The Hilbert scheme of two point of Enriques surface

Hayasi Taro*

department of mathematics of Osaka University

Introduction

Throughout this paper, we work over \mathbb{C} . We denote the Hilbert scheme of n points of a surface S by $S^{[n]} = \text{Hilb}^n S$. Let E be an Enriques surface. $E^{[n]}$ has a Calabi-Yau manifold X_n as the universal covering space of degree 2. In [8, Theorem1.3], the author showed that for Enriques surfaces S, T, and $n \geq 3$, if the universal covering spaces of $S^{[n]}$ and $T^{[n]}$ are isomorphic, then $S^{[n]}$ and $T^{[n]}$ are isomorphic by checking the action to cohomology ring of the automorphisms of them. However, in general, $S \not\cong T$ even if their universal covering spaces are isomorphic by a result of Ohashi [10]. For n = 2, since the second cohmology of X_2 is bigger than that of $E^{[2]}$ [8, Theorem5.1], the automorphisms of the the Hilbert scheme of two points of Enriques surfaces by using that the second cohmology of X_2 is bigger than that of $E^{[2]}$. There are two main results (Theorem 0.3 and 0.5).

Let S be a smooth projective surface. First we study whether S could be restored from $S^{[2]}$, i.e. for an two projective surfaces S and S', if $S^{[2]} \cong S'^{[2]}$, then are S and S' isomorphic ? For K3 surfaces, this problem is fully studied. In [11, Example 7.2], Yoshioka showed that there exist two K3 surfaces K and K' such that $K \ncong K'$ and $K^{[2]} \cong K'^{[2]}$. The following two theorems is very useful:

Theorem 0.1. For a smooth projective surface S, we put

$$h^{p,q}(S) := \dim_{\mathbb{C}} \mathrm{H}^{q}(S, \Omega_{S}^{p}) \text{ and}$$
$$h(S, x, y) := \sum_{p,q} h^{p,q}(S) x^{p} y^{q}.$$

^{*}tarou-hayashi@cr.math.sci.osaka-u.ac.jp

By [7, Theorem 2] and [6, page 204], we have the equation (1):

$$\sum_{n=0}^{\infty} \sum_{p,q} h^{p,q} (S^{[n]}) x^p y^q t^n = \prod_{k=1}^{\infty} \prod_{p,q=0}^{2} \left(\frac{1}{1 - (-1)^{p+q} x^{p+k-1} y^{q+k-1} t^k)} \right)^{(-1)^{p+q} h^{p,q}(S)}$$

Theorem 0.2. [7] Let X be smooth projective variety with $n = \dim X \ge 1$. Then there is an isomorphism $S_d H^0(X, \omega_X^{\otimes m}) \cong H^0(X^{[n]}, \omega_{X^{[n]}}^{\otimes m})$ and the Kodaira dimension $\kappa(X^{[n]} = d\kappa(X)$. whenever mn is even.

Therefore, for a smooth projective surface S the Hodge number and Kodaira dimension can be restored from $S^{[n]}$. However, we may not necessarily restore S from $S^{[n]}$ because there is the example of Yoshioka. In addition, the relationship of the deformation of S and $S^{[n]}$ is known. Our first main result (Theorem 0.3) shows that this never happened to Enriques surfaces:

Theorem 0.3. Let E be an Enriques surface and S a smooth projective surface. If there is an isomorphism $\varphi : E^{[2]} \xrightarrow{\sim} S^{[2]}$, then S is an Enriques surface, and there is an isomorphism $\psi : E \xrightarrow{\sim} S$ such that φ is induced by ψ .

We also notice that for the universal covering K3 surfaces X and Y of Enriques surfaces E and F, Sosna [4] showed if $X^{[n]} \cong Y^{[n]}$ for some $n \ge 2$, then $X \cong Y$.

Our second main result (Theorem 1.3) is on the naturality problem of automorphisms of $S^{[2]}$. First we recall the definition of the natural automorphism [3].

Definition. Let S be a smooth compact surface. For $n \ge 2$, an automorphism $g \in \operatorname{Aut}(S^{[n]})$ is called natural if there is an automorphism $f \in \operatorname{Aut}(S)$ such that $g = f^{[n]}$. Here $f^{[n]}$ is the automorphism of $S^{[n]}$ that is naturaly induced by $f \in \operatorname{Aut}(S)$.

Theorem 0.4. For $n \ge 2$, let S be a K3 surface or an Enriques surface, and D the exceptional divisor of the Hilbert-Chow morphism $\pi : S^{[n]} \to S^{(n)}$. An automorphism f of $S^{[n]}$ is natural if and only if f(D) = D.

