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Abstract In this paper we survey a general Liapunov-Schmidt type of reduc-
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1 Introduction

For the study of subharmonic bifurcations from a given periodic orbit in a
parametrized family of autonomous systems it is a standard approach to in-
troduce the Poincaré map associated to the periodic orbit and to study the
bifurcation of periodic points in this map. This can be done either by a nor-
mal form approach or by an appropriate Lyapunov-Schmidt type of reduction
(see e.g. [5]). When the system is reversible (in a sense to be defined further
on) and the periodic orbit is symmetric then also the Poincaré map will be
reversible, and this additional structure should be taken into account when
performing the reduction and analysing the bifurcations. The aim of this note
is to give a brief survey on how this can be done; for more details we refer to
the Ph. D. thesis [1] of the first author and to the papers [2] and [3]. In the
same thesis [1] and in the paper [4] one can find similar results on symplectic
diffeomorphisms.
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2 Preliminaries

We start with the definition of a reversible diffeomorphism. Let V be a (finite-
dimensional) state space and Γ ⊂ L(V ) a compact group of linear operators
acting on V . Also, let χ : Γ −→ Z2 := {1,−1} be a non-trivial group-
homomorphism (such group-homomorphism is usually called a character of
Γ). A diffeomorphism Φ ∈ C∞(V ) is then called Γ-reversible if

Φ(γ · x) = γ · Φχ(γ)(x), ∀x ∈ V, ∀γ ∈ Γ.

The basic case appears when Γ = {IV , R}, with R ∈ L(V ) a linear involution
(i.e. R2 = IV ), and when χ is given by χ(IV ) = 1 and χ(R) = −1; a
diffeomorhism Φ ∈ C∞(V ) is then R-reversible if

R ◦ Φ ◦ R = Φ−1. (1)

For the sake of simplicity we will in this paper restrict to this simple case.
Such R-reversible diffeomorphisms arise for example as stroboscopic maps

for periodic non-autonomous time-reversible systems: Φ is then the time-T -
map associated to a T -periodic system of the form

ẋ = f(t, x), (2)

with f : R×V → V such that f(t+T, x) = f(t, x) and f(−t, Rx) = −Rf(t, x).
The flow ϕ(t, x) of this system will be such that ϕ(t, ϕ(T, x)) = ϕ(t + T, x)
and ϕ(t, Rx) = Rϕ(−t, x), and hence Φ := ϕ(T, ·) will satisfy (1). In a similar
way one can consider an autonomous reversible system on a finite-dimensional
space X, of the form

ẋ = f(x), (3)

with f : X → X smooth and such that f(R0x) = −R0f(x) for some linear
involution R0 ∈ L(X). A periodic orbit κ of (3) is symmetric if R0(κ) = κ; one
can show that these symmetric periodic orbits are precisely those orbits which
have two intersection points p1 and p2 with Fix(R0) := {x ∈ X | R0x = x}.
To construct a Poincaré-map associated with κ we take two R0-invariant
transversal sections Σ1 and Σ2 to κ, at respectively p1 and p2. The Poincaré-
map Φ : Σ1 → Σ1 can then be written as

Φ = Φ2→1 ◦ Φ1→2,

where Φ1→2 is the “halfway” Poincaré-map from Σ1 to Σ2, and Φ2→1 the
second halfway Poincaré-map starting at Σ2 and arriving at Σ1. The re-
versibility of (3) together with R0(Σ1) = Σ1 and R0(Σ2) = Σ2 imply that
Φ2→1 = R0 ◦ Φ−1

1→2 ◦ R0 and

Φ = R0 ◦ Φ−1
1→2 ◦ R0 ◦ Φ1→2.

Now identify Σ1 with a vectorspace V in such a way that p1 ∈ Σ1 corresponds
to 0 ∈ V , and denote the restriction of R0 to V by R; the mapping Φ : V → V



is then an R-reversible diffeomorphism, with Φ(0) = 0. Periodic points of Φ
bifurcating from the fixed point x = 0 correspond to subharmonic periodic
orbits of (3) bifurcating from the symmetric periodic orbit κ. We will return
to this problem of subharmonic bifurcation in Section 6.

Consider now a parametrized family of R-reversible diffeomorphisms with
a symmetric fixed point; more precisely, let Φ : V × R

m → R (with m ≥ 0)
be C∞-smooth and such that
(H1) (i) Φ(0, λ) = 0 for all λ ∈ R

m; let Aλ := DxΦ(0, λ);
(ii) A0 ∈ L(V ) is invertible; hence Φλ = Φ(·, λ) is a local diffeomorphism

for small λ;
(iii) R ◦ Φλ ◦ R = Φ−1

λ , with R ∈ L(V ) a linear involution.
Fix some integer q ≥ 1, and consider the following problem:
(Pq) Find, for all small λ ∈ R

m, all q-periodic points of Φλ close to the
fixpoint x = 0.

Solving (Pq) means to find all solutions (x, λ) ∈ V × R
m near (0, 0) of the

fixpoint equation

Φ(q)
λ (x) = x, with Φ(q)

λ := Φ ◦ · · · ◦ Φ (q times). (4)

The problem (Pq) has what we call an implicit Dq-symmetry. To explain
what we mean by that let us denote by Sλ the solution set:

Sλ :=
{

x ∈ V | Φ(q)
λ (x) = x

}
.

Clearly x ∈ Sλ implies Φλ(x) ∈ Sλ, and also Rx ∈ Sλ, as can be seen from
Φ(q)

λ (Rx) = RΦ(−q)
λ (x). Now observe that Φ(q)

λ acts as the identity on Sλ,
and hence Φλ generates a Zq = Z/qZ-action on Sλ. The operator R on the
other hand generates a Z2-action, as follows from R2 = I. Finally, since
R ◦ Φλ = Φ−1

λ ◦ R we conclude that Φλ and R generate a Dq-action on Sλ.
(As a reminder: Dq is the symmetry group of a regular q-gone; it contains
2q elements and can be generated by the rotation over 2π/q and a reflection,
both in the plane). We call this Dq-symmetry implicit because it appears
only on the (yet to determine!) solution set Sλ.

