Universal covering space of the Hilbert scheme of n points of Enriques surface

Hayasi Taro*

department of mathematics of Osaka University

Abstract

We work over \mathbb{C} . The Hilbert scheme of n points of Enriques surface has a Calabi-Yau manifold as the universal covering. We prove that every small deformations of the Calabi-Yau manifold is induced by that of the Hilbert scheme of n points of Enriques surface, and count the number of isomorphism classes of the Hilbert schemes of n points of Enriques surfaces which has X as the universal covering space when we fix one for $n \geq 3$.

Theorem 0.1. Let E and E' be two Enriques surfaces, $E^{[n]}$ and $E'^{[n]}$ the Hilbert scheme of n points of E and E', X and X' the universal covering space of $E^{[n]}$ and $E'^{[n]}$, and $n \ge 3$. If $X \cong X'$, then $E^{[n]} \cong E'^{[n]}$, i.e. when we fix X, then there is just one isomorphism class of the Hilbert schemes of n points of Enriques surfaces such that they have it as the universal covering space. Furthermore if X = X', then $E^{[n]} = E'^{[n]}$.

Preliminaries

A K3 surface K is a compact complex surface with $K_K \sim 0$ and $H^1(K, \mathcal{O}_K) = 0$. An Enriques surface E is a compact complex surface with $H^1(E, \mathcal{O}_E) = 0$, $H^2(E, \mathcal{O}_E) = 0$, $K_E \not\sim 0$, and $2K_E \sim 0$. The universal covering of an Enriques surface is a K3 surface. A Calabi-Yau manifold X is an n-dimensional compact kähler manifold such that it is simply connected, there is no holomorphic k-form on X for 0 < k < n and there is a nowhere vanishing holomorphic n-form on X.

Let S be a nonsingular surface, $S^{[n]}$ the Hilbert scheme of n points of S, $\pi_S: S^{[n]} \to S^{(n)}$ the Hilbert-Chow morphism, and $p_S: S^n \to S^{(n)}$ the natural projection. We denote by D_S the exceptional divisor of π_S . Note that $S^{[n]}$ is smooth of dim_{$\mathbb{C}}S^{[n]} = 2n$. Let Δ_S^n be the set of n-uples $(x_1, \ldots, x_n) \in S^n$ with</sub>

^{*}tarou-hayashi@cr.math.sci.osaka-u.ac.jp

at least two x_i 's equal, S_*^n the set of *n*-uples $(x_1, \ldots, x_n) \in S^n$ with at most two x_i 's equal. We put

$$S_{*}^{(n)} := p_{S}(S_{*}^{n}),$$

$$\Delta_{S}^{(n)} := p_{S}(\Delta_{S}^{n}),$$

$$S_{*}^{[n]} := \pi_{S}^{-1}(S_{*}^{(n)}),$$

$$\Delta_{S_{*}}^{n} := \Delta_{S}^{n} \cap S_{*}^{n},$$

$$\Delta_{S_{*}}^{(n)} := p_{S}(\Delta_{S_{*}}^{n}), \text{ and}$$

$$F_{S} := S^{[n]} \setminus S_{*}^{[n]}.$$

Then we have $\operatorname{Blow}_{\Delta_{S*}^n} S_*^n / S_n \simeq S_*^{[n]}$, F_S is an analytic closed subset, and its codimension is 2 in $S^{[n]}$ by Beauville [1, page 767-768]. Here S_n is the symmetric group of degree n which acts naturally on S^n by permuting of the factors.

