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Introduction

Throughout this paper, we work over C. We denote the Hilbert scheme of n
points of a surface S by S[n] = HilbnS. Let E be an Enriques surface. E[n]

has a Calabi-Yau manifold Xn as the universal covering space of degree 2. In
[8,Theorem1.3], the author showed that for Enriques surfaces S, T , and n ≥ 3, if
the universal covering spaces of S[n] and T [n] are isomorphic, then S[n] and T [n]

are isomorphic by checking the action to cohomology ring of the automorphisms
of them. However, in general, S 6∼= T even if their universal covering spaces are
isomorphic by a result of Ohashi [10]. For n = 2, since the second cohmology of
X2 is bigger than that of E[2] [8,Theorem5.1], the automorphisms of E[2] and
X2 were not stduied enough in [8]. The author does not kwon E[2] is uniquley
determined by X2. In this paper, we study the automorphisms of the the Hilbert
scheme of two points of Enriques surfaces by using that the second cohmology
of X2 is bigger than that of E[2]. There are two main results (Theorem 0.3 and
0.5).

Let S be a smooth projective surface. First we study whether S could be
restored from S[2], i.e. for an two projective surfaces S and S′, if S[2] ∼= S′[2],
then are S and S′ isomorphic ? For K3 surfaces, this problem is fully studied.
In [11, Example 7.2], Yoshioka showed that there exist two K3 surfaces K and
K ′ such that K 6∼= K ′ and K [2] ∼= K ′[2]. The following two theorems is very
useful:

Theorem 0.1. For a smooth projective surface S, we put

hp,q(S) := dimCHq(S,ΩpS) and

h(S, x, y) :=
∑
p,q

hp,q(S)xpyq.
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By [7, Theorem 2] and [6, page 204], we have the equation (1):

∞∑
n=0

∑
p,q

hp,q(S[n])xpyqtn =

∞∏
k=1

2∏
p,q=0

( 1

1− (−1)p+qxp+k−1yq+k−1tk)

)(−1)p+qhp,q(S)

.

Theorem 0.2. [7] Let X be smooth projective variety with n = dimX ≥ 1.
Then there is an isomorphism SdH

0(X,ω⊗mX ) ∼= H0(X [n], ω⊗m
X[n]) and the Kodaira

dimension κ(X [n] = dκ(X). whenever mn is even.

Therefore, for a smooth projective surface S the Hodge number and Kodaira
dimension can be restored from S[n]. However, we may not necessarily restore S
from S[n] because there is the example of Yoshioka. In addition, the relationship
of the deformation of S and S[n] is known. Our first main result (Theorem 0.3)
shows that this never happened to Enriques surfaces:

Theorem 0.3. Let E be an Enriques surface and S a smooth projective surface.
If there is an isomorphism ϕ : E[2] ∼→ S[2], then S is an Enriques surface, and
there is an isomorphism ψ : E

∼→ S such that ϕ is induced by ψ.

We also notice that for the universal covering K3 surfaces X and Y of
Enriques surfaces E and F , Sosna [4] showed if X [n] ∼= Y [n] for some n = 2,
then X ∼= Y .

Our second main result (Theorem 1.3) is on the naturality problem of auto-
morphisms of S[2]. First we recall the definition of the natural automorphism
[3].

Definition. Let S be a smooth compact surface. For n ≥ 2, an automorphism
g ∈ Aut(S[n]) is called natural if there is an automorphism f ∈ Aut(S) such
that g = f [n]. Here f [n] is the automorphism of S[n] that is naturaly induced
by f ∈ Aut(S).

Theorem 0.4. For n ≥ 2, let S be a K3 surface or an Enriques surface, and
D the exceptional divisor of the Hilbert-Chow morphism π : S[n] → S(n). An
automorphism f of S[n] is natural if and only if f(D) = D.

When S is not a K3 surface and an Enriques surface, this theorem does
not hold good, i.e. there exist a smooth projective surface S which has an
automorphism f of S[n] such that f(D) = D but f is not natural. Our second
main result is the following theorem:

Theorem 0.5. Let E be an Enriques surface. Then Aut(E[2]) ∼= Aut(E), i.e.
all automorphisms of Aut(E[2]) are natural.

For a smoooth quartic surface Z of P3 which is a K3 surface, generic line L
on P3 meets Z along 4 distinct points. By alternating them, Beauville showed
Z [2] has an automorphism which is not natural [1]. Further, Oguiso showed the
fact there exists a K3 surface Y such that [Aut(Y [2]) : Aut(Y )] = ∞ under
the natural inclusion [9, Theroem 1.2 (1)], which is completely different from
Theorem 1.3.

