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MICHA!L MISIUREWICZ

Abstract. Rotation Theory has its roots in the theory of rotation numbers for
circle homeomorphisms, developed by Poincaré. It is particularly useful for the
study and classification of periodic orbits of dynamical systems. It deals with ergodic
averages and their limits, not only for almost all points, like in Ergodic Theory, but
for all points. We present the general ideas of Rotation Theory and its applications
to some classes of dynamical systems, like continuous circle maps homotopic to the
identity, torus homeomorphisms homotopic to the identity, subshifts of finite type
and continuous interval maps.

These notes present a brief survey of some aspects of Rotation Theory. Deeper
treatment of the subject would require writing a book. Thus, in particular:

• Not all aspects of Rotation Theory are described here. A large part of it,
very important and deserving a separate book, deals with homeomorphisms
of an annulus, homotopic to the identity. Including this subject in the present
notes would make them at least twice as long, so it is ignored, except for the
bibliography.

• What is called “proofs” are usually only short ideas of the proofs. The reader
is advised either to try to fill in the details himself/herself or to find the full
proofs in the literature. More complicated proofs are omitted entirely.

• The stress is on the theory, not on the history. Therefore, references are not
cited in the text. Instead, at the end of these notes there are lists of references
dealing with the problems treated in various sections (or not treated at all).

1. Circle maps
circle

Consider the circle T = R/Z with the natural projection π : R → T. If f : T → T is
a continuous map, then there is a continuous map F : R → R such that the diagram

R F−−−→ R
"π

"π

T f−−−→ T
commutes. Such F is called a lifting of f . It is unique up to a translation by an integer
(F̃ (x) = F (x)+k, k ∈ Z). There is an integer d such that F (x+1) = F (x)+d for all
x ∈ R. It is called the degree of f and is independent of the choice of lifting. Denote
by L1 the family of all liftings of continuous degree one maps of T into itself.
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Let F ∈ L1. If k ∈ Z then F (x + k) = F (x) + k. All iterates of F also belong to
L1, so F n(x + k) = F n(x) + k.

We define upper and lower rotation numbers of x ∈ R for F ∈ L1 as

"F (x) = lim sup
n→∞

F n(x)− x

n
, "

F
(x) = lim inf

n→∞

F n(x)− x

n
.

If "
F
(x) = "F (x), we write "F (x) and call it the rotation number of x for F .

If F ∈ L1, x ∈ R, k ∈ Z and n ∈ N, then

"F (x + k) = "F (x), "F n−k(x) = n · "F (x)− k

and similarly for ". If F is a lifting of f and fn(π(x)) = π(x) then F n(x) = x + k for
some k ∈ Z and "F (x) = k/n.

Let L′1 be the space consisting of all nondecreasing elements of L1.

Theorem1.1 Theorem 1.1. If F ∈ L′1 is a lifting of a circle map f then "F (x) exists for all x ∈ R
and is independent of x. Moreover, it is rational if and only if f has a periodic point.

We will call this number the rotation number of F and denote it by "(F ).

Proof. Take a rational number k/n. If there is x such that F n(x) − k = x then
"(F ) = k/n. If there is no such x then the whole graph of F n(x) − k lies either
above the diagonal (and then "

F
(x) > k/n for all x ∈ R) or below the diagonal (and

then "F (x) < k/n for all x ∈ R). This defines a Dedekind cut that corresponds to
"(F ). !

The function " : L′1 → R is continuous.
For F ∈ L1 define Fl, Fu ∈ L′1 by “pouring water” from below and above respec-

tively (see Figure 1):

Fl(x) = inf{F (y) : y ≥ x}, Fu(x) = sup{F (y) : y ≤ x}.
Let Const(G) be the union of all open intervals on which G is constant.

