
Can One Hear the Shape of a Group?

Koji Fujiwara

Abstract The iso-spectrum problem for marked lengnth spectrum for Riemannian
manifolds of negative curvature has a rich history. We rephrased the problems for
metrics on discrete groups, discussed its connection to a conjecture byMargulis, and
proved some results for “total relatively hyperbolic groups” in Koji Fujiwara, Journal
of Topology and Analysis, 7(2), 345–359 (2015). This is a note from my talk on that
paper and mainly discuss the connection between Riemannian geometry and group
theory, and also some questions.
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1 Marked Length Spectrum

Let M be a closed Riemannian manifold of negative (or non-positive) sectional
curvature, and C the set of free homotopy classes of loops (i.e., closed curves) in M .
In negative curvature, each class g ∈ C is represented by a unique closed geodesic.
The marked length spectrum is a function � : C → R that assigns the length of the
closed geodesic, �(g), to g.

Burns and Katok [6] conjectured that � determines M up to isometry (themarked
length iso-spectrum problem). The answer is known in dimension two.

Theorem 1 (Otal [19]) The marked length spectrum determines a closed orientable
surface of negative curvature up to isometry.

Croke [7] generalized it to a setting of non-positive curvature in dimension two,
but in higher dimension, not much is known. Building up on the work by Besson-
Courtois-Gallot, Hamenstädt [15] proved
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Theorem 2 A negatively curved closed manifold with the same marked length spec-
trum as a negatively curved closed locally symmetric space M is isometric to M.

Let’s look at the marked length spectrum from the view point of group action. We
view the marked length spectrum as a function � : π1(M) → R that is constant on
each conjugacy class.

Let M̃ be the universal cover of M , and π1(M) act on M̃ by isometries, preserving
the distance d, as a Deck group. Each non-trivial element g ∈ π1(M) has a unique
invariant (Riemannian) geodesic γ (g) ⊂ M̃ that maps to the closed geodesic in M
for g. Pick a point x0 ∈ γ (g), then d(x0, g(x0)) = �(g).

The translation length of g, denoted by τ(g) is defined by

τ(g) = lim
n→∞

d(x, gn(x))

n

for a point x ∈ M̃ . τ(g) does not depend on the choice of x by the triangle inequality.
Now since M has negative curvature (non-positive curvature suffices), γ (g) is a

distance minimizing path in M̃ , therefore τ(g) = �(g) for each g.
So, we rephrase the marked length iso-spectrum problem as “does the translation

length function τ on π1(M) determine M up to isometry?”

2 Coarsely Isometric Metrics and Conjecture by Margulis

Let G be a group and d a left-invariant pseudo metric on G. We write a =C b if
|a − b| ≤ C . Two pseudo metrics d1, d2 on a space X are coarsely equal if there
exists C > 0 such that

d1(x, y) =C d2(x, y), ∀x, y ∈ X (1)

From now on we assumeG is finitely generated.We say that two left invariant proper
pseudo metrics d1, d2 on G are asymptotically isometric if

lim
g→∞

d1(1, g)

d2(1, g)
= 1 (2)

Here, by a proper metric, we mean that there are only finitely many elements g ∈ G
with d(1, g) ≤ K for each K > 0. Then d1(1, g) → ∞ ⇔ d2(1, g) → ∞, and by
g → ∞ we mean that d1(1, g) → ∞.

Clearly (1) implies (2). Margulis conjectured that (2) implies (1), therefore (2) is
equivalent to (1), [18]. He verified the equivalence in a setting for reductive groups,
[1]. A metric space (X, d) is coarsely geodesic if there exists C > 0 such that for
any two points x0, x1 ∈ X there is a parametrized path x(t), 0 ≤ t ≤ a such that
d(x(t), x(s)) =C |s − t | for all s, t ∈ [0, a].
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Theorem 3 On the following groups, any two asymptotically isometric, proper,
coarsely geodesic pseudo metrics are coarsely equal:

1. Z
n (Burago [5])

2. H3(Z) (Krat [16])
3. Hyperbolic groups (Krat [16])

H3(Z) is the discrete Heisenberg group. Hyperbolic groups (in the sense of
Gromov) form a wide class of groups that has been extensively studied in geo-
metric group theory. We do not give a definition (see for example [4]) but list some
examples.

Example 1 (Hyperbolic group) Examples of hyperbolic groups:

• Free groups
• The fundamental groups of closed Riemannian manifolds of negative sectional
curvature.

• Uniform lattices in semi-simple Lie groups of rank-1, i.e., SO(n, 1), SU (n, 1),
Sp(n, 1), F4.

Examples of groups that are not hyperbolic:

• Z
n, n > 1. More generally a group that contains Z2 as a subgroup.

• Non-uniform lattices in SO(n, 1), n > 2; SU (n, 1), n > 1; Sp(n, 1); F4. For
example, the fundamental group of a complete, non-compact Riemannian mani-
fold of sectional curvature = −1, of finite volume, of dimension at least 3.

By now a counter example to the conjecture by Margulis is given by Breuillard.

Theorem 4 ([2]) On H3(Z) × Z, there are two (word) metrics that are asymptoti-
cally isometric but not coarsely equal.