The approach to the problem (Pq) which we describe in the next sections
is based on a Liapunov-Schmidt type of reduction which lowers the dimen-
sion of the problem and leads to algebraic bifurcation equations; this will be
done in such way that the Dq-symmetry becomes explicit and can be used to
bring the bifurcation equations in a kind of canonical form (at least in the
simplest cases). Moreover we explain the relation with normal form theory
for reversible diffeomorphisms, and show how these normal forms can be used
to obtain some stability properties for the bifurcating periodic points. In the
final section we apply these results to the problem of subharmonic bifurcation
in reversible vectorfields.



3 Orbit space formulation and reduction

The basic idea behind our approach is to replace the equation (4) for the q-
periodic points of Φλ by an equivalent equation in an appropriate orbit space,
and to perform the Liapunov-Schmidt reduction on this equivalent equation.
The starting point is the observation that a q-periodic point x ∈ V of Φλ

generates a q-periodic orbit
(
Φi

λ(x)
)
i∈Z

∈ V Z, with Φi+q
λ (x) = Φi

λ(x), ∀i ∈ Z.

This motivates us to define an orbit space Yq by

Yq :=
{
y = (yi)i∈Z ∈ V Z | yi+q = yi, ∀i ∈ Z

} ∼= V q. (5)

The mapping Φλ can be lifted to this orbit space by defining Φ̂λ : Yq → Yq as

Φ̂λ(y) := (Φλ(yi))i∈Z
, ∀y ∈ Yq. (6)

We also need the shift operator σ ∈ L(Yq) given by

(σ · y)i := yi+1, ∀i ∈ Z, ∀y ∈ Yq. (7)

With these definitions it is easy to prove the following result.

Lemma 3.1 Let λ ∈ R
m, and let x ∈ V be a solution of (4). Define y ∈ Yq

by yi := Φ(i)
λ (x) for all i ∈ Z. Then

Φ̂λ(y) = σ · y. (8)

Conversely, if y ∈ Yq solves (8) (for some λ ∈ R
m) then x := y0 ∈ V is a

q-periodic point of Φλ, i.e. x satisfies (4).

Lemma 3.1 gives a one-to-one relation between the q-periodic points of Φλ and
the solutions of (8); using this relation the problem (Pq) amounts to finding
all solutions (y, λ) ∈ Yq × R

m of (8) in a neighborhood of (0, 0).
An important property of (8) is that this equation is Zq-equivariant : it

follows from σq = I that σ generates a Zq := Z/qZ-action on Yq, and the
definitions immediately imply that

Φ̂λ ◦ σ = σ ◦ Φ̂λ, ∀λ ∈ R
m. (9)

Also, the reversibility of Φλ is inherited by Φ̂λ. Indeed, we have

Φ̂λ ◦ ρ = ρ ◦ Φ̂−1
λ , (10)

with the linear operator ρ ∈ L(Yq) defined by

(ρ · y)i := Ry−i, ∀i ∈ Z, ∀y ∈ Yq. (11)



Since ρ2 = I it follows from (10) that Φ̂λ is ρ-reversible. Moreover, the relation
ρ ◦ σ = σ−1 ◦ ρ implies that σ and ρ generate a Dq-action on the orbit space
Yq.

As a first step towards solving (8) we consider the linearized equation

Â0 · y = σ · y, (12)

with Â0 := DΦ̂λ=0(0) ∈ L(Yq) the lift of A0 := DΦλ=0(0) ∈ L(V ). The
reversibility of Φλ=0 implies that of A0 and Â0: RA0R = A−1

0 and ρÂ0ρ =
Â−1

0 . A result similar to that of Lemma 3.1 shows that Ker (Â0 − σ) (the
solution space of (12)) and Ker (Aq

0−I) are isomorphic. For a straightforward
application of the Liapunov-Schmidt reduction to (8) we have to determine
complementary subspaces of respectively Ker (Â0 −σ) and Im (Â0 −σ) in Yq;
since at this point in the analysis we do not want to impose any spectral
conditions on A0 (except the fact that A0 must be invertible) this can not be
done in general. In particular, we do not want to exclude the possibility that
A0 and Â0 are not semisimple, and therefore we can not assume that we have
the splittings

V = Ker (Aq
0 − I) ⊕ Im (Aq

0 − I) and Yq = Ker (Â0 − σ) ⊕ Im (Â0 − σ).

which are frequently taken as a starting point for a Liapunov-Schmidt reduc-
tion. The remedy for this difficulty consists in using the semisimple part S0 of
A0 to obtain appropriate splittings of the spaces V and Yq. We now describe
how this can be done.

We know from elementary algebra that A0 has a unique semisimple-
nilpotent decomposition (S-N -decomposition for short), which means that
there exist unique linear operators S0 ∈ L(V ) and N0 ∈ L(V ) such that
A0 = S0 + N0, S0 is semisimple (i.e. complex diagonisable), N0 is nilpotent
and S0N0 = N0S0. Then RS0R is the semisimple part of RA0R, and S−1

0

that of A−1
0 ; combined with the reversibilty of A0 and the uniqueness of the

S-N -decomposition this implies that also S0 is R-reversible. Some further
straightforward algebra and the fact that σ is semisimple (since σq = I) gives
the following.

Lemma 3.2 Let A0 = S0 + N0 be the S-N -decomposition of A0. Then
• S0 is R-reversible: RS0R = S−1

0 ;
• Sq

0 is the semisimple part of Aq
0;

• Ker (Aq
0 − I) ⊂ Ker (Sq

0 − I);
• Â0 = Ŝ0 + N̂0 is the S-N-decomposition of Â0;
• ρ ◦ Ŝ0 ◦ ρ = Ŝ−1

0 ;
• (Ŝ0 − σ) is the semisimple part of (Â0 − σ);
• Ker (Â0 − σ) ⊂ Ker (Ŝ0 − σ) ∼= Ker (Sq

0 − I);
• Yq = Ker (Ŝ0 − σ) ⊕ Im (Ŝ0 − σ);
• (Â0 − σ) is invertible on Im (Ŝ0 − σ).



Next we introduce the reduced phase space for the problem (Pq); this is
the subspace U of V given by

U := Ker (Sq
0 − I), (13)

i.e. U is the generalized eigenspace of A0 corresponding to those eigenvalues
which are q-th roots of unity. These eigenvalues are the resonant eigenvalues
for the problem (Pq). Observe that in a standard Liapunov-Schmidt reduction
one would work with the eigenspace corresponding to the resonant eigenval-
ues, while here we will use the generalized eigenspace. The following lemma
summarizes the main properties of U .