We list the basic properties of Fl and Fu:

(1) Fl(x) ≤ F (x) ≤ Fu(x) for all x ∈ R,
(2) if F ≤ G then Fl ≤ Gl and Fu ≤ Gu,
(3) if F ∈ L′1 then Fl = Fu = F ,
(4) the maps F &→ Fl and F &→ Fu are Lipschitz continuous with constant 1 (in

the sup norm),
(5) the maps F &→ "(Fl) and F &→ "(Fu) are continuous,
(6) if Fl(x) '= F (x) then x ∈ Const(Fl); similarly for Fu,
(7) Const(F ) ⊂ Const(Fl) ∩ Const(Fu).

For a map f : X → X if fn(x) = x and fk(x) '= x for k = 1, 2, . . . , n − 1, we call
{x, f(x), . . . , fn−1(x)} a cycle (or a periodic orbit) of period n, or an n-cycle.

Lemma1.2 Lemma 1.2. If F ∈ L′1 is a lifting of a circle map f and "(F ) = k/n for coprime
integers k, n then f has a n-cycle P such that π−1(P ) is disjoint from Const(F ).

Proof. Make a picture and observe how the graph of F n− k crosses the diagonal. !
Let F ∈ L1. Then we define Fµ = (min(F, Fl + µ))u for µ ∈ [0, λ], where λ =

supx∈R(F − Fl)(x) (see Figure 2). It has the following properties:
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Figure 1. Maps Fl and Fu

(1) Fµ ∈ L′1 for all µ,
(2) F0 = Fl and Fλ = Fu,
(3) the map µ &→ Fµ is Lipschitz continuous with constant 1,
(4) the map µ &→ "(Fµ) is continuous,
(5) if µ ≤ κ then Fµ ≤ Fκ,
(6) each Fµ coincides with F outside Const(Fµ),
(7) Const(F ) ⊂ Const(Fµ) for each µ.

Theorem1.3 Theorem 1.3. Let F ∈ L1 be a lifting of a circle map f . Then the set of all rotation
numbers of points is equal to ["(Fl), "(Fu)]. Moreover, for each rational a from this
interval there is a point x such that π(x) is periodic for f and "F (x) = a.

The interval ["(Fl), "(Fu)]is called the rotation interval of F . We will denote it by
Rot(F ).

Proof. Use the family Fµ and its properties. Additionally use Lemma 1.2 and its
version for irrational rotation numbers. !

Corollary1.4 Corollary 1.4. The endpoints of Rot(F ) depend continuously on F ∈ L1.

Sets of periods

Consider the following Sharkovsky’s ordering in the set NSh of natural numbers
together with 2∞: 3 Sh> 5 Sh> 7 Sh> . . . Sh> 2 · 3 Sh> 2 · 5 Sh> 2 · 7 Sh> . . . Sh>

4 · 3 Sh> 4 · 5 Sh> 4 · 7 Sh> . . . Sh> 2n · 3 Sh> 2n · 5 Sh> 2n · 7 Sh> . . . Sh> 2∞ Sh>
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Figure 2. Construction of the map Fµ

. . . Sh> 2n
Sh> . . . Sh> 16 Sh> 8 Sh> 4 Sh> 2 Sh> 1. For any s ∈ NSh in this ordering

denote by Sh(s) the set of all natural numbers n such that s Sh> n, together with s
(unless s = 2∞).

Theorem1.5 Theorem 1.5 (Sharkovsky). If f is a continuous map of a closed interval into itself
then there is s ∈ NSh such that the set of all periods of cycles of f is equal to Sh(s).
Conversely, every set Sh(s) is the set of all periods of cycles of f for some interval
map f .

For c ≤ d denote by M(c, d) the set of natural numbers n such that c < k/n < d
for some integer k. For a ∈ R and s ∈ NSh denote by Sh(a, s) the empty set if a is
irrational and the set {nq : q ∈ Sh(s)} if a = k/n with k, n coprime.

We say that a continuous map g of an interval or a real line into itself has a horseshoe
if there exist closed intervals I, J , disjoint except perhaps a common endpoint, such
that I ∪ J ⊂ g(I) ∩ g(J). Existence of a horseshoe implies existence of cycles of all
periods.