Given a left invariant metric d on G, define

s�d(g) = lim
n→∞

d(1, gn)

n

s�d : G → R is called the (stable) length function. The limit always exists since d
is left invariant. It is easy to see that if two left invariant proper metrics d1, d2 on G
are asymptotically isometric, then

s�d1 = s�d2 (3)

In [10] two metrics that satisfy (3) are called weakly asymptotic. To summarize the
straightforward implication,

(1) ⇒ (2) ⇒ (3)

We ask a question that is analogous to the marked length iso-spectrum problem:
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Question 1 If two left invariant, proper, coarsely geodesic, pseudo metrics on a
(finitely generated) group have same length functions, are they coarsely equal?, i.e.,
(3) ⇒ (1)?

The answer is yes for the following groups:

• Z
n (Burago [5]. It is implicit in the paper, see [10])

• Hyperbolic groups (Furman [12])

The main result of [10], Theorem 3.1, is

Theorem 5 Let G be a toral relatively hyperbolic group, d1 a proper geodesic
metric, and d2 a proper, coarsely geodesic metric on G. If they have the same stable
length function, then they are coarsely equal.

The theorem recovers the case of hyperbolic groups (our argument is different from
[12]), but we use a variant of the theorem by Burago on Z

n .
We do not give the definition of toral relatively hyperbolic groups, but discuss an

example. In a way, it is a hybrid of hyperbolic groups and Z
n . Let G be a lattice in

the Lie group SO(n, 1), n > 1. If G is a uniform lattice, then it is hyperbolic, while
a non-uniform lattice is not hyperbolic if n > 2, but is a toral relatively hyperbolic
group. So, given a proper geodesic metric d on a lattice in SO(n, 1), the length
function s�d determines d up to a constant (i.e., such metrics are coarsely equal to
each other).

It is natural to ask

Question 2 If d1, d2 are proper, (coarsely) geodesic metric on a lattice G in SU (n, 1)
such that s�d1 = s�d2 , then are they coarsely equal?

If G is a uniform lattice, then it is hyperbolic and the answer is yes. If G is a
non-uniform lattice with n > 1 then it contains (non-abelian) nilpotent subgroups.
In particular G is not a toral relatively hyperbolic group. As we said the implication
(3) ⇒ (1) does not hold in general for nilpotent groups, but it is reasonable to expect
the implication holds for a class of nilpotent groups (Heisenberg groups) that appears
as subgroups in lattices of SU (n, 1). We can ask the same question for Sp(n, 1), F4.

Wemention another settingwhere the length function determines the group action.
An R-tree is a metric space in which any two points are joined by a unique arc and
this arc is a geodesic. A group action isminimal if there is no proper invariant subtree.

Theorem 6 (Culler-Morgan [8]) Let T1, T2 be R-trees. Assume a group G acts on
each of them by isometries such that actions are minimal and semi-simple. If they
have the same (translation/stable) length function on G then there is a G-equivariant
isomerty from T1 to T2.

The assumption that actions are semi-simple is not so restrictive, see [8] for the
definition. On a tree (T, d), we have τ(g) = s�d(g) for each g.
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3 Marked Length Iso-spectrum and (1,C)-Quasi-isometry

Let’s go back to the marked length iso-spectrum problem. Let M be a closed Rie-
mannian manifold, π1(M) its fundamental group and M̃ its universal cover with a
metric d defined by the Riemannian metric.

Fix a point x ∈ M̃ and define a metric dx on π1(M) by dx (g, h) = d(g(x), h(x)).
dx is a proper, coarsely geodesic metric. For any another point y ∈ M̃ , dx and dy
are coarsely equal. Indeed for C = 2d(x, y), we have dx =C dy . It follows that
s�dx = s�dy . So we suppress the point x and write the length function on π1(M) by
s�d .

Then as a function on π1(M),
τ = s�d

To see it, fix a point x ∈ X then

τ(g) = lim
n→∞

d(x, gn(x))

n
= lim

n→∞
dx (1, gn)

n
= s�dx (g) = s�d(g)

Now assume that M has negative curvature. Then we also know � = τ . (In general
we only know τ ≤ � since maybe γ (g) is not distance minimizing on M̃) In other
words, in this setting, the assumption in the marked length iso-spectrum problem
and the assumption in Question 1 are equivalent.

Let (X1, d1), (X2, d2) be two metric spaces such that G acts on by isometries. A
G-equivariant map f : X1 → X2 is a (1,C)-quasi-isometry for a constant C ≥ 0 if
for any x, y ∈ X1, we have d(x, y) =C d( f (x), f (y)). Using this terminology, that
two metrics d1, d2 on X are coarsely equal is rephrased as that the identity map is a
(1,C)-quasi-isometry (for some C > 0).

Remark 1 A stronger conclusion of Theorem 4 is known. On H3(Z) × Z, there are
two (word) metrics that are asymptotically isometric but not (1,C)-quasi-isometric
for any C , [3].

Here is a consequence of Theorem5 that is most relevant to this paper.

