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1 Introduction

We survey some results on quasi-homomorphism on mapping class groups from
the viewpoint of hyperbolic geometry in the sense of Gromov. Most of the
results in this chapter are shown both for word-hyperbolic groups and mapping
class groups by the same techniques. The mapping class group, MCG(S), of a
compact orientable surface S is typically not word-hyperbolic, but it acts on its
complex of curves C(S), which is δ-hyperbolic, [44]. The action is co-finite, but
not proper (otherwise, the mapping class would be word-hyperbolic). Another
aspect of the geometry of C(S) is that this space is not locally compact. Thanks
to the study of C(S) by Masur-Minsky [44] regarding the geometry of C(S), we
can apply the standard methods developed in the theory of word-hyperbolic
groups to MCG(S).

1.1 Quasi-homomorphisms

Definition 1.1 (Quasi-homomorphism). Let G be a group. A quasi-homomorphism
is a function f : G → R such that

D(f) = sup
a,b∈G

|f(a) + f(b) − f(ab)| < ∞.

D(f) is called the defect of f . If a quasi-homomorphism satisfies f(an) = nf(a)
for all a ∈ G and n, it is said homogeneous. We denote the vector space of all
homogeneous quasi-homomorphisms on G by HQH(G).

Quasi-homomorphisms are also called quasimorphisms (for example in [3],[16]).
If f is a quasi-homomorphism on G, then one can obtain a homogeneous quasi-
homomorphism f̄ as follows:

f̄(a) = lim
n→∞

f(an)

n
.

Note that the limit exists since the sequence {f(an)} is subadditive with
bounded error. For any a ∈ G, |f(a)− f̄(a)| ≤ D(f), [3, Prop 3.3.1]. Namely, a
quasi-homomorphism f is (uniquely) written as sum of a homogeneous quasi-
homomorphism f̄ and a bounded function. The defect D(f̄) is related to D(f)
by

D(f̄) ≤ 4D(f).

If f is a homogeneous quasi-homomorphism, then it is easy to check that
for all a, b ∈ G, f(aba−1) = f(b), and therefore |f([a, b])| ≤ D(f). It turns out
that there is an equality ([3, Lemma 3.6])

sup
a,b∈G

|f([a, b])| = D(f).
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Therefore, a homogeneous quasi-homomorphism f is a homomorphism if and
only if f = 0 on [G, G], where [G, G] is the commutator subgroup of G.

The following result follows from a result on bounded cohomology (see
section 1.3).

Theorem 1.2 (Cor 1 [3]). Suppose that G is an amenable group. Then, a
homogeneous quasi-homomorphism on G is a homomorphism.

Let V(G) be the vector space of all quasi-homomorphisms G → R. We
denote by BDD(G) and HOM(G) = H1(G; R) the subspaces of V(G) con-
sisting of bounded functions and respectively homomorphisms. Note that
BDD(G) ∩ HOM(G) = 0. We will be concerned with the quotient spaces

QH(G) = V(G)/BDD(G)

and

Q̃H(G) = V(G)/(BDD(G) + HOM(G)) ∼= QH(G)/H1(G; R).

f ∈ V(G) defines f̄ ∈ HQH(G). This implies that QH(G) ∼= HQH(G), there-

fore Q̃H(G) ∼= HQH(G)/H1(G; R). Theorem 1.2 says Q̃H(G) is trivial if G is
amenable.

1.2 Stable commutator length

Let G be a group. Given g ∈ [G, G], the commutator length of g, denoted by
cl(g), is the least number of commutators in G whose product is equal to g.
Namely, min l = cl(g) such that ai, bi ∈ G and

g = [a1, b1] · · · [al, bl].

The stable commutator length, denoted by scl(g), is defined by

scl(g) = lim inf
n→∞

cl(gn)

n
.

