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Abstract

The aim of these notes is to introduce the classical Picard-Vessiot from
the standpoint of complex geometry. These notes were written as mate-
rials for a lecture entitled “On the dynamical meaning of Picard-Vessiot
theory” given in the Kyoto Dynamic Days 9 at Kyoto University and
the first part of a lecture entitled “Liouville invariant tori of completely
integrable linear Hamiltonian systems from the standpoint of differential
Galois theory” at Kanazawa University. These notes only cover the core
of the theory and the problem of integration by quadratures. Therefore so
many interesting applications and related topics could be added to cover
the ambitious title. The author hopes these notes are suitable for under-
graduate students with some knowledge on Riemann surfaces, homotopy,
analytic functions and group theory.
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1 Introduction

These notes are devoted to non-autonomous systems of homogeneous linear
differential equations on the complex domain. Those systems are differential
equations of the form,

dy

dx
= A(x)y (1)

where x is a complex independent variable, y is a vector of n unknown functions
of x and A is an n × n matrix which depends analytically on the independent
variable x.

The main property of such systems is that a C-linear combination of solutions
is also a solution. Hence, the set of its solutions form a C-vector space of
dimension at most n.

We are going to present here the classical Picard-Vessiot theory, also known
as differential Galois theory for linear differential equations. The Picard-Vessiot
theory deals with the possibility of obtaining an algebraic formula for the general
solution of the system (1) or, at least, reduce the system (1) to a its simplest
form. This theory belongs to the field of differential algebra.

There is a number of good references on differential Galois theory from a
differential algebraic stand point, including [2, 3, 5, 8]. Recently, a connection
between Picard-Vessiot theory and dynamical systems has been fruitfully used,
for instance in [7]. However, there is not available in the literature a presenta-
tion of the Picard-Vessiot theory standing on the theory of complex differential
equations and complex geometry. The beautiful book [4] covers an important
part of this topic, with a nice an intuitive exposition of monodromy of differ-
ential equations, however this book is focused on Fuch-Frobenius theory and
overrides the Picard-Vessiot theory. The objective of this note is to develop the
fundamentals of differential Galois theory using the language and intuitions of
complex differential equations. Our purpose is to point out relations between
algebraic invariants of the linear differential equations, such as the differential
Galois group, and some dynamical and geometric aspects. I hope it will encour-
age some people to apply and extend the beautiful ideas due to E. Galois. This
presentation is not due to myself, but just the simple application to the par-
ticular case of linear equations of the recently developed non-linear differential
Galois theory [6]. A similar exposition, slightly more general and unfortunately
rather more complicated can be found in [1].

1.1 Singularities

Notation. From now on, let Γ be the domain of the independent variable x.
Then Γ is an open subset of the complex projective line C, which is endowed
with the meromorphic form dx that allows us to write down the equations (1).
More generally, we should consider that Γ is any Riemann surface in which we
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select a meromorphic 1-form that we denote dx.1 This meromorphic form is not
so important, but we need it in order to write down our differential equations in
coordinates.2 We will denote byM(Γ) the field of meromorphic functions in Γ,
that becomes a differential field.3 For any x ∈ Γ we will write Ox for the ring
of convergent power series at x, and by M(Γ)x the field of convergent Laurent
series at x. In what follows, we consider that A(x) is an n × n matrix whose
entries are meromorphic functions on Γ. In other words,4

A(x) ∈ gl(n,M(Γ)),

i.e., it is an element of the Lie algebra of the general linear group of rank n
with coefficients in M(Γ).

Definition 1 Assume that dx is regular at x0 ∈ Γ. We say that x0 is a singu-
larity of (1) if x0 is a pole of the matrix of coefficients A(x).

At the zeroes and poles of dx we just take a different local coordinate 5 in
order to decide if they are singularities of (1).

Example 1 Let us consider the Airy equation,

d2y

dx2
= xy,

or matrix form,
d

dx

(
y1

y2

)
=
(

0 1
x 0

)(
y1

y2

)
,

1Let us recall that a meromorphic function is a function that is locally the quotient of two
analytic function. And a meromorphic 1-form in C is of the form f(x)dx. For any Riemann
surface Γ the space of meromorphic forms is a 1-dimensional vector space over the fieldM(Γ)
of meromorphic functions. It also mean that there exist quotient of two forms ω1

ω2
as a

meromorphic function. In such meaning we can speak about the derivative of a meromorphic
function f with respect to another meromorphic function g, it is just the quotient df

dg
that

should be seen as a quotient meromorphic 1-forms in Γ. Meromorphic forms are closed, but
they do not need to be exact, for instance dx

x
is not exact in C∗ since it is d log(x) and the

logarithmic function can not be defined in the whole C∗.
2The meromorphic form dx determines a derivation ∂ of the field M(Γ), we just define

∂f = df
dx

. Reciprocally, any derivation ∂ : M(Γ)→M(Γ) determines the 1-form ∂fdf , which
does not depend on the election of the non-constant function f .

3Let us recall that a differential field is a field K endowed with a derivation, that is a C-
additive map ∂ : K → K satisfying Leibniz rule ∂(fg) = f∂(g) + g∂(f). All the theory of this
notes can be done in the language of connections which is independent of the election of the
derivation. However, it is the actual belief of the author (maybe wrong) that it is convenient
to speak about differential equations using differential equations.

4The notation GL(n,K) and gl(n,K) is used in this text for the general linear group of
invertible n×n matrices with coefficients in a field K and its Lie algebra respectively. Let us
recall that in this case the Lie algebra is just the space of n × n matrices, endowed with the
commutator bracket. For an abstract K-vector space E we will write AutK(E) for its group
of automorphisms, which is isomorphic to the general linear group.