When S is not a K3 surface and an Enriques surface, this theorem does not hold good, i.e. there exist a smooth projective surface S which has an automorphism f of $S^{[n]}$ such that f(D) = D but f is not natural. Our second main result is the following theorem:

Theorem 0.5. Let E be an Enriques surface. Then $\operatorname{Aut}(E^{[2]}) \cong \operatorname{Aut}(E)$, i.e. all automorphisms of $\operatorname{Aut}(E^{[2]})$ are natural.

For a smooth quartic surface Z of \mathbb{P}^3 which is a K3 surface, generic line L on \mathbb{P}^3 meets Z along 4 distinct points. By alternating them, Beauville showed $Z^{[2]}$ has an automorphism which is not natural [1]. Further, Oguiso showed the fact there exists a K3 surface Y such that $[\operatorname{Aut}(Y^{[2]}) : \operatorname{Aut}(Y)] = \infty$ under the natural inclusion [9, Theorem 1.2 (1)], which is completely different from Theorem 1.3.

The author does not know whether Theorem 1.1 and 1.3 are true or no for $n \geq 3$.

Preliminaries

It is well known that $S^{[2]} \cong \operatorname{Blow}_{\Delta_S} S^2 / \mathcal{S}_2$, where

$$\Delta_S := \{ (x, y) \in S^2 : x = y \},\$$

and S_2 is the symmetric group of degree 2, which acts by interchanging the two factors of the product.

Let E be an Enriques surface, and $\mu: K \to E$ its universal covering space. Let $\pi: X \to E^{[2]}$ be the universal covering space of $E^{[2]}$.

From $\operatorname{Blow}_{\Delta_E} E^2/\mathcal{S}_2$ and $\mu : K \to E$, we will construct X. Let σ be the covering involution of μ , H the finite subgroup of $\operatorname{Aut}(K^2)$ which is generated by \mathcal{S}_2 and $\sigma \times \sigma$, and G the finite subgroup of $\operatorname{Aut}(K^2)$ which is generated by \mathcal{S}_2 and $\operatorname{id}_K \times \sigma$. Since $K^2/G = E^2/\mathcal{S}_2$, and H is a normal subgroup of G, the covering space $\mu^2 : K^2 \to E^2$ induces the covering spaces [8, Lemma 2.3, 2.4]:

$$K^2 \setminus \mu^{2^{-1}}(\Delta_E) \to (E^2 \setminus \Delta_E) / \mathcal{S}_2$$
, and
 $\operatorname{Blow}_{\mu^{2^{-1}}(\Delta_E)} K^2 / H \to \operatorname{Blow}_{\Delta_E} E^2 / \mathcal{S}_2.$

Since |G/H| = 2, and $E^{[2]} \cong \operatorname{Blow}_{\Delta_E} E^2/\mathcal{S}_2$, we have $X \cong \operatorname{Blow}_{\mu^{2-1}(\Delta_E)} K^2/H$, and the automorphism $\operatorname{id}_K \times \sigma$ of K^2/H induces the covering involution ρ of $\pi : X \to E^{[2]}$. From here, we consider X as $\operatorname{Blow}_{\mu^{2-1}(\Delta_E)} K^2/H$.

Let $\eta : \operatorname{Blow}_{\mu^{2-1}(\Delta_E)} K^2/H \to K^2/H$ be the natural morphism. We put

$$T := \{ (x, y) \in K^2 : \sigma(x) = y \}.$$

Then we have $\mu^{2^{-1}}(\Delta_E) = \Delta_K \cup T$. Furthermore, we put

$$D_1 := \eta^{-1}(T), \ D_2 := \eta^{-1}(\Delta_K),$$

and

$$h_i$$
 the first chern class of D_i for $i = 1, 2$.

Since $\pi^{-1}(D) = D_1 \cup D_2$, we get

$$\mathrm{H}^{2}(X,\mathbb{C}) = \pi^{*}(\mathrm{H}^{2}(E^{[2]},\mathbb{C})) \oplus \mathbb{C}\langle h_{1} - h_{2} \rangle.$$

Thus dimH²(X, \mathbb{C}) = 12 = dimH²($E^{[2]}, \mathbb{C}$) + 1. Pay attention that for $n \geq 3$ dimH²(X, \mathbb{C}) =dimH²($E^{[n]}, \mathbb{C}$) = 11. Furthermore since (id_K × σ)(T) = Δ_K , we get $\rho^* h_1 = h_2$,

the eigenspace for the eigenvalue -1 of ρ^* is $\mathbb{C}\langle h_1 - h_2 \rangle$,

and

the eigenspace for the eigenvalue 1 of ρ^* is $\pi^*(\mathrm{H}^2(E^{[2]},\mathbb{C}))$.