Lemma1.6 Lemma 1.6. If F ∈ L1 is a lifting of f and "(Fl) < 0 < "(Fu) then f has cycles of
all periods.

Proof. There are x < y such that "F (y) < 0 < "F (x). Look at the orbits of x and y.
Produce a horseshoe (see Figure 3; t and t′ belong to the orbit of y; z and z′ belong
to the orbit of x). !
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Figure 3. Situation from the proof of Lemma 1.6

Theorem1.7 Theorem 1.7. Let F ∈ L1 be a lifting of a circle map f and let Rot(F ) = [c, d].
Then there are sc, sd ∈ NSh such that the set of all periods of cycles of f is equal to

Sh(c, sc) ∪M(c, d) ∪ Sh(d, sd).

Conversely, for every set of this form there is f and its lifting F ∈ L1 with Rot(F ) =
[c, d] and this set of periods.

Proof. Use Lemma 1.6 for maps of the form F n− k to show that the set of periods of
cycles of f with rotation numbers from (c, d) is M(c, d). Use Sharkovsky’s Theorem
for cycles with rotation numbers c and d. The converse part requires some extra
work. !

2. General formalism
general

Another point of view on rotation numbers for degree one circle maps is the fol-
lowing. Let F ∈ L1 be a lifting of a circle map f ; define the displacement function
ϕ : T → R by ϕ(x) = F (y) − y, where π(y) = x (it is independent of the choice of

y ∈ π−1(x)). Then F n(y)− y =
n−1∑

j=0

ϕ(f j(x)). Thus,

"F (y) = lim
n→∞

1

n

n−1∑

j=0

ϕ(f j(x)).

We can generalize it to the following situation. Let X be a compact metric space,
f : X → X a continuous map and ϕ : X → Rd a Borel bounded (usually continuous)
function (an observable). If for x ∈ X the limit

"f,ϕ(x) = lim
n→∞

1

n

n−1∑

j=0

ϕ(f j(x))

exist, we call it the rotation vector of x. The set Rotp(f, ϕ) of all rotation vectors
of points of X is the pointwise rotation set of f for the observable ϕ. The general
rotation set Rot(f, ϕ) of f for the observable ϕ is the set of all limits of the sequences
of the form

1

ni

ni−1∑

j=0

ϕ(f j(xi)),

where xi ∈ X and ni → ∞. For an ergodic invariant probability measure µ, its
rotation vector "f,ϕ(µ) is the integral

∫
ϕ dµ. The set Rotm(f, ϕ) of all rotation



6 MICHA!L MISIUREWICZ

vectors of ergodic invariant probability measures is the measure rotation set of f for
the observable ϕ.

Clearly, Rotp(f, ϕ) ⊂ Rot(f, ϕ). For an ergodic measure µ, by the Birkhoff Ergodic
Theorem, "f,ϕ(x) = "f,ϕ(µ) for µ-almost every x, and thus Rotm(f, ϕ) ⊂ Rotp(f, ϕ).

If P is an n-cycle of f then for x ∈ P

"f,ϕ(x) =
1

n

n−1∑

j=0

ϕ(f j(x)) =

∫
ϕ dµP

for the probability measure µP equidistributed on P .
In order to use rotation theory efficiently for investigating cycles, we need com-

pleteness, that is we want the following properties to hold:

(1) the rotation set is convex;
(2) the rotation vector of an n-cycle is of the form (m1/n, . . . ,md/n), where

m1 . . . , md are integers;
(3) if (m1/n, . . . ,md/n) belongs to the interior of the rotation set and the greatest

common divisor of m1, . . . ,md, n is 1 then there exists an n-cycle with rotation
vector (m1/n, . . . ,md/n),

(4) if (m1/n, . . . ,md/n) belongs to the interior of the rotation set and there exists
an n-cycle with rotation vector (m1/n, . . . ,md/n) then there exists a kn-cycle
with rotation vector (m1/n, . . . ,md/n) for any positive integer k.