Note that cl and scl are class functions, namely, they are constant on each
conjugacy class in G. The function scl is defined whenever some power of g is
contained in [G, G]. By convention, we may extend scl to all of G by setting
scl(g) = ∞ if no power of g is contained in [G, G].

The following fact [3, Lemma 1.1] already appears in [47].

Proposition 1.3. Let f : G → R be a homogeneous quasi-homomorphism. If
f(a) = 1 for a ∈ [G, G] then 1

2D(f) ≤ scl(a).

Proof. Since f(a) = 1, f is not a homomorphism, therefore D(f) > 0. Denote
D(f) by D. For n > 0, put l(n) = cl(an). an is a product of l(n) commutators,
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ci, in G. Since f is a quasi-homomorphism,

n = f(an) ≤ |f(c1)| + · · · + |f(cl(n))| + (l(n) − 1)D.

Since f is homogeneous, |f(ci)| ≤ D for all i, therefore n ≤ (2l(n) + 1)D.

Thus, 1
D

≤ 2l(n)+1
n

for all n > 0. Letting n → ∞, we obtain 1
2D

≤ scl(a).
Quasi-homomorphisms and stable commutator length are related by Bavard’s

Duality Theorem in a more precise way ([3]):

Theorem 1.4 (Bavard’s Duality Theorem). Let G be a group and a ∈ [G, G].
If HQH(G) = H1(G; R) then scl(a) = 0. Otherwise, we have an equality

scl(a) =
1

2
sup

φ∈HQH(G)\H1(G;R)

|φ(a)|

D(φ)
.

The argument is based on the Hahn-Banach theorem. In particular, the
quasi-homomorphisms promised by Bavard’s theorem are typically non con-
structive.

By Theorems 1.4 and 1.2, if G is amenable, then scl = 0 on [G, G]. On the
other hand, if F (a, b) is a free group with two free generators a, b, then for any
1 6= g ∈ [F, F ], scl(g) ≥ 1/6 ([18, Cor 3.3]).

A group G is called perfect if G = [G, G] and uniformly perfect if G is
perfect and cl is bounded on G, which implies that scl = 0. It is known that
SLn(Z) is uniformly perfect if n ≥ 3 (cf. [2]).

We discuss the stable commutator length in the section 7 in connection to
hyperbolicity.

1.3 Bounded cohomology

To define the bounded cohomology group ([29]) of a discrete group G, let

Ck
b (G; R) = {f : Gk → R | f has bounded range}

The boundary δ : Ck
b (G; R) → Ck+1

b (G; R) is given by

δf(g0, . . . , gk) = f(g1, . . . , gk) +
k∑

i=1

(−1)if(g0, . . . , gi−1gi, . . . , gk)

+(−1)k+1f(g0, . . . , gk−1).

The cohomology of the complex {Ck
b (G; R), δ} is the bounded cohomology group

of G, denoted by H∗
b (G; R). See [29], [38], [49] as general references for the

theory of bounded cohomology. H1
b (G; R) is trivial for any group G, and

Hn
b (G; R) is trivial for all n ≥ 1 if G is amenable.
By definition, for each n, there is a natural homomorphism, sometimes

called comparison map, Hn
b (G; R) → Hn(G; R). An element f ∈ QH(G)
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defines a bounded class [δf ] ∈ H2
b (G; R). There is an exact sequence ([3])

0 → H1(G; R) → QH(G) → H2
b (G; R) → H2(G; R).

Since Q̃H(G) is the quotient QH(G)/H1(G; R), we see that Q̃H(G) can also be
identified with the kernel of H2

b (G; R) → H2(G; R). It follows from Theorem
1.4 that the kernel is trivial if G is uniformly perfect, [45].

If G → G′ is an epimorphism then the induced maps QH(G′) → QH(G)

and Q̃H(G′) → Q̃H(G) are injective.