Lemma 3.3 Let U be the reduced phase space defined by (13), and let ζ :
U → Yq be the linear operator given by

ζ(u) :=
(
Si

0u
)
i∈Z

, ∀u ∈ U. (14)

Then the following holds:
• S0 generates a Zq-action on U ;
• U is invariant under R;
• ζ is an isomorphism of U onto Ker (Ŝ0 − σ);
• ζ(S0u) = σ · ζ(u) for all u ∈ U ;
• ζ(Ru) = ρ · ζ(u) for all u ∈ U .

Now we have all ingredients needed to perform our reduction of the equa-
tion (8); this reduction will be based on the splitting

Yq = ζ(U) ⊕ Im (Ŝ0 − σ) (15)

of the orbit space Yq. Since (Ŝ0 − σ) ∈ L(Yq) is semisimple we have Yq =
Ker (Ŝ0−σ)⊕Im (Ŝ0−σ), which combined with Ker (Ŝ0−σ) = ζ(U) gives (15).
It follows that each y ∈ Yq can be written in a unique way as y = ζ(u) + w,
with u ∈ U and w ∈ W := Im (Ŝ0 − σ). Then σ · y = ζ(S0u) + σ · w, and the
equation (8) splits as

(a) Ψλ(u, w) = S0u,

(b) Θλ(u, w) = σ · w;
(16)

the mappings Ψλ : U ×W → U and Θλ : U ×W → W are uniquely determi-
nated from the relation

Φλ(ζ(u) + w) = ζ(Ψλ(u, w)) + Θλ(u, w), ∀(u, w, λ) ∈ U × W × R
m.

Equation (16b) can (locally near (u, w, λ) = (0, 0, 0)) be solved for w = w∗
λ(u)

by the implicit function theorem; bringing this solution into (16a) gives the
determining equation

Φr,λ(u) = S0u, (17)



with Φr,λ : U → U defined by

Φr,λ(u) := Ψλ(u, w∗
λ(u)), ∀(u, λ) ∈ U × R

m. (18)

We call Φr,λ the reduced mapping for the problem (Pq). We refrain from
calling (17) the “bifurcation equation” since in case some of the resonant
eigenvalues are non-semisimple it is possible to make a further reduction to
the subspace Ker (Aq

0 − I) (which is then a proper subspace of U).
The next Lemma gives some basic properties of Φr,λ; they follow easily

from the definitions.

Lemma 3.4 The reduced mapping Φr,λ has the following properties:
• Φr,λ(0) = 0 for all λ;
• DΦr,λ=0(0) = A0 U

;
• Φr,λ is Zq-equivariant: Φr,λ ◦ S0 = S0 ◦ Φr,λ;
• Φr,λ is R-reversible: R ◦ Φr,λ ◦ R = Φ−1

r,λ.

The main result is of course the relation between the solutions of (Pq) and
the solutions of the determing equation.

Theorem 3.5 Under the foregoing conditions there exists a smooth mapping
x∗ : U × R

m → V , with x∗(0, λ) = 0, Dux∗(0, 0) · u = u and x∗(Ru, λ) =
Rx∗(u, λ) for all (u, λ), and such that the following holds: for all sufficiently
small (x, λ) ∈ V ×R

m we have Φ(q)
λ (x) = x if and only if x = x∗(u, λ) for some

small u ∈ U for which the determining equation Φr,λ(u) = S0u is satisfied;
moreover, we have for such (u, λ) that x∗(S0u, λ) = Φλ(x∗(u, λ)).

Observe that the Zq-equivariance of Φr,λ implies that for each solution u ∈ U

of (17) also the other points S0u, S2
0u, . . . , Sq−1

0 on the Zq-orbit of u solve
the same equation; the last statement of Theorem 3.5 says that the mapping
x∗(·, λ) lifts this solution orbit of (17) to a full q-periodic orbit of Φλ.

It is interesting to consider for a moment the special case where we assume
that the mappings Φλ are such that

Φλ ◦ S0 = S0 ◦ Φλ. (19)

One can then verify that

x∗(u, λ) = u and Φr,λ = Φλ U
,

and the reduction result of Theorem 3.5 takes the following form: for suffi-
ciently small (x, λ) ∈ V × R

m we have that x is a q-periodic point of Φλ if
and only if x = u ∈ U and Φλ(u) = S0u.

Returning to the general case we can look for the q-periodic points of
the reduced mapping Φr,λ, and apply Theorem 3.5 to this new problem (i.e.
we perform our reduction on the equation Φ(q)

r,λ(u) = u). It follows from
Lemma 3.4 that Φr,λ satisfies the condition (27), and one can easily see that



the reduced phase space for Φr,λ is the space U itself (there is no further
reduction). The reduction result for the special case then leads to the follow-
ing conclusion: for each sufficiently small (u, λ) ∈ U × R

m we have that u
is a q-periodic point of Φr,λ if and only if u satisfies the determining equa-
tion Φr,λ(u) = S0u. The q-periodic orbits of Φr,λ are therefore necessarily
also orbits under the natural Zq-action on U . This conclusion allows us to
reformulate the reduction theorem as follows.

Theorem 3.6 (Main Reduction Theorem) Let Φλ (λ ∈ R
m) be a para-

metrized family of R-reversible diffeomorphisms, satisfying the hypotheses
(H1). Let q ≥ 1, and define the reduced phase space U by (13). Then
there exists a parametrized family of reduced R-reversible diffeomorphisms
Φr,λ : U → U such that for each sufficiently small λ ∈ R

m there is a 1-to-1 re-
lation between the small q-periodic orbits of Φλ and the small q-periodic orbits
of Φr,λ. Moreover, Φr,λ is equivariant with respect to the natural Zq-action
on U , and all small q-periodic orbits of Φr,λ are necessarily Zq-orbits; they
are given by the solutions of the determining equation (17).