5If t is a local coordinate near a singular point of dx, then we just apply that d
dt

= dt
dx

d
dx

for rewriting the equation (1) near the singularity.
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Γ

Cn x = x0

(x0, y0)

Figure 1: Near a regular point we can identify the space of germs of solutions with
the space of initial conditions, Cn.

which is defined for x varying in the complex projective line. The 1-form dx is
holomorphic and it has a zero in the point at infinity. If we take z = x−1 the
point at infinity has the coordinate z = 0, and dx = −z−2dz has a pole at this
point. Instead of dx we can take dz which is a regular non-vanishing 1-form at
the point of infinity. We have, d

dx = −z2 d
dz and hence,

d

dz

(
y1

y2

)
=
(

0 − 1
z2− 1

z3 0

)(
y1

y2

)
,

revealing that the Airy equation has a singularity at the point of infinity. In case
we want to obtain the equation written as a second order differential equation,
we just eliminate the variable y2 to obtain,

d2y

dz
= −2

z

dy

dz
+

1
z5
y,

where y = y1.

1.2 Solutions and Initial Conditions

At regular points we can solve the Cauchy problem just by series expansions,
and then we have a canonical identification of the space of solutions with the
space of initial conditions (see Figure 1).

Lemma 1 (Linear Superposition Principle) Let x ∈ Γ be a regular point
of (1). Let us consider Sx ⊂ M(Γ)nx the set solutions of (1) in Onx , that is,
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germs of solutions defined around x. Then Sx is a C-vector space of dimension
n. The map that assigns to any initial condition y0 ∈ Cn the germ of the
solution ȳ of (1) such that ȳ(x) = y0, is C-linear.

From now of we systematically will use the notation Sx for the vector space
of germs of solutions defined around x.

Another interesting thing about solutions is that we can prolong them ana-
lytically along any continuous path whenever we avoid singularities. This is a
direct consequence of the superposition principle.

Lemma 2 Let ȳ be a germ of a solution of (1) defined around x0 ∈ Γ. Then y
can be prolonged analytically along any path that does not contain singularities
of (1). Equivalently, ȳ extends to a uniquely defined analytic solution y(x) in
any simply connected domain of x0 that does not contain singularities of (1).

Proof. Let us consider a continuous path γ : [0, 1]→ Γ such that γ(0) = x0.
For each t ∈ [0, 1] we have that there is n linear independent solutions of (1)
defined in certain neighbourhood Ut of γ(t). Being [0, 1] compact, and taking
a refinement of our covering if necessary, we can select a finite family t0 = 0 <
t1 < . . . < tm = 1 in such way that the m open sets γ−1(Uti) are connected and
cover the interval [0, 1]. If follows easily that the analytic continuation exist. �

1.3 Non-linearity near Singularities

We may think that linear differential equations do not show interesting dy-
namical properties. This may be true if we avoid singularities, and restrict
the variation of the independent variable to simply connected (or at least with
abelian fundamental group) domains.

Near a singularity, the variable dependent can be scaled in such a way that
we obtain a new differential equation which is regular in such point. Take for
instance, the system,

dy

dx
=
A(x)
xα

y (2)

where A(x) is analytic near zero, and α is a positive integer. We can regularize
such singularity by taking a new independent variable t such that dx

dt x
α. Then,

we obtain a regularized equation,

dx

dt
= xα

dy

dt
= A(x)y,

which is an autonomous differential equation in x and y and has a zero at the
origin. However, this equation is no more linear: the matrix A(x) may contain
non-linearities in the x-variable. In general, it may be non-integrable.
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1.4 Global Geometry of Solutions

Let us remind that when we allow complex values for the independent variable
x, the graphs of solutions of the differential equation (1) are complex curves in
Γ×Cn, which can also be seen as real surfaces. Those surfaces define a foliation
of equations,

dyi −
n∑
j=1

aij(x)yjdx = 0, i = 1, . . . , n (3)

in Γ×Cn. We are going to build up the Picard-Vessiot theory by studying the
geometry of the leaves of such foliation.

Definition 2 A leaf of the foliation (3) is called exceptional if it is contained
in fiber of some x0 ∈ Γ by the natural projection Γ × Cn → Γ. In such a case,
x0 is a singularity of (1).

Then, we should distinguish two classes of leaves. Regular ones, which are
locally represented by graphs of solutions of (1), and those which are exceptional
and project onto singularities of (1).

It is very interesting to consider the global geometry of the leaves, and
also the geometry of the leaves near singularities. We should notice that near
singularities linear differential equations with meromorphic coefficients may not
behave like linear differential equations with constant coefficients.

Example 2 Let us consider the equation,

dy

dx
=

(a+ b+ 1)x2 + (a− b)x− 1
x3 − x

Its solution is easily computed in terms of an elementary integration. It yields:

y(x) = λ1 (log(x) + a log(x− 1) + b log(x− 1)) + λ

We have a nice formula for the general solution, which can be defined in any
simply connected domain in C \ {−1, 0, 1}. If we continue our solution along a
closed path that goes around zero clockwise, then we obtain a different solution
that correspond to a different sheet of the same complex curve,

y+(x) = y(x) + 2πi;

if we choose a path that goes around 1, we get also a different solution,

y×(x) = y(x) + 2aπi;

finally if we choose a path that goes around −1, we get the solution,

y−(x) = y(x) + 2bπi.
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Thus, the leaf of the foliation defined by y(x) contains also the graphs of all
functions of the form

y∗(x) = y(x) + 2πi(k + an+ bm), k, n,m ∈ Z.

If we assume that 1, a, b are linearly independent over the rational numbers, and
mutually linearly independent over the real numbers, it is clear that the leaf of
containing the graph of y(x) is dense in C2.

Example 3 Let us consider the following equation:

dy

dx
=

(a+ b)x− b
x2 − x y.

This equation can be integrated by elementary procedures, and its solution is
given by,

y(x) = λxa(x− 1)b. (4)

As in the example above, the solution defined by formula (4) can be defined
for x varying simply connected subset of C that does not contain 0 and 1. The
graph of this solution is an open subset of a leaf of the foliation (3). Let us
prolong y along a loop that goes around 0 counter-clockwise. We obtain a new
solution whose graph lies on the same leaf of the foliation:

y+(x) = e2πiay(x).

If we prolong y along a loop that goes around 1 counter-clockwise we get,

y×(x) = e2πiby(x).