Calculations of Q̃H(G) have been made for many groups G. In many cases

Q̃H(G) is either 0 or infinite dimensional. We remark that there exists a group
G such that H2

b (G; R) is nontrivial and finite dimensional ([14, Remark 25]).
If G is finitely generated by k elements, then H1(G; R) is at most k-

dimensional, therefore Q̃H(G) is infinite dimensional if QH(G) is infinite di-
mensional (cf. Theorem 5.1).

As we said, if G is amenable then H2
b (G; R) = 0 ([29]), therefore the kernel

of H2
b (G; R) → H2(G; R) is trivial. In other words, HQH(G) = Q̃H(G) = 0.

This is indeed how Theorem 1.2 is shown in [3]. Q̃H(G) also vanishes when
G is an irreducible lattice in a semisimple Lie group of real rank > 1 [13]
(Theorem 4.1).

2 Brooks’ counting quasi-homomorphism on free groups

Our first example of a group G such that Q̃H(G) is non trivial is a free group.

Theorem 2.1 ([12]). Suppose F is a free group of rank at least two. Then,

Q̃H(F ) is an infinite dimensional vector space over R.

We explain Brooks’ construction of a quasi-homomorphism f on F which
is non-trivial in Q̃H(F ). For simplicity suppose the rank of F is two and let
x, y be free generators of F . Fix a reduced word w on x, y. Any element
1 6= a ∈ F is uniquely written as a (non-empty) reduced word on x, y, which
we also denote by a. Define |a|w to be the maximal number of times that w
can be seen as an (oriented) subword of a without overlapping.

Example 2.2. |xyxyx|xy = 2. |xyxyx|xyx = 1. |xxyxy|yx = 1.

Let w−1 be the reduced word which is the inverse of w as a group element.
Define hw(a) = |a|w − |a|w−1 . hw is a function on F . The following says that
hw is a quasi-homomorphism.

Lemma 2.3. D(hw) ≤ 3
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1

a

ab

w

w
w

Figure 1. At most three subwords w count for δhw(a, b). The other pairs of
subwords w cancel for δhw (not necessarily for δcw and δc

w
−1).

To see this, let a, b ∈ F . We think of them as reduced words too. Let a·b be
the word which we obtain by placing the word b after a. This word represents
the group element ab, but may be not reduced. If the word is reduced, we see

||a · b|w − |a|w − |b|w| ≤ 1, ||a · b|w−1 − |a|w−1 − |b|w−1 | ≤ 1.

Therefore |hw(ab) − hw(a) − hw(b)| ≤ 2. In general, a · b is not reduced, and
each function | · |w, | · |w−1 on F is not a quasi-homomorphism. One verifies
that hw is a quasi-homomorphism by writing a = a′ · c, b = c−1 · b′ such that
a′, b′, c are reduced, therefore the above inequalities apply to a = a′ · c and
b = c−1 · b′ (Use |c|w = |c−1|w−1). From this, one easily gets D(hw) ≤ 6 and
indeed D(hw) ≤ 3 as Figure 1 shows.

Suppose w is cyclically reduced, namely, wn(n > 0) is reduced. Then,
|wn|w = n for all n > 0. On the other hand, |wn|w−1 = 0, therefore hw(wn) =
n for all n > 0. We find that hw is non-trivial in QH(F ). If we take w to
represent an element in [F, F ], then we obtain from hw a non-trivial element

in Q̃H(F ). For example, one can take w = xyx−1y−1. Moreover we can find a
sequence of reduced and cyclically reduced words wi such that hwi

are linearly

independent in Q̃H(F ). This shows Theorem 2.1.
We remark that Lemma 2.3 and Proposition 1.3 give a uniform positive

lower bound of scl(a) for any 1 6= a ∈ [F, F ]. To see this, since scl is invariant
by taking conjugates, one may assume that a, as a reduced word, is shortest
among its conjugates. Then the word a is cyclically reduced, therefore D(ha) ≤
3. Then D(ha) ≤ 12 and ha(a) = 1. By Proposition 1.3, scl(a) ≥ 1

24 . As we
said, Culler [18] shows that scl(a) ≥ 1

6 .
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3 Delta-hyperbolicity and quasi-homomorphism

The construction of quasi-homomorphisms by Brooks has been generalized to
the δ-hyperbolic setting. δ-hyperbolic geometry, or the hyperbolic geometry
in the sense of Gromov, was invented by Gromov [28]. We only give a few
basic definitions and facts. See for example [10].