We have observed before that the problem (Pq) has an implicit Dq-symme-
try, in the sense that there is a natural Dq-action on the solution set. With the
reduction the Zq-part of this implicit symmetry has become explicit : indeed,
the determining equation (17) is equivariant with respect to the Zq-action
generated by S0 on U . To get a full Dq-equivariance one has to go yet one
step further, by showing that for small (u, λ) ∈ U × R

m the equation (17) is
equivalent to the equation

G(u, λ) := S−1
0 Φr,λ(u) − S0Φ−1

r,λ(u) = 0. (20)

Using the Zq-equivariance and the R-reversibility of Φr,λ and S0 it is easily
seen that the mapping G : U × R

m → U is Dq-equivariant:

G(S0u, λ) = S0G(u, λ) and G(Ru, λ) = −RG(u, λ).

Replacing the determining equation (17) by the equivalent Dq-equivariant
equation (20) makes the full Dq-symmetry explicit. As will be illustrated by
the examples of Section 6 this Dq-equivariance is important when solving (20)
explicitly.

4 Normal form of reversible diffeomorphisms

In order to apply the reduction result of Theorem 3.6 on concrete examples one
needs some method to calculate or approximate the reduced diffeomorphism
Φr,λ. One possible approach is just to follow the reduction procedure as
outlined in the foregoing section; since the reduction is based on splitting the
original equations and applying the implicit function theorem it is in principle
possible to obtain the Taylor expansion of Φr,λ(u) at (u, λ) = (0, 0) up to any



desired order. A different approach which we briefly describe in this section
consists in first bringing the original mapping Φλ in an appropriate normal
form; it appears that it is then very easy to obtain (a good approximation of)
the reduced mapping Φr,λ from this normal form.

We first consider normal forms for general diffeomorphisms. Let us as-
sume that Φ : V × R

m → V is a smooth mapping satisfying the following
properties:
(H2) (i) Φ(0, λ) = 0 for all λ ∈ R

m;
(ii) A0 := DxΦ(0, 0) ∈ L(V ) is invertible; hence Φλ = Φ(·, λ) is a local

diffeomorphism (near x = 0) for small λ.
Next to the S-N -decomposition A0 = S0 +N0 of A0 there is also the so-called
semisimple-unipotent decomposition

A0 = S0e
N0 , (21)

with S0 ∈ L(V ) semisimple, N0 ∈ L(V ) nilpotent, and S0N0 = N0S0. This
decomposition is unique, with S0 the same as in the S-N -decomposition
and with eN0 = I + S−1

0 N0. Fix some k ≥ 1; starting from (21) and us-
ing Taylor expansions at x = 0 one can then determine order by order a
parameter-dependent polynomial vectorfield Zλ : V → V with Zλ(0) = 0 and
DZλ=0(0) = 0, and such that

Φλ = S0e
N0 + Zλ + O(‖ · ‖k+1); (22)

here the exponential of N0 + Zλ stands for the time-one-map corresponding
to the vectorfield N0 + Zλ. The normal form reduction then consists in using
near-identity transformations to bring the vectorfield Zλ in a form which
satisfies certain additional conditions. In order to do so we need the following
technical result.

Lemma 4.1 Given a semisimple S0 ∈ L(V ) there exists a scalar product
〈·, ·〉 on V such that for each A ∈ L(V ) we have AS0 = S0A if and only if
AT S0 = S0A

T (with the transpose taken w.r.t. 〈·, ·〉).

Using this scalar product one can prove the following.

Theorem 4.2 (Normal Form Theorem) Assume that Φλ satisfies (H2).
Then there exists for each k ≥ 1 a parameter-dependent near-identity trans-
formation Ψk,λ : V → V such that

Ψ−1
k,λ ◦ Φλ ◦ Ψk,λ = S0e

N0 + Zλ + O(‖ · ‖k+1), (23)

with Zλ(0) = 0, DZλ=0(0) = 0 and such that

S0 ◦ Zλ = Zλ ◦ S0 and etN
T
0 ◦ Zλ = Zλ ◦ etN

T
0 , ∀t ∈ R. (24)



Under the foregoing conditions one calls

ΦNF

λ := S0e
N0 + Zλ

the normal form of Φλ up to order k. The first condition in (24) implies that
ΦNF

λ commutes with S0, while the second condition is equivalent with

DZλ(x) · N T
0 x = N T

0 Zλ(x), ∀(x, λ) ∈ V × R
m. (25)

In case Φλ is R-reversible we find that N0 and Zλ in (22) will be R-
reversible vectorfields:

RN0 = −N0R and R ◦ Zλ = −Zλ ◦ R. (26)

Moreover, there exists a scalar product on V which next to the property given
by Lemma 4.1 is also such that R is orthogonal: RRT = I. The near-identity
transformation Ψk,λ given by the Normal Form Theorem can then be chosen
such that it commutes with R, and as a consequence the reversibility of Φλ

is maintained after the normal form transformation. It follows that modulo a
near-identity transformation we can assume that

Φλ = ΦNF

λ + O(‖ · ‖k+1) (27)

with (in particular)

S0 ◦ ΦNF

λ = ΦNF

λ ◦ S0 and R ◦ ΦNF

λ ◦ R = (ΦNF

λ )−1
. (28)

One can also arrange to have (25) satisfied, but this will be of no particular
help in determinig the reduced diffeomorphism Φr,λ; it may however be very
helpful in solving the determining equation (see Section 6 for an example).

Theorem 4.3 Assume (H1), (27) and (28). Then the mappings x∗ and Φr,λ

given by Theorem 3.5 are of the form

x∗(u, λ) = u + O(‖u‖k+1) and Φr,λ(u) = ΦNF

λ (u) + O(‖u‖k+1). (29)

This means that we obtain an approximation of Φr,λ by first bringing Φλ in
normal form up to the desired order and then restricting the normal form to
the reduced phase space U . Setting ΨNF

λ := S−1
0 ΦNF

λ = eN0 + Zλ one has

Φλ = S0ΨNF

λ +O(‖·‖k+1) and Φr,λ(u) = S0ΨNF

λ (u)+O(‖u‖k+1). (30)

Up to terms of order k the determining equation (17) takes the form

ΨNF

λ (u) = u, (31)

which for sufficiently small (u, λ) is equivalent to

N0(u) + Zλ(u) = 0. (32)

This means that the solutions of the determining equation (i.e. the q-periodic
points of Φr,λ) can be approximated by the equilibria u ∈ U of the normal
form vectorfield N0 + Zλ(·) (both this vectorfield and ΨNF

λ leave the subspace
U invariant). Observe also that due to (24) and (26) the equation (32) is
Dq-equivariant.