It follows that the single leaf defined by y contains all the graphs of functions
of the form,

y∗(x) = e2πi(ma+nb)y(x)

with m and n integers. Assume that a and b are complex numbers such that
a, b, 1 are linearly independent over the rational numbers and a, b, 1 are mutually
independent over the real numbers. In such case, it automatically follows that
the leaf defined by y is dense in C2.

2 Monodromy Representation

The set of poles of a meromorphic function in Γ is always a discrete set, and
then so is the set of singularities of (1). Let us consider Γ× the Riemann surface
that we obtain by removing the singularities of (1) from Γ.

Given any continuous path γ : [0, 1]→ Γ× we can prolong any germ of solu-
tion defined around γ(0) along γ so that we obtain a germ of solution defined
around γ(1) (see Lemma 2 and Figure 2). From the uniqueness of the analytic
prolongation in simply connected domains it is clear that this germ at the final
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point γ(1) depends only on the homotopy class [γ] of γ. The analytic continu-
ation is also C-linear. Therefore, [γ] induces, through analytic continuation, a
C-linear map:6

m[γ] : Sγ(0) ' Cn → Sγ(1) ' Cn.

Definition 3 The homotopy grupoid Π1(Γ×) is the set of the homotopy classes
of continuous paths in γ : [0, 1]→ Γ×.

The set Π1(Γ×) is endowed with a double natural projection, s that sends
each homotopy class to its starting point, and e that send each homotopy class
to its end point:

(s, e) : Π1(Γ×)→ Γ× × Γ×, [γ] 7→ (s([γ]), e([γ])) = (γ(0), γ(1)).

For each x0 in Γ× we have that s−1(x0) ⊂ Π1(Γ×) is the set of all homotopy
classes of paths with starting point ant x0. Therefore, the following projection

e : s−1(x0)→ Γ×,

is the standard construction of the universal covering.
6Let us remind that Sx is the notation we already introduced for the space of germs of

solutions of (1) defined around x ∈ Γ.

Γ
γ

x0

y(x0) = y(γ(0))

y∗(x0) = y(γ(1))

Figure 2: The monodromy matrix mγ sends y(x0) to y∗(x0).
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The natural grupoid structure of Π1(Γ×) is defined as follows. If the starting
point of γ1 coincides with the end point of γ2 we consider the concatenation
γ1 ∗ γ2:

γ1 ∗ γ2(t) =

{
γ2(2t) if t ≤ 1/2,
γ1(2t− 1) if t > 1/2.

We define [γ1]∗ [γ2] = [γ1 ∗γ2]. The analytic prolongation is compatible with
this procedure, so that we have:

m[γ1]∗[γ2] = m[γ1] ◦m[γ2].

It is also clear that for any x0 in Γ× the first fundamental group π1(Γ×, x0) of
homotopy classes of loops with origin at x0 is the fiber (s, e)−1(x0, x0), naturally
embedded in Π1(Γ×).

For [γ] ∈ π1(Γ×, x0) we have m[γ] ∈ AutC(Sx0) and using the natural identi-
fication between germs, Sx0 , and initial conditions Cn, we get a group morphism,

mon(Γ×, x0) : π1(Γ×, x0)→ GL(n,C),

which we call the monodromy representation of (1) based on x0.

Definition 4 We call Monodromy group of equation (1) at x0 ∈ Γ×, Mon(x0,Γ×),
to the image of the above map mon(x0,Γ×).

Remark 1 The monodromy representation depends on a point x0 of Γ×. We
can override this dependency if we consider the monodromy representation of
the homotopy groupoid into the grupoid of transversal 1-jets of linear transfor-
mations which is isomorphic to GL(n,C)× Γ× × Γ×. Such technical point is is
some case more elegant to the eyes of the geometrist, but not necessary for the
development of Picard-Vessiot theory.

Example 4 In the differential equation of Example 3, our Riemann surface Γ×

is C \ {0, 1}. Its fundamental homotopy group, based on any x0 is spanned by
a loop γ0 around 0 and a loop γ1 around 1. We consider both loops counter-
clockwise. Thus, the homotopy group π1(C \ {0, 1}, x0) = 〈γ0, γ1〉, is the free
non-abelian group generated by two symbols. The monodromy representation
is:

mon(C \ {0, 1}, x0) : π1(Γ×, x0)→ C∗, γ0 7→ e2πia, γ1 7→ e2πib.

(1) If a, b are rational, then Mon(C \ {0, 1}, x0) is a finite group of roots of
unit.

(2) If a, b are real numbers then Mon(C\{0, 1}, x0) is a relative compact group
included in the unit circle. This group is isomorphic to Z if a/b is rational,
otherwise it will be Z2.
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(3) If the quotient a/b is rational then Mon(C \ {0, 1}, x0) is a discrete group
isomorphic to Z embedded inside a logarithmic spiral.

(4) If the quotient a/b is a real irrational number then Mon(C \ {0, 1}, x0) is
a dense group embedded in a logarithmic spiral.

(5) In the generic case, we have a group isomorphic to Z2 which is dense in
C∗.

Proposition 3 Let γ be a path in Γ×, then

Mon(Γ×, γ(0)) = m[γ]Mon(Γ×, γ(1))m−1
[γ] .

Proof. Just notice that the map defined by,

π1(Γ×, γ(0))→ π1(Γ×, γ(1)), [σ] 7→ [γ ∗ σ ∗ γ−1]

is an isomorphism of groups. By the compatibility between the concatenation
of paths and composition of monodromy matrices we complete the proof. �

3 Univalued Solutions

Let us consider the universal covering u : Γ̃ → Γ×. Let M(Γ̃) be the field of
meromorphic functions in Γ̃. Meromorphic functions in Γ× lift to meromorphic
functions in Γ̃ so that we have a natural inclusion7 M(Γ) ⊂ M(Γ̃). In this
way we can consider the differential equation (1) as a differential equation in
Γ̃× Cn. This has two main advantages: the domain Γ̃ is simply connected and
it contains no singularities of the differential equation.