Definition 3.1 (δ-hyperbolic space, δ-thin, word-hyperbolic group). Let X
be a geodesic metric space and δ ≥ 0. We say that X is δ-hyperbolic if for
any points a, b, c of X , and any geodesic segments [a, b], [b, c] and [c, a], the
segment [a, b] is contained in the δ-neighborhood of the union of [b, c] and [c, a]
(then the geodesic triangle [a, b] ∪ [b, c] ∪ [c, a] is said δ-thin). Note that a
geodesic between two points a, b is not unique, but we denote it by [a, b]. If X
is δ-hyperbolic, then the Hausdorff distance of any two geodesics between a, b
is at most δ.

Let G be a finitely generated group with a fixed set of generators, and let
Γ be its Cayley graph. We say G is word-hyperbolic if Γ is δ-hyperbolic for
some δ.

If a geodesic space X is quasi-isometric (cf.[10]) to a geodesic space which
is δ-hyperbolic, then there exists δ′ ≥ 0 such that X is δ′-hyperbolic. As a
consequence, the word-hyperbolicity of a finite generated group, G, does not
depend on the choice of a set of generators since the Cayley graphs of G for
two sets of generators are quasi-isometric to each other.

Clearly, finite groups and Z are word-hyperbolic. If G contains an infinite
cyclic subgroup of finite index, then G is quasi-isometric to Z (to be precise,
the Cayley graphs of those two groups are quasi-isometric to each other),
therefore, G is word-hyperbolic. A group which contains a cyclic subgroup of
finite index is called an elementary word-hyperbolic group.

Definition 3.2 (Quasi-geodesic). Let X be a geodesic space. Let I be an
interval of R (bounded or unbounded). A (K, ǫ)-quasi-geodesic in X is a map
α : I → X such that for all t, s ∈ I

|t − s|

K
− ǫ ≤ d(α(t), α(s)) ≤ K|t − s| + ǫ.

We may denote the image of α by α.

The following fact, sometimes called Morse Lemma, is important.

Proposition 3.3 (Stability of quasi-geodesics). (cf. [10, III.H. Theorem 1.7])
For all δ ≥ 0, ǫ ≥ 0, K ≥ 1 there exists L(δ, K, ǫ) with the following property:
If X is a δ-hyperbolic space, α is a (K, ǫ)- quasi-geodesic in X and [a, b] is
a geodesic segment joining the end points of α, then the Hausdorff distance
between [a, b] and the image of α is at most L.
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Definition 3.4 (Hyperbolic isometry). Let X be a δ-hyperbolic space. An
isometry a of X is called hyperbolic if there exist x ∈ X and a constant C > 1
such that

d(x, an(x)) ≥ Cn

for all n > 1.

Definition 3.5 (Translation length). If a is an isometry of a metric space X ,
the translation length of a, τ(a), is defined as follows. Let x ∈ X be a point
in X . Then,

τ(a) = lim inf
n→∞

d(x, an(x))

n
.

τ(a) does not depend on the choice of x.

A finitely generated group G acts on a Cayley graph of G by isometries.
It is an important fact that if G is word-hyperbolic, then each element a ∈ G
of infinite order acts as a hyperbolic isometry, [28]. Therefore, a has infinite
order if and only if τ(a) > 0 on the Cayley graph.