Corollary 1 ([10, Corollary4.2]) Let (M1, d1), (M2, d2) be closed Riemannian
manifolds of non-positive curvature with the isomorphic fundamental group G that
is toral relatively hyperbolic. Assume they have the same marked length spectrum.
Then there is a G-equivariant (1,C)- quasi-isometry map f : M̃1 → M̃2.

Notice that if C = 0 then M1 and M2 are isometric, that would solve the marked
length iso-spectrumproblem.Aswe said the length function determines ametric up to
a constant on hyperbolic groups, so we can rephrase the marked length iso-spectrum
problem as follows (cf. [12]):

Question 3 Let M be a closed manifold and d1, d2 Riemannian metrics of nega-
tive curvature (or, more generally, d1, d2 have non-positive curvature and π1(M) is
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toral relatively hyperbolic). Assume that there is a π1(M)-equivariant (1,C)-quasi-
isometry map between the universal covers (M̃, d1), (M̃, d2). Then are (M, d1),
(M, d2) isometric?

Here are two classes of examples of closed Riemannian manifolds of non-positive
curvature whose fundamental groups are toral relatively hyperbolic.

Example 2 (Dehn filling)
Let M be a 4-dimensional, non-compact, complete hyperbolic (i.e., sectional

curvature = −1) manifold of finite volume. M has finitely many cusps and assume
that the cusp subgroups H1, . . . , Hn < π1(M) are isomorphic toZ3. Remove disjoint
open neighborhoods of the cusps from M and obtain a compact manifold M ′ with
boundary. Each boundary component is a 3-dimensional torus. To each boundary, we
glue a solid 3-dimensional torus along its boundary and obtain a closed manifold X .
It is known that by choosing a gluing map carefully, we can put various Riemannian
metrics of non-positive sectional curvature on X (see [Theorem 2.7, Remark 2.10]
[11]). This is called a Dehn filling of M . π1(X) is a quotient of π1(M) (killing an
infinite cyclic subgroup in each Hi ) and a toral relatively hyperbolic group. π1(X)

contains Z2 from each cusp.

Example 3 (Graphmanifolds) LetM be a 3-dimensional, orientable, complete, non-
compact, hyperbolic manifold of finite volume. As in the previous example, remove
disjoint open neighborhoods of the cusps and obtain a compact manifold M ′ with
boundary. Now prepare a copy of M ′, denoted by M ′′, make the boundary tori of
M ′, M ′′ into pairs, then glue two tori in each pair by a homeomorphism, that gives
a connected closed 3-manifold X . We can put various Riemannian metrics of non-
positive curvature on X (see [17]. In fact, the construction applies to a closed, irre-
ducible 3-manifold such that each piece of its JSJ-decomposition is atoroidal, i.e.,
hyperbolic). Then π1(X) is a toral relatively hyperbolic group.

In the above examples, if twometrics d1, d2 on X have samemarked length spectrum,
then by Corollary 1 there is a π1(X)-equivariant (1,C)-quasi-isometry between the
universal covers of X with respect to the two metrics. It would be very interesting to
know if (X, d1), (X, d2) are isometric.

4 Heisenberg Groups

As we said there is a counter example to the conjecture by Margulis using nilpo-
tent groups. Nilpotent groups are rich source of examples for the study of spectral
geometry.

Let Hn denote the n-dimensional Heisenberg group (n = 3, 5, 7, . . .). A Heisen-
berg manifold is of the form (G\Hn, g) where G is a (uniform) lattice in Hn and g
is a Riemannian metric that lifts to a left invariant metric on Hn .

Theorem 7 (Eberlein [9], cf. [13]) Heisenberg manifolds with the same marked
length spectrum are isometric.
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For the free homotopy class of a loop, maybe there is more than one closed geodesic,
so there is an issue to define themarked length spectrum � onC . See [9]. The function
� is different from the stable length and the translation length in general.

LetG be a simply connected nilpotent Lie group.G is strictly nonsingular if for all
z ∈ Z(G) and for all noncentral x ∈ G there exists a ∈ G such that axa−1x−1 = z.

For example, theHeisenberg group Hn is strictly nonsingular.Conversely, a simply
connected, strictly nonsingular, two-step nilpotent groupwith a 1-dimensional center
is Hn for some n. R × H3 is not strictly non-singular. Gornet [13, Example V in §4]
found a first example of a pair of Riemannian manifolds with the same marked
length spectrum, but not the same Laplace spectrum on one-forms (but the same
Laplace spectrum on functions), in particular, they are not isometric. The examples
are quotient by latticesG1,G2 in a simply connected, strictly nonsingular, three-step
nilpotent group.

In connection to Question 2 we ask

Question 4Let N be a simply connected, strictly nonsingular, nilpotent Lie group and
G a lattice. Let d1, d2 be proper, coarsely-geodesic, G-left invariant pseudo metrics
onG. If d1, d2 are asymptotically isometric (or with the same stable length function),
then are they coarsely equal?

In view of Theorem 4,

Question 5 Does the example V (or some other examples) in [13] give a counter
example to the conjecture by Margulis?

Acknowledgments I’d like to thank Emmanuel Breuillard for discussions.
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