Proposition 4 Any leaf of the foliation (3) in Γ̃×Cn is the graph of an analytic
function defined in the whole Γ×. Equivalently, the space S̃ of solutions of the
equation (1) in O(Γ̃)n ⊂M(Γ̃)n has complex dimension n.

Example 5 Let us consider the differential equation

d

dy
=
A

x
y,

with A a constant matrix. Its general solution is8 y = λxAy0 where y0 is an
arbitrary constant vector. This is in general a multivalued function. In this case
the Riemann surface Γ× is the pointed plane C∗. Its universal covering is given
by the exponential function,

u : C→ C∗, z 7→ x(z) = ez.

7Also 1-forms lift up, so that this inclussion is in fact an extension of differential fields.
8In fact, the expression xA means exp(log(x)A). Here it happens that the example itself

is the equation that motivated the notation.
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By the change of variable x = ez we obtain the differential equation:

dy

dz
= Ay,

whose general solution, y = exp(zA)y0, is univalued in C.

Remark 2 In the general case, to give an explicit construction of the universal
covering is rather complicated. For instance, the construction of the universal
covering of the plane without two points is the starting point of the theory of
modular functions. However, the universal covering is a very useful tool for
theoretical discussions on linear differential equations.

4 Algebraic Groups and Zariski Topology

4.1 Zariski Topology in Cn.

Let us remind that the Zariski topology in Cn is the topology in which the
closed subsets are defined by systems of polynomial equations in the coordinates
y1, . . . , ym. A subset is closed if and only if it is an algebraic subset. The Zariski
topology in a subset of Cn is just the restriction of the Zariski topology in Cn.

In the space GL(n,C) we consider the matrix elements uij as coordinates.
Since matrices of the general linear group are non-degenerated, the inverse of
the determinant 1

det(uij)
is a well-defined function. Therefore, we will consider

as Zariski closed subset to the solutions of systems of polynomial equations in
the coordinates uij and the inverse of the determinant 1

det(uij)
. This point is

somehow artificial, because we can always eliminate this extra variable 1
det(uij)

of our equations, but it appears easily in examples, and it is worthy to clarify
that the inverse of the determinant is allowed to appear in the equations defining
closed subsets of GL(n,C).9

Definition 5 A subgroup G of GL(n,C) is called a linear algebraic group if it
is closed in the Zariski topology.

Linear algebraic groups are complex analytic Lie subgroups of GL(n,C).
Let G be a linear algebraic group. Then G has a finite number of connected
components. The connected component which contains the identity is a normal
subgroup G0 of G. It is also the smallest normal subgroup of finite index.

Example 6 Some examples of algebraic groups:

(1) Any finite group of matrices is algebraic.

9In fact, the ring C
h
uij ,

1
det(uij)

i
is the ring of regular functions in GL(n,C). The compo-

sition and inversion of matrices are then defined by regular functions. If we would not consider
1

det(uij)
, the the inversion of matrices could not be seen as an algebraic procedure.
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(2) The special linear group SL(n,C) of matrices with determinant 1 is alge-
braic.

(3) The group of upper (or lower) triangular matrices, Tr(n,C) is algebraic.

(4) The group of orthogonal matrices,

O(n,C) = {A|AtA = Id},

is algebraic.

(5) Any group defined by the invariance of some tensor quantities is algebraic.
Conversely, any algebraic group is defined as the group of matrices that
preserve some mixed tensor (Chevalley’s theorem).

(6) The unimodular group,

U(1,C) = {z ∈ C | zz̄ = 1},

is not algebraic.

4.2 M(Γ)-Zariski Topology

In a general setting, for the exposition of the Picard-Vessiot theory it is necessary
some systematic study of prime ideals of the ring of polynomials with coefficients
in a differential field. In the particular case of our interest, in which our field of
coefficients is a field of meromorphic functions in a Riemann surface Γ, we can
avoid such technical point and deal directly with the solutions of polynomial
equations in the analytic space Γ× Cn.

Let K ⊂M(Γ) be a field of meromorphic functions in Γ.10

Definition 6 Let Γ∗ be an open subset of Γ and Z ⊂ Γ∗ × Cn be a subset.
We say that Z is K-algebraic in Z ⊂ Γ∗ ×Cn if there is a system of polynomial
equations:

Pj(x, y) = 0, j = 1, . . . , k, Pj(x, y) ∈ K[y1, . . . , yn], (5)

such that:

(a) the poles of the coefficients of Pj(x, y) are outside Γ∗;

(b) Z is the set of solutions of (5).

Definition 7 We say that Z ⊂ Γ × Cn is K-Zariski closed if there exist a
covering {Γα}α∈A of Γ such that for all α ∈ A the set Zα = Z ∩ (Γα × Cn) is
K-algebraic in Γα × Cn.

10That is, any subfield of M(Γ).
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The collection of K-Zariski closed sets define a topology in Γ×Cn. When Γ
is a compact Riemann surface then the K-topology in Γ×Cn is the usual Zariski
topology of the product of algebraic manifolds. However, the situation is richer
when we consider different field of functions in an open Riemann surface.

Remark 3 Points are closed in the K-Zariski topology if and only if the field
K separates points in Γ.

The K-Zariski topology is defined in Γ×GL(n,C) analogously. By restriction
of this topology we also have a K-Zariski topology in Γ × G for any linear
algebraic group G.

5 The Automorphic Equation

5.1 Brief Review of G-Spaces

Let G be a group and X be a set. Let us recall that a G-space structure on X
is just an action of G in X, 11

G×X → X, (σ, x) 7→ σ · x

satisfying the standard axioms of group actions. Analogously we define the
notion of G-space structure by the right side.12

Given a point x of X, the orbit of x, denoted by G · x, is the set of elements
of the form σ · x for some σ in G. The isotropy group of x is the subgroup
Hx ⊂ G of elements σ ∈ G such that σ · x = x.