Condition (2) above is automatically satisfied if ϕ takes values from Zd. To this
end, we often have to replace ϕ by another observable. Observables ϕ and ψ are
cohomologous if there exists a bounded function u such that

ϕ− ψ = u ◦ f − u.

Then
1

n

n−1∑

k=0

ϕ(fk(x))− 1

n

n−1∑

k=0

ψ(fk(x)) =
1

n
(u(fn(x))− u(x)),

so the rotation vectors for ϕ and ψ are the same.
For a circle map f we can take ψ(x) = -F (y). − -y. and u(x) = y − -y., where

π(y) = x (-·. is the “floor” function). Then

ϕ(x)− ψ(x) = F (y)− y − -F (y).+ -y. = u(f(x))− u(x).

Similar replacement can be made for torus maps with the displacement observable
(see Section 3).

Symbolic dynamics

Let σ : Σ → Σ be a subshift of finite type (a topological Markov chain). Assume
that an observable ϕ : Σ → Rd is constant on cylinders of length 2 (depends only on
the zeroth and first coordinates).

Let G be the directed graph of the subshift. The points of Σ can be identified with
infinite paths in G. The function ϕ can be interpreted as assigning a vector from Rd

to each arrow in G (see Figure 4). To find the rotation vector of the path, we go
along it, sum the vectors for the arrows we use, divide by the number of arrows, and
pass to the limit (if the limit exists). Cycles correspond to the loops in G.
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Figure 4. An example of a directed graph with elements of R1 as-
signed to arrows

A loop is elementary if it does not pass more than once through any vertex. Assume
that the subshift is transitive (there is a path from every vertex to every vertex in
G). Let τ1, . . . , τs be all the elementary loops in G and let "1, . . . , "s be their rotation
vectors.

Theorem2.1 Theorem 2.1. With the above assumptions and notation, the following properties
hold.

(1) The rotation set Rot(σ, ϕ) is equal to the convex hull of "1, . . . , "s.
(2) For every vector " ∈ Rot(σ, ϕ) there is a point x ∈ Σ with rotation vector ".
(3) The set of rotation vectors of periodic points is dense in Rot(σ, ϕ).
(4) For every vector " in the interior of Rot(σ, ϕ) there is an ergodic invariant

probability measure µ on Σ with rotation vector ".
(5) If ϕ takes values in Zd then for every vector " ∈ Qd which is contained in the

interior of Rot(σ, ϕ) there is a periodic point x ∈ Σ with rotation vector ".

Proof. (1) One can rearrange the arrows of any finite path in order to get elementary
loops and be left with the number of arrows less than the number or vertices of G.

(2) Use (1) to build an infinite path with the given rotation vector.
(3) Look at the proof of (1).
(4) Make the construction from the proof of (2) carefully, so that every sufficiently

long piece of the path has rotation vector close to the desired one. Then the closure
of the orbit of the point (path) we get will be a compact invariant set with the same
rotation vector at every point. Then take an ergodic measure supported on this set.
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(5) The rotation vector of any loop is in this case rational. We can get finitely
many loops passing through a common vertex such that " is a convex combination of
their rotation vectors with rational coefficients. Then the appropriate concatenation
of the repetitions of those loops will have rotation vector ". !

Note that this does not prove completeness.
We can use symbolic dynamics for circle maps: Take a cycle of a circle map f ; note

which interval between adjacent points of the cycle is mapped over other intervals
of this type, code to get a subshift of finite type. The observable measures how far
forward in the lifting we move.

Center of mass

If ϕ(x) = x then the rotation number (vector) of a point is the center of mass of
its orbit.

Let fa(x) = axe−x for a > e and x ∈ [a2e−1−a/e, a/e]. If fn
a (x) = x and xi = f i

a(x)
then

n−1∏

i=0

xi = an
n−1∏

i=0

xi exp(−
n−1∑

i=0

xi),

so exp(
∑n−1

i=0 xi) = an. Therefore "fa,ϕ(x) = ln a. Since any orbit of those maps can
be approximated by cycles, rotation numbers of all points are ln a. Are there any
other smooth interval maps with this property?