Let E be an Enriques surface, and $E^{[n]}$ the Hilbert scheme of n points of E. By Oguiso and Schröer [5, Theorem 3.1], $E^{[n]}$ has a Calabi-Yau manifold X as the universal covering space $\pi : X \to E^{[n]}$ of degree 2. Let $\mu : K \to E$ be the universal covering space of E where K is a K3 surface, S_K the pullback of $\Delta_E^{(n)}$ by the morphism

$$\mu^{(n)}: K^{(n)} \ni [(x_1, \dots, x_n)] \mapsto [(\mu(x_1), \dots, \mu(x_n))] \in E^{(n)}.$$

Then we get a 2^n -sheeted unramified covering space

$$\mu^{(n)}|_{K^{(n)}\setminus S_K}: K^{(n)}\setminus S_K \to E^{(n)}\setminus \Delta_E^{(n)}.$$

Furthermore, let Γ_K be the pullback of S_K by natural projection $p_K : K^n \to K^{(n)}$. Since Γ_K is an algebraic closed set with codimension 2, then

$$\mu^{(n)} \circ p_K : K^n \backslash \Gamma_K \to E^{(n)} \backslash \Delta_E^{(n)}$$

is the $2^n n!$ -sheeted universal covering space. Since $E^{[n]} \setminus D_E = E^{(n)} \setminus \Delta_E^{(n)}$ where $D_E = \pi_E^{-1}(\Delta_E^{(n)})$, we regard the universal covering space $\mu^{(n)} \circ p_K : K^n \setminus \Gamma_K \to E^{(n)} \setminus \Delta_E^{(n)}$ as the universal covering space of $E^{[n]} \setminus D_E$:

$$\mu^{(n)} \circ p_K : K^n \backslash \Gamma_K \to E^{[n]} \backslash D_E.$$

Since $\pi: X \setminus \pi^{-1}(D_E) \to E^{[n]} \setminus D_E$ is a covering space and $\mu^{(n)} \circ p_K: K^n \setminus \Gamma_K \to E^{[n]} \setminus D_E$ is the universal covering space, there is a morphism

$$\omega: K^n \setminus \Gamma_K \to X \setminus \pi^{-1}(D_E)$$

such that $\omega: K^n \setminus \Gamma_K \to X \setminus \pi^{-1}(D_E)$ is the universal covering space and We denote the covering transformation group of $\pi \circ \omega$ by:

$$G := \{ g \in \operatorname{Aut}(K^n \setminus \Gamma_K) : \pi \circ \omega \circ g = \pi \circ \omega \}.$$

Then G is of order $2^n . n!$, since $\deg(\mu^{(n)} \circ p_K) = 2^n . n!$. Let σ be the covering involution of $\mu : K \to E$, and for

$$1 \le k \le n, \ 1 \le i_1 < \dots < i_k \le n$$

we define automorphisms $\sigma_{i_1...i_k}$ of K^n by following. For $x = (x_i)_{i=1}^n \in K^n$,

the j-th component of
$$\sigma_{i_1...i_k}(x) = \begin{cases} \sigma(x_j) & j \in \{i_1, \cdots, i_k\} \\ x_j & j \notin \{i_1, \cdots, i_k\} \end{cases}$$

Then $S_n \subset G$, and $\{\sigma_{i_1...i_k}\}_{1 \leq k \leq n, 1 \leq i_1 < ... < i_k \leq n} \subset G$. Let H be the subgroup of G generated by S_n and $\{\sigma_{ij}\}_{1 \leq i < j \leq n}$.

We put

$$K_{*\mu}^n := (\mu^n)^{-1}(E_*^n),$$

where $\mu^n : K^n \ni (x_i)_{i=1}^n \mapsto (\mu(x_i))_{i=1}^n \in E^n$. Recall that $\mu : K \to E$ the universal covering with σ the covering involution. We further put

$$T_{*\mu ij} := \{ (x_l)_{l=1}^n \in K_{*\mu}^n : \sigma(x_i) = x_j \},$$

$$\Delta_{K*\mu ij} := \{ (x_l)_{l=1}^n \in K_{*\mu}^n : x_i = x_j \},$$

$$T_{*\mu} := \bigcup_{1 \le i < j \le n} T_{*\mu i,j}, \text{ and}$$

$$\Delta_{K*\mu} := \bigcup_{1 \le i < j \le n} \Delta_{K*\mu i,j}.$$

By the definition of $K_{*\mu}^n$, H acts on $K_{*\mu}^n$, and by the definition of $\Delta_{K*\mu}$ and $T_{*\mu}$, we have $\Delta_{K*\mu} \cap T_{*\mu} = \emptyset$.