When G is a linear algebraic group and the action of G in a Zariski closed
subset X ⊂ Cn is given by polynomials in the coordinates yi, the matrix el-
ements uij and the inverse of the determinant 1

det(uij)
, then we say that this

action is algebraic. In such a case, orbits are Zariski closed and isotropy groups
are also algebraic subgroups of G.

Let us recall that a G-space is called homogeneous if it consist of a single orbit
and free if the isotropy groups Hx are reduced to the identity. A homogeneous
and free G-space is called a principal homogeneous G-space.

Definition 8 Let G ⊂ GL(n,C) be a linear algebraic group. A principal mero-
morphic G-bundle is a subset P ⊂ Γ×GL(n,C) such that:

(1) the image of the projection is the complement of some discrete set in Γ. If
we denote this image by Γ× we have that the natural projection P → Γ×

is a bundle.13

11It means that the map G→ End(X), σ → φσ defined by φσ(x) = σ·x is a group morphism
from G into Aut(X) ⊂ End(X).

12An action by the right side is of the form X ×G→ X satisfying analogous properties.
13It means that it is onto and the fibers are smooth submanifolds of constant dimension.
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(2) P is M(Γ)-Zariski closed in Γ× ×GL(n,C).

(3) For each x0 ∈ Γ× the fiber Px0 of x0 by the natural projection is a principal
homogeneous G-space.

5.2 Fundamental Matrices of Solutions

A fundamental matrix of solutions for equation (1) is a n×n matrix U(x) whose
columns are linearly independent solutions of (1). 14

It is clear that U(x) is a fundamental matrix of solutions if and only if it is
non-degenerate and it satisfy the differential equation:

dU

dx
= A(x)U (6)

which we call the automorphic equation associated to (1).

This differential equation can be seen as a foliation in Γ×GL(n,C) defined
by the equations,

duij −
n∑
k=1

aikykdx = 0, i, j = 1, . . . , n. (7)

The advantage of considering equation (6) instead of (1) is that every single
solution of the automorphic equation resumes the general solution of the original
system (1). Moreover, solutions of (6) are all similar between then.

Let U(x) be a solution of the automorphic system (6). By elementary com-
putation, it is clear that given any constant y0 in Cn the product U(x)y0 is a
solution of (1). It also follows easily that any solution of (1) can be obtained
in this way from a unique fundamental matrix. Applying the same argument,
if σ is a non-degenerate matrix then U(x)σ is also a fundamental matrix of so-
lutions. Thus, any fundamental matrix of solutions can be obtained from U(x)
in this way.

Notation. For x ∈ Γ× let us denote by Px the set of germs of solutions of
(6) in GL(n,Ox). We also consider the lifting of equation (6) to the universal
covering Γ̃ of Γ×. By P̃ we mean the set of solutions of (6) in GL(n,O(Γ̃)). 15

The above discussion is summarized in the following result:

Theorem 5 The group GL(n,C) acts on Px for any x ∈ Γ× and on P̃ by the
right side. These actions,

Px ×GL(n,C)→ Px, (U(x), σ) 7→ U(x)σ,

P̃ ×GL(n,C)→ P̃, (U(x), σ) 7→ U(x)σ,

give to Px and to P̃ structures of principal homogeneous GL(n,C)-spaces by the
right side.

14And therefore, such a matrix is non-degenerate.
15By O(eΓ) we mean the ring of analytic functions defined in the whole surface eΓ.
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5.3 Monodromy of Fundamental Solutions

Let us consider a leaf L of the foliation (7) in Γ× × GL(n,C), and a constant
non-degenerate matrix σ. The set 16

L · σ = {(x, Uσ) | (x, U) ∈ L}

is also a leaf of the foliation (7). This means that the group GL(n,C) also acts
on the set of leaves. Let us denote this set by L. Since any fundamental matrix
can be obtained from another one by composition with a constant matrix, it is
also clear that L is an homogeneous GL(n,C)-space.

Notation. From now on, for x0 ∈ Γ×, let us denote by Lx0 to the leaf of
the foliation (7) that passes through the point (x0, Id) where Id represents the
identity matrix.

Proposition 6 The monodromy group Mon(Γ×, x0) is the group of isotropy of
the leaf Lx0 .

Proof. Let γ be a continuous loop with origin at x0. The monodromy
matrix m[γ] acts on the initial conditions,

m[γ] : Cn → Cn,

so that the analytic prolongation along γ of the solution y(x) with initial
condition y(x0) = y0 will lead to the solution y∗(x) with initial condition
y∗(x0) = m[γ]y0. Let U(x) be a germ fundamental matrix of solutions de-
fined around x0 with the initial condition U(x0) = Id. Then, the solution y(x)
with initial condition y(x0) = y0 is given by y(x) = U(x)y0, and the solution
with initial condition y(x0) = m[γ](y0) is y∗(x) = U(x)m[γ](y0).

So that it is clear that if we prolong analytically the germ U(x) along γ
we obtain the germ U(x)m[γ] near the end point. This means that the graphs
of U(x) and U(x)m[γ] lie on the same leaf of the foliation (7), and then the
monodromy matrix m[γ] is in the isotropy group of Lx0 . �

Being the universal covering Γ̃ simply connected, the following result be-
comes apparent.

Proposition 7 Any leaf L of the foliation (7) in Γ̃×GL(n,C) is the graph of an
analytic solution of (1) defined in Γ̃. The set L̃ of leaves of (7) in Γ̃×GL(n,C)
is then a principal homogeneous GL(n,C)-space.
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6 The Galois group

6.1 Galois Bundle

Let L be a regular leaf of the foliation (7) in Γ× × GL(n,C). We denote its
M(Γ)-Zariski closure by L

zar
(see Figure 3).

Lemma 8 The set L
zar

is union of leaves of the foliation (7).