If a is a hyperbolic isometry, then there exists a quasi-geodesic α in X with
α = a(α). α is called a quasi-geodesic axis of a. It is not always true that α
can be taken to be a geodesic. It is known that if G is word-hyperbolic and
Γ is a Cayley graph, then there exists a constant P such that for any element
a ∈ G of infinite order, there exists a geodesic α such that aP (α) = α. (For
an argument, see for example [19]).

3.1 Word-hyperbolic groups

The following classification of subgroups in a word-hyperbolic group is a stan-
dard fact. We may regard it as a Tits alternative.

Theorem 3.6 (cf [10]). Let H be a subgroup of a word-hyperbolic group G.
Then one of the following holds.

(1) H contains a free group of rank two.

(2) H contains a cyclic group as a subgroup of finite index.

A subgroup H of the second type in Theorem 3.6 is called elementary. In
other words, H is elementary if it is finite, or if it contains Z as a subgroup of
finite index. Note that a subgroup of a word-hyperbolic group is not necessarily
word-hyperbolic. N.Brady constructed an example of a word-hyperbolic group
which contains a finitely presented non-word-hyperbolic subgroup.

The following theorem is a generalization of Theorem 2.1 since a free group
of rank at least two is a non-elementary word-hyperbolic group.
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α
w

1

a

Figure 2. |α|w = 3

Theorem 3.7 ([19]). Let G be a non-elementary word-hyperbolic group. Then,

Q̃H(G) is infinite dimensional.

Remark 3.8. The argument in [19] shows that if H is a non-elementary

subgroup of a word-hyperbolic group, then Q̃H(H) is infinite dimensional. H
may not to be word-hyperbolic.

The argument for Theorem 3.7 is based on a generalization of the construc-
tion of quasi-homomorphisms, counting functions, by Brooks that we explain
in section 2. We outline the argument. See [19], [24] or [6] for more details.

Suppose G is a group with a fixed symmetric generating set S, and Γ =
ΓS(G) is its Cayley graph. Let w be a (reduced) word in the generating set.
Let α be a (directed) path in Γ, and |α| its length. Define |α|w to be the
maximal number of times that w can be seen as an (oriented) subword of
α without overlapping (see Example 2.2 and Figure 2). An (oriented) path
labeled by w is called a copy of w.

The path α represents an element in G, which we denote by ᾱ. We can
uniquely identify α and the path in Γ from 1 to ᾱ with the label by α. In
general, for an element a ∈ G, there is more than one geodesic, therefore
reduced, path α in Γ from 1 to a. It is natural to define |a|w = max |α|w such
that α runs through all geodesics with ᾱ = a, but indeed we need to modify
the definition to have something similar to Lemma 2.3.

Let 0 < W < |w| be a constant. For x, y ∈ Γ, define

cw,W (x, y) = d(x, y) − inf
α

(|α| − W |α|w),

where α ranges over all the paths from x to y. If the infimum is attained by
α, we say α is a realizing path for cw,W from x to y. If γ is a geodesic from x
to y, then define c(γ) = c(x, y).

Fix a point x ∈ Γ. (We may take x = 1.) Define for a ∈ G

cw,W (a) = cw,W (x, a(x)).
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1 w
n

w

w

Figure 3. copies of w with the opposite direction do not fit in the L-
neighborhood of a geodesic from 1 to wn.

cw,W is called the counting function for the pair (w, W ). Let w−1 denote the
inverse word of w. We define

hw,W = cw,W − cw−1,W .

In [19], the normalization W = 1 is used. This is an appropriate choice of
constant when w∗ := · · ·wwww · · · is a bi-infinite geodesic. Then w∗ is a
geodesic axis for w. In spirit, hw,1 is same as hw which is defined in Section 2
for free groups.

The following fact is not so difficult to prove. This does not require that Γ
is δ-hyperbolic.