5 Stability of bifurcating periodic points

In this section we describe how the foregoing reduction and normal form re-
sults can also be used to determine the stability properties of bifurcating peri-
odic orbits. Let x ∈ V be a q-periodic point of Φλ, i.e. Φ(q)

λ (x) = x; the (linear)
stability of the corresponding periodic orbit y = (yi)i∈Z = (Φ(i)

λ (x))i∈Z ∈ Yq

is then determined by the eigenvalues of DΦ(q)
λ (x) ∈ L(V ). Observe that by

the chain rule

DΦ(q)
λ (yi) = DΦλ(yi+q−1) · DΦλ(yi+q−2) · · ·DΦλ(yi+1) · DΦλ(yi), (33)

from which it follows that the spectrum of DΦ(q)
λ (xi) is independent of i ∈ Z;

therefore we can just take i = 0 and study DΦ(q)
λ (x). For bifurcating periodic

orbits we have x = x∗(u, λ) and yi = x∗(Si
0u, λ), with (u, λ) ∈ U × R

m

small and such that Φr,λ(u) = S0u; substituting this into (33) (with i = 0)
shows that the stability of such bifurcating periodic orbit is determined by the
eigenvalues of DΦ(q)

λ (x∗(u, λ) = D(u, λ) ∈ L(V ), with D : U × R
m → L(V )

defined by

D(u, λ) := DΦλ(x∗(Sq−1
0 u, λ)) · · ·DΦλ(x∗(S0u, λ)) · DΦλ(x∗(u, λ)). (34)

Moreover, as we will see in Section 6, periodic orbits bifurcating from a sym-
metric fixed point (here taken to be x = 0) will typically themselves also be
symmetric; this means that Ru = Sj

0u and Rx∗(u, λ) = Φ(j)
λ (x∗(u, λ)) for

some j ∈ Z. For convenience of formulation we will say that u ∈ U is sym-
metric if the Zq-orbit through u is invariant under R, i.e. if Ru = Sj

0u for
some j ∈ Z. If (u, λ) solves the determining equation (17) (or the equivalent
equation (20)) and if u is symmetric then the corresponding q-periodic orbit
of Φλ is also symmetric. A straightforward calculation shows the following
result for such symmetric orbits.

Lemma 5.1 Let (u, λ) ∈ U × R
m be sufficiently small and such that u is

symmetric. Then there exists a linear involution T ∈ L(V ) (i.e. T 2 = I) such
that

TD(u, λ)T = D(u, λ)−1.

This implies that if µ ∈ C is an eigenvalue of D(u, λ) with u symmetric then
also µ−1 is an eigenvalue. As a consequence we can only have a weak form of
stability for symmetric periodic orbits, namely when all eigenvalues of D(u, λ)
are on the unit circle; the only alternative is to have eigenvalues both inside
and outside the unit circle, in which case the periodic orbit is unstable. In
what follows we restrict the discussion to such symmetric periodic orbits.

For (u, λ) = (0, 0) we find D(0, 0) = Aq
0, which implies that µ = 1 is

an eigenvalue of D(0, 0) with algebraic multiplicity equal to dimU , and with
geometric multiplicity equal to the sum of the geometric multiplicities of the
resonant eigenvalues of A0. Now we make an additional hypothesis:



(H3) All non-resonant eigenvalues µ of A0 (i.e. µq �= 1) are simple and lie on
the unit circle (i.e. |µ| = 1).

For small (u, λ) the eigenvalues of D(u, λ) are close to those of D(0, 0); in
particular, if (H3) holds then the eigenvalues of D(u, λ) which are not close
to µ = 1 will be simple. If moreover u is symmetric this can be combined
with Lemma 5.1 to conclude that the eigenvalues of D(u, λ) which are not
close to µ = 1 will be simple and on the unit circle. Consequently, under the
hypothesis (H3) the stability of bifurcating symmetric periodic orbits will be
determined by the critical eigenvalues of D(u, λ), that is by those eigenvalues
which are close to µ = 1. The total multiplicity of these critical eigenvalues
is equal to dimU .

To calculate the critical eigenvalues of D(u, λ) one can put D(u, λ) in block
form using the splitting V = Ker (Sq

0 − I) ⊕ Im (Sq
0 − I) = U ⊕ Im (Sq

0 − I),
and prove that there exists a similarity transformation which makes this block
form diagonal; the critical eigenvalues are then the eigenvalues of the block
corresponding to the subspace U . This diagonalization procedure is relatively
easy to work out when Φλ is in normal form up to a sufficiently high order,
namely when Φλ = S0ΨNF

λ + O(‖ · ‖k+1) with ΨNF

λ = S−1
0 ΦNF

λ = eN0 + Zλ

such that

S0 ◦ ΨNF

λ = ΨNF

λ ◦ S0 and R ◦ ΨNF

λ ◦ R = (ΨNF

λ )−1
. (35)

In this case the procedure outlined above gives the following result.

Theorem 5.2 Assume that Φλ satisfies (H1) and is in normal form up to
order k ≥ 2, i.e. we have (30) and (35). Then there exists a smooth mapping
D̂ : U × R

m → L(U), with

D̂(u, λ) = DΨNF

λ (u)
U

+ O(‖u‖k),

such that for all sufficiently small solutions (u, λ) of the determing equation
(17) the critical eigenvalues of D(u, λ) are given by the q-th powers of the
eigenvalues of D̂(u, λ).

At the end of Section 4 we noticed that up to terms of order k the solutions
of (17) are given by the fixed points of ΨNF

λ U
, or equivalently, by the zero’s

of (N0 + Zλ)
U

. According to the foregoing result and under the hypothesis
(H3) the stability of the corresponding periodic orbit of Φλ is determined up
to terms of order (k − 1) by the eigenvalues of

DΨNF

λ (u)
U

= e
(N0 + DZλ(u))

U ;

this means that up to higher order terms the stability properties of the bi-
furcating periodic solutions of Φλ are the same as those of the corresponding
equilibria of the normal vectorfield N0 + Zλ restricted to the reduced phase
space U . If u is symmetric (i.e. RSj

0u = u for some j ∈ Z) then

(RSj
0) ◦ DΨNF

λ (u) ◦ (RSj
0) = (DΨNF

λ (u))−1



and
(RSj

0) ◦ DZλ(u) ◦ (RSj
0) = −DZλ(u),

which again leads to either a weak form of stability or instability. In ap-
plications the challenge will usually be to take the approximation order k
sufficiently large such that the higher order terms do not disturb the picture
obtained from the study of the normal form.