Proof. In an adequate subset Γ∗ × GL(n,C) the set L
zar

is an M(Γ)-
algebraic set so that it is the solution set of some algebraic equations,

Pk(x, U) = 0, k = 1, ..., l, Pk =M(Γ)[uij ],

which span the ideal of all polynomial equations satisfied by L in Γ∗×GL(n,C).
Let U(x) = (uij(x)) be a fundamental matrix of solution, defined in a sufficiently
small open subset of Γ×, and such that the graph of U(x) is part of the leaf L.
We differentiate the above algebraic equations implicitly with respect to x to
obtain:

0 =
d

dx
Pk(x, U(x)) =

∂Pk
∂x

(x, U(x)) +
n∑

i,j=1

∂Pk
∂uij

(x, U(x))
duij(x)
dx

.

16From now on, we shall use the dot “·” for representing the product of matrices done “point
by point” in subsets of Γ× ×GL(n,C) and Γ× ×Cn. That means that, for instance, if X is a
subset of Γ× ×GL(n,C) and y0 ∈ Cn is a constant vector, then X · y0 is the set of elements
of the form (x, σy0) where (x, σ) ∈ X.

Γ

L

L
zar

GL(n, C)

Figure 3: In order to compute the Galois group we take the M(Γ)-Zariski closure
L

zar
of any regular leaf L of the foliation (7).
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Using equation (6), we realize that this quantity is also a polynomial in the
matrix elements uij ,

d

dx
Pk(x, U) +

n∑
i,j,k=1

aik(x)ukj
∂Pk
∂uij

(x, U).

Such quantity vanishes on L, by definition, and consequently it also vanish on
the Zariski closure L

zar
. By iteration of the same argument we conclude that

the successive derivatives dαPk
dxα (x, U) are also polynomials in U and then they

all vanish on L
zar

.

Consider any point (x0, U0) of L
zar

in Γ∗ ×GL(n,C). Let U(x) be a funda-
mental matrix of solutions such that U(x0) = U0. By hypothesis,

dαPk
dxα

(x0, U(x0)) = 0, α = 0, 1, 2, . . .

Being Pk(x, U(x)) a holomorphic function at x0, it follows that Pk(x, U(x))
vanishes and then the graph of U(x) is contained in L

zar
. Since any leaf of the

foliation (7) is covered by the graphs of fundamental matrices of solutions, we
complete the proof. �

Definition 9 We call Gal(L) the Galois group of L which is the set of matrices
σ such that L · σ ⊂ Lzar

.

Proposition 9 The following statements hold:

(i) L
zar

=
⋃
σ∈Gal(L) L · σ

(ii) Gal(L) is a linear algebraic group.

(iii) If L and L′ are two leaves of the foliation (7) then:

Gal(L) = σ−1 ·Gal(L′) · σ,
for any constant non-degenerate matrix σ such that L · σ = L′.

Proof. (i) The inclusion L
zar ⊇ ⋃σ∈Gal(L) L · σ is a direct conclusion of

definition 9. For the opposite inclusion let (x0, U0) be in L
zar

and let L0 be the
leaf of the foliation (7) which passes through (x0, U0). By Lemma 8 we see that
L0 is contained in L

zar
. By Proposition 7 there exists σ ∈ GL(n,C) such that

L · σ = L0, i.e., σ is in Gal(L). It finishes the proof of the point (1).

(ii) If L and L′ are two leaves of foliation (7) having the same Zariski closure
then Gal(L) = Gal(L′). It follows easily that Gal(L) is closed under the com-
position and inversion of matrices, and henceforth it is a group. Let (x0, U0)
be a point of L. In some open subset of the form Γ∗ ×GL(n,C) the set L

zar
is

given by some polynomial equations,

Pk(x, U) = 0, k = 1, ..., l, Pk ∈M(Γ)[uij ,det(uij)−1].

17



In virtue of the part (i) the set

Z = {U0σ |σ ∈ Gal(L)} ⊂ GL(n,C),

is given by the polynomial equations,

Pk(x0, U) = 0, k = 1, ..., l, Pk(x0, U) ∈ C[uij ,det(uij)−1].

Applying a left translation we obtain the equations of the Galois group,

Qk(U) = Pk(x0, U
−1
0 U), k = 1, ..., l, Qk(U) ∈M(Γ)[uij ,det(uij)−1],

which clearly define a Zariski closed set, and hence Gal(L) is a linear algebraic
group.

(iii) Let us assume that L′ = Lσ. The right translation,

Rσ : Γ× ×GL(n,C)→ Γ× ×GL(n,C), (x, U) 7→ (x, Uσ),

is clearly a homeomorphism for M(Γ)-topology so that L′
zar

= L
zar · σ. The

conjugation of the Galois groups follows immediately. �

Remark 4 In comparison with the algebraic theory in [3, 8], the Zariski closure
L

zar
is what is usually called the torsor space for equation (1). The ring of

regular17 functions on L
zar

is usually called the Picard-Vessiot algebra.

One of the problems with the above definition of the Galois group is that its
embedding into GL(n,C) is not uniquely defined. It depends on the election of
a leaf of the automorphic foliation. However, we can assign canonically to each
x0 ∈ Γ× the leaf Lx0 that passes through the point (x0, Id). It leads us to the
definition of the Galois bundle:

Definition 10 We call Galois bundle Gal(Γ×) to the subset of Γ× ×GL(n,C)
defined by:

Gal(Γ×) = {(x, σ) |σ ∈ Gal(Lx)}
It is clear that the projection Gal(Γ×)→ Γ× is a bundle, and its fibre at x0,

is an algebraic group Gal(Γ×, x0). We call it the Galois group of (1) based on
x0.

Proposition 10 Gal(Γ×) is M(Γ)-Zariski closed in Γ× ×GL(n,C).

Proof. The proof of this proposition is not so hard, but it relies on some
previous results on algebraic geometry that are beyond the purpose of these
notes. Here we give here a sketch of the proof. Let us consider a regular leaf L
and its M(Γ)-Zariski closure T . Let us denote by G the abstract Galois group,
which is an algebraic group. Then T → Γ× is a meromorphic principal bundle

17Rational functions having no poles on its domain of definition.