Main theorems

Theorem 0.3 and 0.4 are followed by the following theorem:

Theorem 0.6. Let E and E' be two Enriques surfaces. For an isomorphism $g: E^{[2]} \xrightarrow{\sim} E'^{[2]}$, we get g(D) = D'.

sketch 0.7. From the uniqueness of the universal covering space, there is an isomorphism $f: X \xrightarrow{\sim} X'$ such that $g \circ \pi = \pi \circ f$. From this, we have only to show $f(\pi^{-1}(D)) = \pi'^{-1}(D')$. Since the each degree of π and π' is 2, we have $f^{-1} \circ \rho' \circ f = \rho$ and $\rho^* = f^* \circ \rho'^* \circ f^{-1^*}$ as an automorphism of $H^2(X, \mathbb{C})$. Since the eigenspace for the eigenvalue -1 of ρ^* is $\mathbb{C}\langle h_1 - h_2 \rangle$, we have

$$-(h_1 - h_2) = \rho^*(h_1 - h_2)$$

= $f^* \circ \rho'^* \circ f^{-1*}(h_1 - h_2)$ in $\mathrm{H}^2(X, \mathbb{C})$.

Thus for a linear isomorphism f^* from $\mathrm{H}^2(X', \mathbb{C})$ to $\mathrm{H}^2(X, \mathbb{C})$, we obtain

$$\rho'^*(f^{-1^*}(h_1 - h_2)) = -f^{-1^*}(h_1 - h_2)$$
 in $\mathrm{H}^2(X', \mathbb{C})$

Since the eigenspace for the eigenvalue -1 of the linear mapping ρ'^* is $\mathbb{C}\langle h'_1 - h'_2 \rangle$, there is some $a \in \mathbb{C}$ such that

$$f^*(h'_1 - h'_2) = a(h_1 - h_2)$$
 in $\mathrm{H}^2(X, \mathbb{C})$.

Since X and X' are Calabi-Yau manifolds, Pic(X) and Pic(X') are torsion free and the natural maps $Pic(X) \rightarrow H^2(X,\mathbb{Z})$ and $Pic(X') \rightarrow H^2(X',\mathbb{Z})$ are isomorphic. Thus there are some non zero integer $t \in \mathbb{Z}_{>0}$ and $s \in \mathbb{Z} \setminus \{0\}$ such that $a = \frac{s}{t}$, i.e.

$$f^*(\mathcal{O}_{X'}(t(D'_1 - D'_2))) \cong \mathcal{O}_X(s(D_1 - D_2))$$
 as a line bundle.

Since D_1 and D_2 are the exceptional divisors of $X \to \text{Blow}_{T \cup \Delta_K} K^2/H$, we get that $f(D_1 \cup D_2) = D'_1 \cup D'_2$.

References

- A. Beauville: Variétés Kähleriennes dont la première classe de Chern est nulle. J. Differential Geom. 18 (1983), no. 4, 755-782.
- [2] D. Arapura and S. Archava: Kodaira dimension of symmetric powers. Proc. Amer. Math. Soc. 131 (2003), no. 5, 1369-1372 (electronic).
- [3] S. Boissiere: Automorphismes naturels de l'espace de Douady de points sur une surface. Canad. J. Math. 64 (2012), no. 1, 3-23.
- [4] B. Fantechi: Deformation of Hilbert schemes of points on a surface. Compositio Math. 98 (1995), 205-217.

- [5] J. Fogarty: Families on an Algebraic Surface. American Journal of Mathematics Vol. 90, No. 2 (Apr., 1968), pp. 511-521.
- [6] L. Göttsche: The Betti numbers of the Hilbert scheme of points on a smooth projective surface. Math. Ann. 286, 193-207 (1990).
- [7] L. Göttsche, W. Soergel: Perverse sheaves and the cohomology of Hilbert schemes of smooth algebraic surfaces. Math. Ann. 296 (1993), 235-245.
- [8] T. Hayashi: Universal covering calabi-yau manifolds of the Hilbert schemes of n points of Enriques surfaces. arXiv:1502.02231.
- [9] K. Oguiso: On automorphisms of the punctual Hilbert schemes of K3 surfaces. Eur. J. Math. 2 (2016), no. 1, 246-261.
- [10] H. Ohashi: On the number of Enriques quotients of a K3 surface. Publ. Res. Inst. Math. Sci. 43 (2007), no. 1, 181-200. 14J28.
- [11] K. Yoshioka: Moduli spaces of stable sheaves on abelian surfaces. Math. Ann. 321 (2001), no. 4, 817-884.