6 Application

In this last section we show how the foregoing methods and techniques can
be used to study the problem of subharmonic bifurcation from a symmetric
periodic orbit κ in the reversible system (3). As described in Section 2 this
problem can be put into the form (4) by introducing a Poincaré-map P asso-
ciated to κ. It is possible to construct P such that it inherits the reversibility
of the vectorfield f ; the fixed point of P corresponding to κ will then also be
symmetric. Periodic points bifurcating from this fixed point correspond to bi-
furcating subharmonic solutions. We first describe the set-up and hypotheses
in detail.

Let X be an even-dimensional state space (dim X = 2n), and R0 ∈ L(X)
a linear involution with dim(FixR0) = n. Consider a smooth vectorfield
f : X → X which is R0-reversible (f(R0x) = −R0F (x) for all x ∈ X), and
denote by φt(x) the flow of the system

ẋ = f(x). (36)

The reversibility of f implies that φt(R0x) = R0φ−t(x) for all (t, x) ∈ R×X.
Let p1 ∈ FixR0 and T0 > 0 be such that φT0(p1) = p1 and φt(p1) �= p1 for
all t such that 0 < t < T0; then p1 generates a symmetric T0-periodic orbit
κ := {φt(p1) | t ∈ R} which has a second intersection point with FixR0,
namely p2 := φT0/2(p1). Now R0f(p1) = −f(R0p1) = −f(p1), and since R0

is semisimple it follows that X = Rf(p1)⊕ V for some R0-invariant subspace
V which must then necessarily contain FixR0. This implies p1 ∈ V , and
we can use V as a transversal section to κ and construct a Poincaré-map
P : V → V which is well-defined near p1 and such that P (p1) = p1. Moreover,
from R0(V ) = V and φt(R0x) = R0φ−t(x) we get R0 ◦ P ◦ R0 = P−1. Let
R := R0 V

, and define Φ : V → V by Φ(x) := P (p1 + x) − p1 (for all x ∈ V );
then dimV = 2n − 1, dim(FixR) = n, Φ is R-reversible and Φ(0) = 0.

Next we have to consider those eigenvalues of A0 = DΦ(0) = DP (p1)
which are roots of unity. It is a standard result that the eigenvalues of A0 can
be obtained from those of the monodromy matrix M = DφT0(p1); indeed, we
have

A0x = Mx + γ(x)f(p1), ∀x ∈ V, (37)

where γ ∈ L(V ; R) is such that the right hand side of (37) belongs to V for
all x ∈ V . Clearly R0MR0 = M−1, and therefore if µ ∈ C is an eigenvalue of



M then so are µ̄, µ−1 and µ̄−1. A further consequence is that (detM)2 = 1,
and since M belongs to the connected component of the identity in GL(X; R)
we conclude that detM = 1. Taking all this into account it follows that if
µ = −1 is an eigenvalue of M (i.e. a Floquet multiplier) then its multiplicity
must be even. Also, µ = 1 is always a multiplier, since Mf(p1) = f(p1);
the (algebraic) multiplicity of µ = 1 must necessarily be even. Generically,
µ = 1 will be a non-semisimple multiplier with multiplicity equal to 2; in such
case both Ker (M − I) and Ker ((M − I)2) are R0-invariant, and since R0

is semisimple we can find an R0-invariant and one-dimensional complement
U0 of Ker (M − I) in Ker ((M − I)2). Then there exists a unique vector
u0 ∈ U0 such that Mu0 = u0 + f(p1). Using the R0-invariance of U0, the
R0-reversibility of M and the fact that R0f(p1) = −f(R0p1) = −f(p1), it
follows that R0u0 ∈ U0 and MR0u0 = R0u0 + f(p1); the uniqueness of u0

then implies R0u0 = u0. Using (37) this gives the following possibilities for
the eigenvalues of A0 which are q-th roots of unity:
• q = 1: the eigenvalue µ = 1 has always odd multiplicity, and there is at

least one eigenvector u0 which belongs to FixR; typically µ = 1 will be a
simple eigenvalue, with Ker (A0 − I) = Ru0;

• q = 2: if µ = −1 is an eigenvalue then it must have even multiplicity;
generically this multiplicity will be equal to 2, and the eigenvalue will be
non-semisimple;

• q ≥ 3: eigenvalues of the form µ = exp(±2πip/q), with q ≥ 3, 0 < p < q
and gcd(p, q) = 1 can have any multiplicity but will typically be simple
eigenvalues.

We next consider the bifurcation of q-periodic points from the fixed point
x = 0 for different choices of q, each time assuming the simplest possible
hypotheses for the resonant eigenvalues. To obtain the bifurcating solution
branches we will concentrate on the normal form part of the equations, ne-
glecting the higher order terms; a more careful analysis shows that the results
obtained in this way persist when the neglected terms are taken into account.

6.1 The primary branch

We start with the bifurcation of fixed points, i.e. we take q = 1 in our reduction
scheme. According to the foregoing discussion we can generically assume that
µ = 1 is a simple eigenvalue of A0, with an eigenvector u0 ∈ V such that
Su0 = u0, N0u0 = 0 and Ru0 = u0. Then U = {αu0 | α ∈ R}, and the
normal form vectorfield Z restricted to U takes the form Z(αu0) = g(α)u0;
the reversibility of Z implies that g(α) = −g(α), i.e. g(α) ≡ 0. So the
equation (32) is satisfied for all u = αu0 ∈ U , meaning that the fixed point
x = 0 of Φ belongs to a one-parameter family of symmetric fixed points,
given by {x∗(αu0) | α ∈ R}. For the original reversible system (36) the
conclusion is that under the generic assumption for the multiplier µ = 1
the symmetric periodic orbit κ belongs to a one-parameter family of such



symmetric periodic orbits. In view of what follows we will call this the primary
branch of symmetric periodic orbits.