Another example is the tent map. For a cycle with a given itinerary it is easy to
compute its center of mass. For the mirror itinerary the center of mass is the same.
Can there be 3 different cycles with the same center of mass?

3. Torus maps
torus

Let f : Td → Td be a continuous map, homotopic to the identity. Then for a
lifting F : Rd → Rd we have F (x + k) = F (x) + k if x ∈ Rd and k ∈ Zd. Therefore
the displacement function ϕ : Td → Rd is well defined by ϕ(x) = F (y) − y, where
π(y) = x (here π : Rd → Rd/Zd = Td is the natural projection).

Unfortunately, the rotation theory is “reasonable” only if d = 2 and f is a homeo-
morphism. Let us give examples of what can go wrong in other cases.

Example3.1 Example 3.1. A continuous map f : T2 → T2, homotopic to the identity, with bad
properties.

Choose two disjoint balls of radius 1/10, U, V ⊂ T2. In each of them choose a
segment, J and K. Construct f in such a way that (see Figure 5):

(1) the lifting F of f is equal to the identity outside U ∪ V ,
(2) F does not move any point of π−1(U) more than 1/4 to the left or down and

more than by 5/4 to the right or up, and does not move any point of π−1(V )
more than by 5/4 to the left or down and more than by 1/4 to the right or
up,

(3) f(U) ∩ V = f(V ) ∩ U = ∅,
(4) F stretches a component Ĵ of π−1(J) and K̂ of π−1(K), mapping them through

Ĵ , Ĵ + (0, 1), Ĵ + (1, 0) and K̂, K̂ − (0, 1), K̂ − (1, 0) respectively.
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Figure 5. Construction from Example 3.1

We have

Rot(f, ϕ) ⊂ [−1/4, 5/4]2 ∪ [−5/4, 1/4]2.

By (4), a horseshoe effect is created and therefore Rotp(f, ϕ) contains the triangle with
vertices (0, 0), (1, 0), (0, 1) and the triangle with vertices (0, 0), (−1, 0), (0,−1) (see
Figure 6). The set Rotp(f, ϕ) (and therefore also Rot(f, ϕ)) has nonempty interior,
but Rot(f, ϕ) is not convex.

A small modification gives additionally the property that the interior of Rot(f, ϕ)
is not contained in Rotp(f, ϕ).

Example3.2 Example 3.2. A homeomorphism f : T3 → T3, homotopic to the identity, with bad
properties.

The construction is similar to the construction from the preceding example (see
Figure 7). The same modification can be made.

Denote by H2 the family of all homeomorphisms of T2 homotopic to the identity.

Theorem3.3 Theorem 3.3. Assume that f ∈ H2 and F is its lifting corresponding to the dis-
placement function ϕ. Then the following properties hold.

(1) If v = (p/n, q/n) ∈ int(Rot(f, ϕ)) with the greatest common divisor of p, q, n
equal to 1 then f has a periodic point x with least period n such that F n(y) =
y + (p, q) for y ∈ π−1(x).
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Figure 6. The rotation set in Example 3.1 is not convex

(2) If Rot(f, ϕ) has a nonempty interior, P is a finite subset of
⋃

"f,ϕ(x), where
the union is taken over all periodic points x of f , and C is a compact connected
subset of Conv(P ), then there exists y ∈ T2 with "f,ϕ(y) = C. In particular
(since C can consist of one point), for every v ∈ int(Rot(f, ϕ)) there exists
y ∈ T2 with "f,ϕ(y) = {v}.

(3) The set Rot(f, ϕ) is convex.
(4) Rot(f, ϕ) = Conv(Rotm(f, ϕ)) = Conv(Rotp(f, ϕ)).
(5) int(Rot(f, ϕ)) ⊂ Rotm(f, ϕ).