18



modeled over G. It is known that algebraic G-bundles are meromorphically iso-
trivial. It means that we can cover Γ× by surfaces {Γα}α∈A in such way that
for any α ∈ A there exist a finite ramified covering Γ̂α → Γ and a meromorphic
section σα(x̂) of T defined on Γ̂. Let T̂α be the lift of T to Γ̂, and consider the
following commutative diagram:

Γ̂α ×GL(n,C) //

π
((QQQQQQQQQQQQ

Γ̂α ×GL(n,C)

��
Γα ×GL(n,C)

(x̂, U) //

&&MMMMMMMMMM (x̂, Uσ̂(x̂)−1)

��
(x, Uσ̂(x̂)−1)

The projection π is the composition of a birrational isomorphism and a finite
projection. It means that it is closed by the Zariski topology. We complete
the proof just by realizing that π(T̂α) = Gal(Γα), where Gal(Γα) denotes the
intersection of Gal(Γ×) with Γα ×GL(n,C). �

Definition 11 The connected component of Gal(Γ×) containing the identity
section of Γ××GL(n,C) will be denoted by Gal0(Γ×). It is clear and consistent
with our notation, that Gal0(Γ×, x) is the connected component of the identity
of Gal(Γ×, x).

Proposition 11 If γ : [0, 1]→ Γ× is a continuous path in Γ× then,

Gal(Γ×, γ(0)) = m−1
[γ] Gal(Γ×, γ(1))m[γ].

Proof. Let us consider the leaf Lγ(0) that passes through (γ(0), Id). By
analytic continuation along γ it is clear that this leaf also passes through
(γ(1),m[γ]). Therefore, the leaf Lγ(0) · m−1

[γ] passes through (γ(0), Id). Thus,
we have

L
zar

γ(0) = L
zar

γ(1) ·m[γ],

and the result follows from part (iii) of Proposition 9. �

Proposition 12 For all x ∈ Γ×

Mon(Γ×, x) ⊆ Gal(Γ×, x).

Proof. Let us recall that the monodromy matrices at x0 can be obtained by
analytic prolongation along loops of the solution passing through (x0, Id). Let
Ex0 denote the fiber of x0 by the projection Γ× × GL(n,C) → Γ×. We have
Mon(Γ×, x) = Lx0 ∩ Ex0 . Also, by the definition of the Galois group we have
Gal(Γ×, x) = L

zar

x0
∩Ex0 . It is clear that Lx0 ⊆ L

zar

x0
, which completes the proof.

�

Theorem 13 Let Y be a leaf of the foliation (3) in Γ××Cn. Its Zariski closure
is produced by the action of the Galois group:

Y
zar

= Gal(Γ×) · Y = {(x, σy) | (x, y) ∈ Y, σ ∈ Gal(Γ×, x)}.
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Proof. Let us consider (x0, y0) ∈ Y . From Theorem 5 if follows that

Y = Lx0 · y0 = {(x, σ · y0) |x ∈ Γ×, (x, σ) ∈ Lx0},
and hence Y ⊆ L

zar

x0
· y0. We have L

zar

x0
· y0 = Gal(Γ×) · Y since the points of

Y are of the form (x,m[γ]y0), where γ is a path connecting x0 and x. This
set Gal(Γ×) · Y is Zariski closed by construction, let us prove that it is the
Zariski closure of Y . Let us consider a Zariski closed set Z such that Y ⊂ Z ⊂
Gal(Γ×) · Y . The following set,

M = {(x, σ) |x ∈ Γ×, (x, σy0) ∈ Z}
contains Lx0 , is Zariski closed and also M · y0 = Z. By definition of the Zariski
closure we have M ⊇ Lzar

x0
so that Z ⊇ Lzar

x0
· y0 = Gal(Γ×) · Y . �

6.2 Galois Group and Monodromy

Definition 12 A singularity x0 ∈ Γ of the differential equation (1) is called a
regular singular point if any solution y(x) defined in some sector ∆ with vertex
at x0 satisfies the following property: there exists a function h holomorphic at
x0 such that,

lim
x→x0
x∈∆

h(x)y(x) = 0.

A second order linear differential equation has a regular singular point at x0

if and only if it is written in the form:

d2y

dx2
+

a1(x)
x− x0

dy

dx
+

a0(x)
(x− x0)2

y = 0,

with a0 and a1 holomorphic at x0. Such a simple characterization is not possible
for linear systems of the form (1). It is true that systems of the form

dy

dx
=

A(x)
(x− x0)

y,

have a regular singularity ant x0, but also system with higher order poles may
have a regular singularity. The usual method for the characterization of a sin-
gularity is the reduction to a single higher order equation18 However, it is well
known that a differential equation of the form (1) with a regular singular point
at x0 admits admits a normal form,

dz

dx
=

C

x− x0
y,

with C a constant matrix, after an adequate change of variables,

z = B(x− x0)y

where B is a matrix of convergent power series.
18This is called the method of the cyclic vector.
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Definition 13 A linear differential equation is said to be of fuchsian type if all
its singularities are regular.

Theorem 14 (Schlesinger) Let us assume that (1) is of fuchsian type. Then
the monodromy group is Zariski-dense in the Galois group.

7 Integrability by Quadratures

7.1 Triangular Groups

Proposition 15 There is a finite covering Γ̄→ Γ ramified over the singularities
of (1) such that:

(i) The group of covering automorphisms Aut(Γ̄/Γ) is isomorphic to the quo-
tient, Gal(Γ×, x0)/Gal0(Γ×), x0).

(ii) Let us consider the Riemann surface Γ̄× obtained by removing the sin-
gularities of (1) from Γ̄. The Galois bundle Gal(Γ̄×) for the differential
equation (1), defined in Γ̄, is the lifting to Γ̄ of the bundle Gal0(Γ×), and
therefore its Galois group is connected.

