical points ω_0, ω'_0 and N > 0 such that $\omega_0 \in W'_0$ and $f_0^N(\omega'_0) = \omega_0$;
- 3. every critical point $\omega \in \operatorname{Crit}(f_0) \setminus \{\omega_0, \omega'_0\}$ lies in Fatou set and is eventually periodic;
- 4. $K(f_0^p; W'_0, W_0)$ is disjoint from the closure of any attracting Fatou component.

If a polynomial f is Misiurewicz (every critical point is strictly preperiodic), then we can find such f_0 arbitrarily close to f.

For a periodic point x for f of period p, let $mult_f(x) = (f^p)'(x)$ be its *multiplier*.

Theorem 1. Let $(f_{\lambda} : U'_{\lambda} \to U_{\lambda})_{\lambda \in \Lambda}$ be an analytic family of polynomial-like maps of degree $d \ge 3$. Assume

- $g_0 = S_{\Lambda}(f_0)$ satisfies the condition (P);
- $S_{\Lambda} : C_{\Lambda} \to S_{\Lambda}(C_{\Lambda}) \subset C_d$ is a homeomorphism and its image $S_{\Lambda}(C_{\Lambda})$ is a neighborhood of f_0 in C_d .

Then for any repelling periodic point $x \in J(g_0^p; W'_0, W_0)$, we have

$$|\operatorname{mult}_{g_0}(x)| = |\operatorname{mult}_{f_0}(\psi_0^{-1}(x))|,$$

where ψ_0 is the hybrid conjugacy between f_0 and g_0 and $g_0^p : W'_0 \to W_0$ is the quadratic-like map in the definition of (P).

Theorem 2. Let d < d' and $f_{\lambda} \in \text{Poly}_{d'}$. Assume

- 1. $(f_{\lambda}: U'_{\lambda} \to U_{\lambda})_{\lambda \in \Lambda}$ be an analytic family of polynomial-like maps of degree d;
- 2. f_0 satisfies the condition (P) and $\{f_{\lambda}; \lambda \in \Lambda\}$ is a neighborhood of f_0 in $\text{Poly}_{d'}$;
- 3. there exists a marked critical point $\omega'_{\lambda} \in \operatorname{Crit}(f_{\lambda}) \setminus U'_{\lambda}$ for $\lambda \in \Lambda$ such that ω'_{0} is in the definition of (P);
- 4. $(f_{\lambda} : U'_{\lambda} \to U_{\lambda}, f^{N}_{\lambda}(\omega'_{\lambda}))$ is an analytic family of polynomial-like map with marked point and its straightening map $S : C_{\Lambda} \to S(C_{\Lambda}) \subset C\mathcal{K}_{d}$ is continuous.

Then for any repelling periodic point $x \in J(f_0^p; W'_0, W_0)$, we have

$$|\operatorname{mult}_{f_0}(x)| = |\operatorname{mult}_{g_0}(\psi_0(x))|$$

where $S(0) = (g_0, \omega), \psi_0$ is the hybrid conjugacy between f_0 and g_0 , and $f_0^p : W'_0 \to W_0$ is the quadraticlike map in the definition of (P).

By applying the following theorem of Prado, Przytycki and Urbanski, we can obtain much stronger result.

Theorem 3 (Prado-Przytycki-Urbanski). Let $f : U' \to U$ and $g : V' \to V$ be polynomial-like maps. Assume f and g are hybrid equivalent via a conjugacy ψ . If $|\operatorname{mult}_f(x)| = |\operatorname{mult}_g(\psi(x))|$ for any periodic point x, then f and g are analytically conjugate.

Proposition 4. Let f and g are polynomials. Assume that $f : U' \to U$ and $g : V' \to V$ are polynomiallike restrictions, which are analytically conjugate. Then there exist polynomials P, φ_1 and φ_2 such that $f \circ \varphi_1 = \varphi_1 \circ P$ and $g \circ \varphi_2 = \varphi_2 \circ P$. In particular, we have deg $f = \deg g$.

We say that f and g are *semiconjugate up to finite cover* if the conclusion of the above proposition holds.

Corollary 5. Under the assumption of Theorem 1 or Theorem 2, if f_0 is a polynomial (this is contained in the assumption of Theorem 2), then f_0 and g_0 are semiconjugate up to finite cover.

This means that straightening maps for a renormalizable family of polynomials are not homeomorphisms in most cases. Furthermore, if renormalizations are of capture type, then the straightening map is discontinuous.