Proof. (1) Look at F n − (p, q). Since v ∈ int(Rot(f, ϕ)), there are 4 points with tra-
jectories moving in directions of different vectors, with the origin in the interior of the
convex hull of those vectors. They can be chosen in the same δ-transitive component
of the chain recurrent set (use Conley Theory and Nielsen-Thurston Theory). Use
them to create a δ-chain. Deduce that F n − (p, q) has a fixed point.

(2) Remove finitely many periodic orbits with rotation vectors in P from the torus.
Use Nielsen-Thurston theory on the resulting punctured torus. Show that F is ho-
motopic to a pseudo-Anosov homeomorphism. Use symbolic dynamics.

(3) We have

Rot(f, ϕ) =
⋂

n≥1

⋃

j≥n

Kj(F ),
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where

Kj(F ) =

{
F j(x)− x

j
: x ∈ R2

}
=

{
F j(x)− x

j
: x ∈ [0, 1]2

}
.

Using this representation, prove that Conv(F n([0, 1]2)) is contained in the
√

2-neigh-
borhood of F n([0, 1]2) (by examining the images of simple curves in R2).

(4) Use (2) and prove that the extremal points of the set Conv(Rot(f, ϕ)) belong to
Rotm(f, ϕ) (take a weak-* limit of measures concentrated on relevant pieces of orbits
and then look at its ergodic components).

(5) Use the same method as in the proof of (2). !
Theorem3.4 Theorem 3.4. The function " from H2 into the space of all subsets of R2 is upper

semi-continuous, i.e. if f ∈ H2 and U is a neighborhood of Rot(f, ϕ) in R2 then there
exists a neighborhood V of f in H2 with the topology of uniform convergence such that
if g ∈ V then "(g, ψ) ⊂ U (where ψ is a displacement function for g, corresponding
to the lifting of g closest to the lifting of f corresponding to ϕ).

At all f with int(Rot(f, ϕ)) '= ∅ it is continuous.

Proof. Use the characterization of Rot(f, ϕ) via the sets Kn(F ). To get continuity
when int(Rot(f, ϕ)) '= ∅, use the fact that the periodic points obtained from the
pseudo-Anosov homeomorphism have non-zero indices, so they cannot be removed by
a small perturbation. !

It is not so difficult to construct a homeomorphism from H2 with the rotation
set equal to the prescribed convex polygon with rational vertices. With more work,
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this can be done for a convex “polygon” with infinitely many vertices (all of them
rational). From Theorem 3.4 it follows that there must be other rotation sets. Can
one realize every compact convex set with a nonempty interior as the rotation set of
a homeomorphism from H2?

4. Interval maps
interval

Denote the family of all continuous maps of the interval I = [0, 1] into itself by
I. Assume first that f ∈ I has a unique fixed point, a. Then we can introduce
rotation numbers which for a cycle count how many of its points are to the right of
a, compared to the total number of points. We can do it in a straightforward way,
by taking the observable ϕa equal 1 to the right of a and 0 to the left of a. Since we
want it to be defined on the whole interval, we set ϕa(a) = 1/2.

Observe that if x < a then f(x) > x and if x > a then f(x) < x. Therefore ϕa = ϕ,
where ϕ is defined by ϕ(x) = 1 if f(x) < x, ϕ(x) = 0 if f(x) > x and ϕ(x) = 1/2 if
f(x) = x. This definition works equally well if f has more than one fixed point.

There is another way to get similar rotation numbers. Set ϕo(x) = 1/2 if (f 2(x)−
f(x))(f(x) − x) ≤ 0 and 0 otherwise. If there is only one fixed point a, instead of
counting how many times the point of an orbit is to the right of a, we count how
many times it is to the right of a and its image is to the left of a.