6.2 Period-doubling bifurcations

Next we consider period doubling, corresponding to q = 2. We assume again
that µ = 1 is a simple eigenvalue of A0 (with eigenvector u0 such that Ru0 =
u0); we also assume that µ = −1 is a non-semisimple eigenvalue with algebraic
multiplicity equal to 2 and with eigenvector v0. Then S0v0 = −v0, N0v0 = 0,
and since Ker (A0 + I) is invariant under R (by the reversibility) we must
have either Rv0 = v0 or Rv0 = −v0; we can without loss of generality assume
that Rv0 = v0, since in the other case (Rv0 = −v0) we have RS0v0 = v0, and
replacing R by RS0 in what follows the same analysis goes through. Both
Ker (A0 + I) = Rv0 and Ker ((A0 + I)2) are R-invariant, and we can find a
one-dimensional and R-invariant complement W0 of Rv0 in Ker ((A0 + I)2).
There exists a unique element w0 ∈ W0 such that A0w0 = −w0−v0; from this
one deduces that A0Rw0 = −Rw0 + v0, and hence Rw0 = −w0. The reduced
phase space U is then given by

U = {αu0 + ξv0 + ηw0 | α, ξ, η ∈ R},

and the restrictions of S0, N0 and R to U by




S0(αu0 + ξv0 + ηw0) = αu0 − ξv0 − ηw0,
N0(αu0 + ξv0 + ηw0) = ηv0,
R(αu0 + ξv0 + ηw0) = αu0 + ξv0 − ηw0.

The normal form vectorfield Z (restricted to U) can be written as

Z(αu0 + ξv0 + ηw0) = g(α, ξ, η)u0 + h1(α, ξ, η)v0 + h2(α, ξ, η)w0,

with functions g(α, ξ, η), h1(α, ξ, η) and h2(α, ξ, η) which are of second order
in the origin (since Z(0) = 0 and DZ(0) = 0), and such that





g(α,−ξ,−η) = g(α, ξ, η),
h1(α,−ξ,−η) = −h1(α, ξ, η),
h2(α,−ξ,−η) = −h2(α, ξ, η),

and





g(α, ξ,−η) = −g(α, ξ, η),
h1(α, ξ,−η) = −h1(α, ξ, η),
h2(α, ξ,−η) = h2(α, ξ, η).

(These correspond to the conditions that Z should commute with S0 and anti-
commute with R). In order to impose the condition (25) we can use a scalar
product such that the basis {u0, v0, w0} of U is orthonormal (compare with
Lemma 4.1 and the condition RT R = I). Then N T

0 (αu0 + ξv0 + ηw0) = ξw0,
and (25) takes the form

ξ
∂g

∂η
(α, ξ, η) = 0, ξ

∂h1

∂η
(α, ξ, η) = 0 and ξ

∂h2

∂η
(α, ξ, η) = h1(α, ξ, η).



Imposing all these conditions leads to

g(α, ξ, η) ≡ 0, h1(α, ξ, η) ≡ 0 and h2(α, ξ, η) = ξ ϕ(α, ξ2),

with ϕ : R
2 → R a smooth function such that ϕ(0, 0) = 0. The solutions of

(32) are given by either (α, ξ, η) = (α, 0, 0), with α ∈ R small and arbitrary
(since S0(αu0) = u0 these correspond to the primary branch), or by (α, ξ, η) =
(α, ξ, 0) with (α, ξ) ∈ R

2 such that

ϕ(α, ξ2) = 0. (38)

We have ϕ(0, 0) = 0, and we assume that also the transversality condition

∂ϕ

∂α
(0, 0) �= 0 (39)

is satisfied. One can easily verify that the linear operator N0 + DZ(αu0)
restricted to U has eigenvalues µ = 0 and µ = ±

√
ϕ(α, 0), correspond-

ing to respectively the multiplier µ = 1 and the approximate multipliers
µ = − exp

(
±

√
ϕ(α, 0)

)
along the primary branch; the condition (39) means

that as we move along the primary branch two complex conjugate multipliers
move along the unit circle and with non-zero speed towards −1, and after
colliding split off the unit circle into a pair of real multipliers moving away
from −1 along the real axis, one inside and the other one outside the unit
circle. Assuming (39) we can solve (38) for α = α∗(ξ2), giving us the solution
branch {(α∗(ξ2), ξ, 0) | ξ ∈ R} of the determining equation. For fixed ξ �= 0
the two solutions (α∗(ξ2),±ξ, 0) correspond to the two points of a symmetric
2-periodic orbit of Φ. For the original reversible system (36) this means that a
single branch of symmetric periodic orbits bifurcates from the primary branch;
the limiting period along this branch is 2T0, and so we have period-doubling.

Using the approach of Section 5 one can also determine the stability of
these bifurcating periodic solutions. Writing ϕ(α, ξ2) = C(α)+D(α)ξ2+O(ξ4)
one finds that the eigenvalues of N0+DZ(α∗(ξ2)u0+ξv0) (restricted to U) are
given by µ = 0 and µ = ±|ξ|

√
2D(0) + O(|ξ|2). Taking the exponential one

obtains along the bifurcating branch two critical multipliers: these multipliers
are real and off the unit circle (i.e. we have instability) if D(0) > 0, and they
lie on the unit circle (stability) if D(0) < 0. So the stability is determined by
the sign of a third order coefficient in the normal form.

6.3 Subharmonic bifurcation with q ≥ 3

In this final subsection we look at the case q ≥ 3. Let θ0 := 2πp/q, with
q ≥ 3, 0 < p < q and gcd(p, q) = 1. We assume that next to the simple
eigenvalue µ = 1 the operator A0 ∈ L(V ) has the pair µ = exp(±iθ0) as simple
eigenvalues, and that there are no further eigenvalues which are q-th roots of
unity. The 2-dimensional subspace Uq := Ker ((A0 − (cos θ0)I)2 + (sin θ0)2I)



is invariant under R; let v0 ∈ Uq be an eigenvector of R, i.e. Rv0 = εv0, with
ε = ±1. Setting w0 := (sin θ0)−1(A0 − (cos θ0)I)v0 we find

Rw0 =
1

sin θ0

(
A−1

0 − (cos θ0)I
)
Rv0 =

−ε

sin θ0
(A0 − (cos θ0)I) v0 = −εw0.