Proof. (i) Let L be a leaf of (7) and consider its Galois group, Gal(L),
and its connected component of the identity, Gal0(L). By Theorem 9 we have
that Gal(L) acts on L

zar
in such a way that all fibers of the projection L

zar →
Γ× are principal homogeneous Gal(L)-spaces. Then we consider the quotient
L

zar
/Gal0(L). Since Gal0(L) is of finite index19 the fibers of the projection are

finite sets and isomorphic to the quotient Gal(L)/Gal0(L). Hence, it follows
that this projection is a finite covering Γ̄× → Γ×. In general a finite covering
can be completed adding exceptional points at ramifications so that we get a
ramified covering Γ̄→ Γ. The quotient group Gal(L)/Gal0(L) naturally acts in
Γ̄ by automorphisms.

(ii) Let us consider the lift of L to Γ̄× ×GL(n,C). It is not connected and
the number of connected components coincides with the index of Gal0(L). �

Theorem 16 (Lie-Kolchin) Let H ⊂ GL(n,C) be a connected solvable linear
algebraic group. Then there exists a non-degenerate matrix σ ∈ GL(n,C) such
that the conjugated group σHσ−1 is a subgroup of the group of upper triangular
matrices Tr(n,C).

Definition 14 Let H be a connected linear algebraic group. A Borel subgroup
B ⊂ H is a maximal connected solvable group of H.

By Lie-Kolchin theorem the Borel subgroups of GL(n,C) are conjugated to
the group Tr(n,C) of upper triangular matrices.

19It means that the quotient Gal(L)/Gal0(L) is a finite group.
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7.2 Moving Frames

Let us consider the following change of variables in the differential equations (1)
and (6),

z = B(x)y, V = B(x)U, (8)

where B(x) is a matrix whose entries are meromorphic. Then we obtain equiv-
alent linear and automorphic systems for z and V ,

z = G(x)z, V = G(x)V,

where G(x) = dB(x)
dx B(x)−1 +B(x)A(x)B(x)−1. Such kind of transformation is

called a change of frame, and it is clear that it does not affect the Galois bundle.
However it may introduce new apparent singularities at the poles of B(x), and
eliminate some apparent singularity of matrix of coefficients A(x) of the original
differential equation (1).

7.3 Integration by Quadratures

We can integrate (by classical methods of separation of variables and varia-
tion of constants) differential equations of the form (1) whenever the matrix of
coefficients is a triangular matrix.

Lemma 17 Assume that the coefficient matrix A(x) of (1) is a upper triangular
matrix. Then for each x ∈ Γ× the Galois group Gal(Γ×, x) is a subgroup of the
group of upper triangular matrices.

For a general equation of the form (1), if we can find an adequate change of
frame (8) such that the new matrix of coefficients is written in triangular form,
then we can integrate our differential equation by elementary methods.

In order to give the reduction algorithm for reducing a differential equation
to triangular form, we need the following result whose proof will be not included
here. This result fits inside the theory of Galois cohomology, and it is equiva-
lent to the vanishing of the first Galois cohomology set H1(H,M(Γ)) for any
connected solvable group.

Lemma 18 Let H ⊂ GL(n,C) be a connected solvable group, and let Let
P ⊂ Γ× × GL(n,C) be a meromorphic H-bundle over Γ×. Then there is a
meromorphic section of P defined on Γ×.

Proposition 19 The Galois group Gal(Γ×, x0) is a subgroup of some Borel sub-
group of GL(n,C) if and only if there is a change of frame B(x) ∈ GL(n,M(Γ))
such that the transformed system,

z = G(x)z, (9)

is written in triangular form, and therefore it can be integrated by quadratures.
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Proof. Let L be a regular leaf of the automorphic foliation (7). By hypothe-
sis Gal(L) ⊂ B for a certain Borel subgroup. All Borel subgroups are conjugated
to Tr(n,C), so that there exists σ ∈ GL(n,C) such that σBσ−1 = Tr(n,C).
We consider leaf L1 = L · σ. By part (iii) of Proposition 9 we have that
Gal(L1) ⊆ Tr(n,C).

We define the following M(Γ)-Zariski closed set P which contains L
zar

1 :

P = L
zar

1 · Tr(n,C) = {(x,m · σ) | (x,m) ∈ Lzar

1 , σ ∈ Tr(n,C)}.

It is not hard to see that P → Γ× is a meromorphic Tr(n,C)-bundle over Γ. By
Lemma 18 there is a meromorphic section σ(x) of this bundle. Let us consider
the change of variables (8) with B(x) = σ(x)−1. We get the transformed the
differential equation,

z = G(x)z, V = G(x)V,

obtained after the change of frame (8). From now on we will also remove from
Γ the new singularities, so that Γ× does not contain singularities of the new
equation.

The set L2 = B(x) · L1 is now a leaf of the new automorphic equation. We
apply the same transformation to the principal bundle P so that we obtain that
P ·B(x) = Γ× × Tr(n,C). Hence:

L2 ⊂ Γ× × Tr(n,C).

Let us consider any point x0 ∈ Γ×. There is a germ V (x) of a fundamental
matrix of solutions of (9) such that its graph lies on the leaf L2. Therefore,
V (x) is a triangular matrix for all x in its domain of definition. From equation
(9) we have:

G(x) =
dV (x)
dx

V (x)−1.

The matrix dV (x)
dx is upper triangular, and so is V (x)−1 so that G(x) is upper

triangular in the domain of definition of V (x). It follows that G(x) is a upper
triangular matrix.

�

Lemma 20 Let Γ̄→ Γ be a finite ramified covering, and let Γ̄× be the surface
obtained by removing from Γ̄ the singularities of equation (1) as a system with
coefficients in M(Γ̄). Let us consider x̄ in Γ̄× and x its image in Γ×. Then,
Gal0(Γ×, x) = Gal0(Γ×, x).

By combination of Lemma 20 Propositions 15 and 19 if follows the following
final result on integration by quadratures and algebraic functions.

Theorem 21 The connected component of the identity Gal0(Γ×, x0) of the Ga-
lois group is solvable if and only if there exist a finite ramified covering Γ̄ and
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a change of frame with meromorphic coefficients in Γ̄, B(x) ∈ GL(n,M(Γ̄)),
such that the transformed system,

z = G(x)z,

is written in triangular form, and therefore it can be integrated by quadratures.
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