To see this, take the function u defined by u(x) = 1/2 if x ≥ a and 0 otherwise,
and note that ψ = ϕo + u − u ◦ f is defined by ψ(x) = 1 if x > a and f(x) < a,
ψ(x) = 1/2 if x ≥ a and f(x) = a, and ψ(x) = 0 otherwise. When we use the
observable ϕo, we will refer to the rotation numbers as over-rotation numbers (when
we use the observable ϕ, we will speak simply of rotation numbers).

In general, rotation and over-rotation numbers are different even for cycles. When
there is a unique fixed point a and all points to the right of a are mapped to the left
of a (or all points to the left of a are mapped to the right of a) then the rotation and
over-rotation numbers coincide. This is the case for unimodal maps.

Theorem4.1 Theorem 4.1. Rotation and over-rotation theories for interval maps are complete
(except that the rotation number for a fixed point is 1/2). In particular, the rotation
and over-rotation sets are intervals.

Proof. Although formally the over-rotation number of an n-cycle is of the form k/(2n),
the number k is even.

Look at the cycles of the map. If a given cycle forces two different fixed points (that
is, any continuous interval map with this cycle has to have at least 2 fixed points),
use symbolic dynamics to show that all possible (over-)rotation numbers (and cycles
with all possible (over-)rotation numbers and compatible periods) occur. Otherwise,
use symbolic dynamics by looking at the intervals joining points of the cycle with
the fixed point. When returning from the symbolic setting, show that the obtained
trajectories avoid the fixed point (essentially, the fixed point is repelling). !

The (over-)rotation interval always contains 1/2. On the other hand, the rotation
interval is always contained in [0, 1], while the over-rotation interval is contained in
[0, 1/2].

Assume that an interval map f has a cycle P of an odd period n ≥ 3 and that k > n
is an odd integer. Since the rotation number of P is of the form p/n for some integer



ROTATION THEORY 13

p (the over-rotation number is of the same form) and there is a rational number with
denominator k between p/n and 1/2, there must be a cycle of f of period k. Thus,
from the completeness of the rotation theory (as well as from the completeness of the
over-rotation theory) for interval maps we get the essential part of the Sharkovsky’s
Theorem.

Let us concentrate on the over-rotation theory. For a cycle P its over-rotation
pair is the pair (p, q), where p/q is the over-rotation umber of P and q the period
of P . Because of completeness and the fact that 1/2 is always an endpoint of the
over-rotation interval, we can introduce a forcing relation among the over-rotation
pairs. This means that if (p, q) forces (r, s) and a continuous interval map has a cycle
with over-rotation pair (p, q), then it has to have a cycle with over-rotation pair (r, s).
Here, a pair (p, q) forces (r, s) if either p/q < r/s or p/q = r/s = m/n with m and n
coprime and p/m Sh> r/m (notice that p/m, r/m ∈ N).

This relation is a linear ordering. Therefore the theorem characterizing all possible
sets of over-rotation pairs for interval maps will be stated in a similar way to the
Sharkovsky’s Theorem. The definition of those sets of over-rotation pairs will be
similar as in the case of circle maps of degree one.

Let M be the set consisting of 0, 1/2, all irrational numbers between 0 and 1/2,
and all pairs (α, n), where α is a rational number from (0, 1/2] and n ∈ NSh. Then
for η ∈ M the set O(η) is equal to the following. If η is an irrational number, 0, or
1/2, then O(η) is the set of all pairs (p, q) with η < p/q ≤ 1/2. If η = (r/s, n) with
r,s coprime, then O(η) is the union of the set of all pairs (p, q) with r/s < p/q ≤ 1/2
and the set of all pairs (mr,ms) with m ∈ Sh(n).

Theorem4.2 Theorem 4.2. For every f ∈ I there exists η ∈ M such that the set of all over-
rotation pairs of f is equal to O(η). Conversely, for every η ∈M there exists a map
f ∈ I such that the set of all over-rotation pairs of f is equal to O(η).

Proof. The first part basically follows from Theorem 4.1 and the linearity of the
forcing order in M. To prove the second part, use the family of truncated tent
maps. !