So we can assume that ε = 1 (just interchange v0 and w0 in the other case),
resulting in a basis {u0, v0, w0} of U = U0⊕Uq such that Ru0 = u0, Rv0 = v0,
Rw0 = −w0, N0u0 = 0, N0v0 = 0, N0w0 = 0, S0u0 = u0 and

S0v0 = (cos θ0)v0 + (sin θ0)w0, S0w0 = −(sin θ0)v0 + (cos θ0)w0. (40)

Bifurcating q-periodic points can be approximated by determining the
equilibria of the normal form system u̇ = Z(u); the vectorfield Z(u) must
commute with S0 and anti-commute with R. To find the form of Z(u) we
identify U with R × C, via the isomorphism

ζ : R × C → U, (α, z) �−→ ζ(α, z) := αu0 + �(z(v0 − iw0));

then S0(α, z) = (α, exp(iθ0)z) and R(α, z) = (α, z̄). Some elementary analysis
shows that the system u̇ = Z(u) must have the form

α̇ = g(α, z)�(zq),
ż = ih1(α, z)z + ih2(α, z)z̄q−1,

(41)

where the functions g : R×C → R and hi : R×C → R (i = 1, 2) are invariant
under S0 and R; also h1(0, 0) = 0, and we will assume that δ := h2(0, 0) �= 0.
Setting z = r exp(iθ) we can write (41) in the equivalent form

α̇ = rqg(α, r exp(iθ)) sin(qθ),
ṙ = rq−1h2(α, r exp(iθ)) sin(qθ),
θ̇ = h1(α, r exp(iθ)) + rq−2h2(α, r exp(iθ)) cos(qθ).

(42)

The α-axis forms a line of equilibria, corresponding to the primary branch
(see subsection 6.1). Using (41) one finds that DZ(αu0) (restricted to U) has
the eigenvalues µ = 0 and µ = ±ih1(α, 0), corresponding to the multipliers
µ = 1 and µ = exp(±i(θ0 + h1(α, 0))) along the primary branch. We have
already observed that h1(0, 0) = 0, and we will assume that

τ :=
∂h1

∂α
(0, 0) �= 0; (43)

this transversality condition means that as we move along the primary branch
a pair of simple multipliers moves with non-zero speed along the unit circle,
passing through exp(±iθ0) for α = 0.

From (42) and our assumption h2(0, 0) �= 0 it follows that nontrivial equi-
libria (with r �= 0) must be such that sin(qθ) = 0, i.e. θ = 0 or θ = π/q
modulo θ0. For θ = 0 (mod θ0) the bifurcation equation reduces to

h1(α, r) + rq−2h2(α, r) = 0, (44)



and for θ = π/q (mod θ0) to

h1(α, r exp(iπ/q)) − rq−2h2(α, r exp(iπ/q)) = 0. (45)

Under the transversality condition (43) both these equations can be solved
for α as a function of r, giving respectively α = α∗

+(r) for (44) and α = α∗
−(r)

for (45). The full set of nontrivial equilibria is then given by the union of

B+
q = {(α, z) = (α∗

+(r), r exp(ikθ0) | r > 0, 0 ≤ k ≤ q − 1}

and

B−
q = {(α, z) = (α∗

−(r), r exp(i(π/q + kθ0)) | r > 0, 0 ≤ k ≤ q − 1}.

Observe that for fixed r0 > 0 the intersection of B+
q with r = r0 is invariant

under S0 and R; it therefore corresponds to a symmetric q-periodic orbit of
Φ. The same holds for B−

q , and since α∗
+(0) = α∗

−(0) = 0 we have found two
branches of symmetric subharmonics bifurcating from the primary branch at
the orbit κ of (36); the limiting period along these branches is equal to qT0.

To determine the stability of these subharmonics we linearize (42) at the
points of B+

q and B−
q and calculate the eigenvalues of this linearization; after

somewhat lengthy but straightforward calculations we find next to the trivial
eigenvalue µ = 0 a pair of nontrivial eigenvalues µ = ±

√
Λ+(r) along B+

q , and
another pair µ = ±

√
Λ−(r) along B−

q . To simplify the expressions for Λ+(r)
and Λ−(r) we introduce next to the (non-zero) constants δ and τ defined
before also the constant γ := g(0, 0); moreover, we can expand h1(α, z) as
h1(α, z) = h1(α, 0) + h̃1(α)r2 + O(r3), and we set ν := h̃1(0). One finds then
that

α∗
±(r) = −ν

τ
r2 ∓ δ

τ
rq−2 + O(r3) (46)

and
Λ±(r) = ±q(γτ + 2νδ)rq + q(q − 2)δ2r2q−4 + O(rq+1). (47)

For q = 3 we have α∗
±(r) = ∓δτ−1r + O(r2) and Λ±(r) = 3δ2r2 + O(r3);

therefore both bifurcating branches will be unstable (remember that we have
assumed that δ �= 0). For q = 4 the expressions are

α∗
±(r) = −ν ± δ

τ
r2 + O(r3) and Λ±(r) = 4(±γτ ± 2νδ + 2δ2)r4 + O(r5).

The sign of Λ±(r) (and the corresponding stability properties along the bran-
ches B±

q ) depends on all the constants involved, and a detailed analysis be-
comes rather messy; we leave it to the interested reader. Finally, for q ≥ 5 we
find

α∗
±(r) = −ν

τ
r2 + O(r3) and Λ±(r) = ±q(γτ + 2νδ)rq + O(rq+1);

assuming that γτ + 2νδ �= 0 it follows that the branches B+
q and B−

q have
opposite stability properties: one is stable, the other unstable. Comparing



the equations (44) and (45) it is also easily seen that the two branches will
be very close to each other for high values of q; more precisely, we have
α∗
−(r) = α∗

+(r) + O(rq−2) as r → 0.
We conclude with the remark that along the stable branch of subharmonics

we will have a pair of simple multipliers moving along the unit circle, starting
at µ = 1; these multipliers will necessarily cross roots of unity, thereby causing
further subharmonic bifurcations. Repeating this scheme leads to a cascade
of subharmonic branches, a phenomenon which is not yet fully understood.
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