The universal covering map μ induces a local isomorphism

$$\mu_*^{[n]} : \operatorname{Blow}_{\Delta_{K*\mu} \cup T_{*\mu}} K_{*\mu}^n / H \to \operatorname{Blow}_{\Delta_{E*}^n} E_*^n / \mathcal{S}_n = E_*^{[n]}.$$

Here $\operatorname{Blow}_A B$ is the blow up of B along $A \subset B$.

Proposition 0.2. $\mu_*^{[n]}$: $\operatorname{Blow}_{\Delta_{K*\mu}\cup T_{*\mu}}K_{*\mu}^n/H \to \operatorname{Blow}_{\Delta_{E*}^n}E_*^n/\mathcal{S}_n$ is the universal covering space, and $X \setminus \pi^{-1}(F_E) \simeq \operatorname{Blow}_{\Delta_{K*\mu}\cup T_{*\mu}}K_{*\mu}^n/H$.

Theorem 0.3. Let E be an Enriques surface, $E^{[n]}$ the Hilbert scheme of n points of E, $\pi: X \to E^{[n]}$ the universal covering space of $E^{[n]}$, and $n \ge 2$. Then there is a crepant resolution $\varphi_X: X \to K^n/H$ such that $\varphi_X^{-1}(\Gamma_K/H) = \pi^{-1}(D_E)$.

Proposition 0.4. For $n \geq 3$, the induced map $\rho^* : H^2(X, \mathbb{C}) \to H^2(X, \mathbb{C})$ is identity.

Recall that $\mu : K \to E$ is the universal covering of E where K is a K3 surface, and σ the covering involution of μ .

Proposition 0.5. Let E be an Enriques surface which does not have numerically trivial involutions, $E^{[n]}$ the Hilbert scheme of n points of E, $\pi: X \to E^{[n]}$ the universal covering space of $E^{[n]}$, ρ the covering involution of π , and $n \geq 3$. Let ι be an involution of X which acts on $H^2(X, \mathbb{C})$ as id, then $\iota = \rho$.

We suppose that E has numerically trivial involutions. By [4, Proposition 1.1], there is just one automorphism of E, denoted v, such that its order is 2, and v^* acts on $H^2(E, \mathbb{C})$ as id. For v, there are just two involutions of K which are liftings of v, one acts on $H^0(K, \Omega_K^2)$ as id, and another acts on $H^0(K, \Omega_K^2)$ as -id, we denote by v_+ and v_- , respectively. Then they satisfies $v_+ = v_- \circ \sigma$. Let $v^{[n]}$ be the automorphism of $E^{[n]}$ which is induced by v. For $v^{[n]}$, there are just two automorphisms of X which are liftings of $v^{[n]}$, denoted ς and ς' , respectively.

Lemma 0.6. For ς and ς' , one acts on $H^0(X, \Omega_X^{2n})$ as id, and another act on $H^0(X, \Omega_X^{2n})$ as -id.

We put $\varsigma_+ \in \{\varsigma, \varsigma'\}$ as acts on $H^0(X, \Omega_X^{2n})$ as id and $\varsigma_- \in \{\varsigma, \varsigma'\}$ as acts on $H^0(X, \Omega_X^{2n})$ as -id.

Proposition 0.7. Suppose E has numerically trivial involutions. Let $E^{[n]}$ be the Hilbert scheme of n points of E, $\pi : X \to E^{[n]}$ the universal covering space of $E^{[n]}$, ρ the covering involution of π , and $n \ge 3$. Let ι be an involution of Xwhich ι^* acts on $H^2(X, \mathbb{C})$ as id and on $H^0(X, \Omega_X^{2n})$ as -id, and $\iota \ne \rho$. Then we have $\iota = \varsigma_-$.

Theorem 0.8. Let E be an Enriques surface, $E^{[n]}$ the Hilbert scheme of n points of E, $\pi : X \to E^{[n]}$ the universal covering space of $E^{[n]}$, and $n \ge 3$. If X has a involution ι which ι^* acts on $H^2(X, \mathbb{C})$ as id, and $\iota \ne \rho$. Then E has a numerically trivial involution.