Minimal topological entropy

Topological entropy measures the chaoticity of the system. For a piecewise mono-
tone interval or circle map f it is equal to

lim
n→∞

1

n
log cn(f),

where cn(f) is the number of laps (monotonicity pieces) of fn. Often estimates of
entropy are added to the theorems on the sets of periods or the rotation sets. Here
are some of them. They are sharp.

If a continuous interval map has a cycle of period n · 2k, where n is odd, then
its entropy is at least (1/2k) log λn, where λ1 = 1 and λn is the largest zero of the
polynomial xn − 2xn−2 − 1 for n ≥ 3 odd.

If a continuous circle map of degree 1 has rotation interval [c, d] with c < d, then its
entropy is at least log βc,d, where βc,d is the largest root of the equation

∑
t−q = 1/2.

Here the sum is taken over all pairs of integers (p, q) such that q > 0 and c < p/q < d.
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If a continuous interval map over-rotation interval [c, 1/2] with c < 1/2, then its
entropy is at least log γc, where γc is the largest root of the equation

∑
t−q = 1. Here

the sum is taken over all pairs of integers (p, q) such that q > 0 and c < p/q < 1− c.
In particular, if a continuous interval map has a cycle with rotation pair (p, q) then
its entropy is at least log γp/q if p/q < 1/2. If p/q = 1/2 then the entropy is at least
(1/2k) log λn, where q = n · 2k and n is odd.

5. Flows
flows

Rotation theory can be applied not only to systems with discrete time, but also
to systems with continuous time. Then, if X is a compact metric space, instead of a
map f : X → X we have a continuous semiflow on X, that is, a continuous function
T : [0,∞)×X → X, such that T (0, x) = x and T (s + t, x) = T (t, T (s, x)) for every
x ∈ X, s, t ∈ [0,∞). We will often write T t(x) instead of T (t, x). Let ξ be an
time-Lipschitz continuous observable cocycle for (X, T ) with values in Rm, that is, a
continuous function ξ : [0,∞)×X → Rm such that ξ(s + t, x) = ξ(s, T t(x)) + ξ(t, x)
and ‖ξ(t, x)‖ ≤ Lt for some constant L independent of t and x.

The rotation set R of (X, T, ξ) is the set of all limits

lim
n→∞

ξ(tn, xn)

tn
, where lim

n→∞
tn = ∞.

By the definition, R is closed, and is contained in the closed ball in Rm, centered at
the origin, of radius L. In particular, R is compact. It is easy to show that it is also
connected.

When we work with invariant measures, we have to use a slightly different formal-
ism. Namely, the observable cocycle ξ has to be the integral of the observable function
ζ along an orbit piece. That is, ζ : X → Rm is a bounded Borel function, integrable
along the orbits, and

ξ(t, x) =

∫ t

0

ζ(T s(x)) ds.

Assume that T is a continuous semiflow. Then, if µ is a probability measure, invariant
and ergodic with respect to T , then by the Birkhoff Ergodic Theorem, for µ-almost
every point x ∈ X the rotation vector

lim
t→∞

ξ(t, x)

t

of x exists and is equal to
∫

X ζ(x) dµ(x).
We do not have to assume that ξ is continuous. A reasonable assumption is that

the set of its discontinuity points has measure zero for every T -invariant probability
measure.

The simplest (non-trivial) example is a flow on a two-dimensional torus, with the
displacement cocycle.

Theorem5.1 Theorem 5.1. If T is a continuous flow on T2 and ξ the displacement cocycle, then
the rotation set of (T, ξ)is one of the following:

(1) a set consisting of a single point of R2;
(2) a segment of a line passing through the origin and some other point of Q2 (the

segment need not contain the origin);
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(3) a line segment with one end at the origin and having irrational slope.

Another example is a billiard on the m-dimensional torus with one or more obsta-
cles, with the displacement cocycle. If there is only one obstacle, which is strictly
convex and small, the rotation set contains a subset with nonempty interior, with
properties similar to those listed in Theorem 2.1.
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