The author does not know whether Theorem 1.1 and 1.3 are true or no for
n ≥ 3.



Preliminaries

It is well known that S[2] ∼= Blow∆S
S2/S2, where

∆S := {(x, y) ∈ S2 : x = y},

and S2 is the symmetric group of degree 2, which acts by interchanging the two
factors of the product.

Let E be an Enriques surface, and µ : K → E its universal covering space.
Let π : X → E[2] be the universal covering space of E[2].

From Blow∆E
E2/S2 and µ : K → E, we will construct X. Let σ be the

covering involution of µ, H the finite subgroup of Aut(K2) which is generated
by S2 and σ × σ, and G the finite subgroup of Aut(K2) which is generated by
S2 and idK × σ. Since K2/G = E2/S2, and H is a normal subgroup of G, the
covering space µ2 : K2 → E2 induces the covering spaces [8, Lemma 2.3, 2.4]:

K2\µ2−1
(∆E)→ (E2\∆E)/S2, and

Blowµ2−1(∆E)K
2/H → Blow∆E

E2/S2.

Since |G/H| = 2, and E[2] ∼= Blow∆E
E2/S2, we have X ∼= Blowµ2−1(∆E)K

2/H,

and the automorphism idK × σ of K2/H induces the covering involution ρ of
π : X → E[2]. From here, we consider X as Blowµ2−1(∆E)K

2/H.

Let η : Blowµ2−1(∆E)K
2/H → K2/H be the natural morphism. We put

T := {(x, y) ∈ K2 : σ(x) = y}.

Then we have µ2−1
(∆E) = ∆K ∪ T . Furthermore, we put

D1 := η−1(T ), D2 := η−1(∆K),

and
hi the first chern class of Di for i = 1, 2.

Since π−1(D) = D1 ∪D2, we get

H2(X,C) = π∗(H2(E[2],C))⊕ C〈h1 − h2〉.

Thus dimH2(X,C) = 12 = dimH2(E[2],C) + 1. Pay attention that for n ≥ 3
dimH2(X,C) =dimH2(E[n],C) = 11. Furthermore since (idK × σ)(T ) = ∆K ,
we get ρ∗h1 = h2,

the eigenspace for the eigenvalue − 1 of ρ∗ is C〈h1 − h2〉,

and
the eigenspace for the eigenvalue 1 of ρ∗ is π∗(H2(E[2],C)).



Main theorems

Theorem 0.3 and 0.4 are followed by the following theorem:

Theorem 0.6. Let E and E′ be two Enriques surfaces. For an isomorphism
g : E[2] ∼→ E′[2], we get g(D) = D′.

sketch 0.7. From the uniqueness of the universal covering space, there is an
isomorphism f : X

∼→ X ′ such that g ◦ π = π ◦ f . From this, we have only to
show f(π−1(D)) = π′−1(D′). Since the each degree of π and π′ is 2, we have
f−1 ◦ρ′ ◦f = ρ and ρ∗ = f∗ ◦ρ′∗ ◦f−1∗ as an automorphism of H2(X,C). Since
the eigenspace for the eigenvalue −1 of ρ∗ is C〈h1 − h2〉, we have

−(h1 − h2) = ρ∗(h1 − h2)

= f∗ ◦ ρ′∗ ◦ f−1∗(h1 − h2) in H2(X,C).

Thus for a linear isomorphism f∗ from H2(X ′,C) to H2(X,C), we obtain

ρ′∗(f−1∗(h1 − h2)) = −f−1∗(h1 − h2) in H2(X ′,C).

Since the eigenspace for the eigenvalue −1 of the linear mapping ρ′∗ is C〈h′1 −
h′2〉, there is some a ∈ C such that

f∗(h′1 − h′2) = a(h1 − h2) in H2(X,C).

Since X and X ′ are Calabi-Yau manifolds, Pic(X) and Pic(X ′) are torsion
free and the natural maps Pic(X) →H2(X,Z) and Pic(X ′) →H2(X ′,Z) are
isomorphic. Thus there are some non zero integer t ∈ Z>0 and s ∈ Z\{0} such
that a = s

t , i.e.

f∗(OX′(t(D′1 −D′2))) ∼= OX(s(D1 −D2)) as a line bundle.

Since D1 and D2 are the exceptional divisors of X → BlowT∪∆K
K2/H, we get

that f(D1 ∪D2) = D′1 ∪D′2.
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