Since X and K^n/H are projective, K^n/H is a V-manifold, and π is a surjective, $\pi^* : H^{p,q}(K^n/H, \mathbb{C}) \to H^{p,q}(X, \mathbb{C})$ is injective

By [4, Proposition 1.1], there is just one automorphism of E, denoted v, such that its order is 2, and v^* acts on $H^2(E, \mathbb{C})$ as id. For v, there are just two involutions of K which are liftings of v, one acts on $H^0(K, \Omega_K^2)$ as id, and another acts on $H^0(K, \Omega_K^2)$ as -id, we denote by v_+ and v_- , respectively. Then they satisfies $v_+ = v_- \circ \sigma$. Let $v^{[n]}$ be the automorphism of $E^{[n]}$ which is induced by v. For $v^{[n]}$, there are just two automorphisms of X which are liftings of $v^{[n]}$, denoted ς and ς' respectively. Then they satisfies $\varsigma = \varsigma' \circ \sigma$, and each order of ς and ς' is 2. From 0.6, one acts on $H^0(X, \Omega_X^{2n})$ as id, and another act on $H^0(X, \Omega_X^{2n})$ as -id. We put $\varsigma_+ \in \{\varsigma, \varsigma'\}$ as acts on $H^0(X, \Omega_X^{2n})$ as id and $\varsigma_- \in \{\varsigma, \varsigma'\}$ as acts on $H^0(X, \Omega_X^{2n})$ as -id.

Theorem 0.9. Let E and E' be two Enriques surfaces, $E^{[n]}$ and $E'^{[n]}$ the Hilbert scheme of n points of E and E', X and X' the universal covering space of $E^{[n]}$ and $E'^{[n]}$, and $n \ge 3$. If $X \cong X'$, then $E^{[n]} \cong E'^{[n]}$, i.e. when we fix X, then there is just one isomorphism class of the Hilbert schemes of n points of Enriques surfaces such that they have it as the universal covering space. Furthermore if X = X', then $E^{[n]} = E'^{[n]}$.

Proof. For an involution of X which is the covering involution of some the Hilbert scheme of n points of Enriques surfaces acts on $H^2(X, \mathbb{C})$ as id, $H^0(X, \Omega_X^{2n})$ as -id, and $H^{2n}(X, \mathbb{C})^{2n-1,1}$ as -id. From Proposition 0.7, the automorphisms which acts on $H^2(X, \mathbb{C})$ as id, $H^0(X, \Omega_X^{2n})$ as -id, are only ρ and ς_- . From the definition of ς_- and Lemma 0.6, ς_- does not act on $H^{2n}(X, \mathbb{C})^{2n-1,1}$ as -id. Therefore an automorphism g of X which acts on $H^2(X, \mathbb{C})$ as id, $H^0(X, \Omega_X^{2n})$ as -id, and $H^{2n}(X, \mathbb{C})^{2n-1,1}$ as -id is the covering involution ρ of $X \to E^{[n]}$. Thus we have an argument.

References

- A. Beauville: Variétés Kähleriennes dont la première classe de Chern est nulle. J. Differential Geom. 18 (1983), no. 4, 755-782.
- B. Fantechi: Deformation of Hilbert schemes of points on a surface. Compositio Math. 98 (1995), 205-217.
- [3] S. Mukai: Numerically trivial involutions of Kummer type of an Enriques surface. (English summary) Kyoto J. Math. 50 (2010), no. 4, 889-902. 14J28 (14J50)
- [4] S. Mukai, Y. Namikawa: Automorphisms of Enriques surfaces which act trivially on the cohomology groups. Invent. Math. 77 (1984), no. 3, 383-397.
- [5] K. Oguiso, S. Schröer: Enriques Manifolds. J. Reine Angew. Math. 661 (2011), 215-235.
- [6] K. Oguiso: A question of Doctor Malte Wandel on automorphisms of the punctual Hilbert schemes of K3 surfaces. arXiv:1402.4228.