Proposition 3.9 (cf. Lemma 3.3 [24], Prop 3.9 [19]). If α is a realizing path
for cw,W , then it is a (K, ǫ)-quasigeodesic, where

K =
|w|

|w| − W
, ǫ =

2W |w|

|w| − W
.

Since Γ is δ-hyperbolic, Proposition 3.3 applies to realizing paths. Let L =

L
(
δ, |w|

|w|−W
, 2W |w|
|w|−W

)
. Let α be a geodesic from x to y. From Proposition 3.9

we deduce that a realizing path for α must be contained in the L-neighborhood
of α. Consequently, if the L-neighborhood of α does not contain a copy of w,
then cw,W (α) = 0.

Remark 3.10. We will use this fact later in our argument to avoid “reverse
counting”. Roughly speaking, let w be a word such that wn is a geodesic.
Then, for n > 0,

cw,W (wn) ≥ Wn

because |wn|w = n.
Suppose the L-neighborhood of wn does not contain a copy of w−1 (see

Figure 3). Here we are thinking of the L-neighborhood of wn, for large n,
like a long narrow tube whose core has a definite orientation, agreeing with
the orientation on w. By “a copy of w−1”, we mean a copy of w whose ori-
entation disagrees with that of the core of the tube. We will find a necessary
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and sufficient algebraic condition for w̄ to satisfy regarding this combinato-
rial/geometric property (see Condition 6.2, cf. Example 3.12).

It follows that cw−1,W (wn) = 0 because for a realizing path α for cw−1,W

at wn we must have |α|w−1 = 0. We thus obtain for all n > 0 an inequality
hw,W (wn) ≥ nW .

Consider a triangle of realizing paths. We have observed that it is L-close
to a geodesic triangle, which is δ-thin. Therefore the triangle of realizing paths
is (δ + 2L)-thin. The following inequality on the defect then follows. This is
an analogue of Lemma 2.3. The argument is same in spirit.

Proposition 3.11 (cf. Prop 3.10 [24], Prop 2.13 [19]).

D(hw,W ) ≤ 12L + 6W + 48δ.

Note that the defect only depends on |w|, W and δ. If we take W = 1,
then L depends only on δ if |w| ≥ 2. In particular, the upper bound in
Proposition 3.11 depends only on δ.

Although hw is unbounded if w is cyclically reduced in Section 2, hw,W

may be bounded.

Example 3.12. Let G = 〈a, b|a2 = b2 = 1〉 ∼= Z2 ∗ Z2. The group G is
an elementary word-hyperbolic group. Since G is generated by torsion ele-
ments a, b, there is no non-trivial homomorphism. It follows that any quasi-
homomorphism is bounded (use Theorem 1.2. G is amenable).

Indeed, this conclusion can be thought of as a consequence of an algebraic
property. Let h be a homogeneous quasi-homomorphism. To see h(w) = 0
for all w, we may assume that w is either a, b or (ab)n since w is conjugate to
one of those. h(a) = h(b) = 0 since a = a−1, b = b−1. Since ab is conjugate
to ba = (ab)−1 by a, h(ab) = 0. What is essential in this argument is the
algebraic property that (ab)n is conjugate to (ab)−n. We will state this as
an axiom in Condition 6.2. This property can be thought of as a dynamical
property concerning the action of G on its Cayley graph. Namely, the points
(ab)n are on a geodesic axis α for the action of ab, which is flipped by a to α
with the opposite direction.

The following result (cf. [19], and [6] for WPD-actions) guarantees that
there are many choices w such that hw,1 are unbounded quasi-homomorphisms.
We already know that G contains a (quasi-convex) free group F of rank two by
Theorem 3.6. Proposition 3.13 says that one can take F to satisfy an additional
dynamical property (no flip of an axis), which is explained in Example 3.12.
This property is critical to show (2). See Remark 3.10. For the counting func-
tions cw,1, cw−1,1 for 1 6= w ∈ F to make sense, we take a geodesic path/word
from 1 to w, which we also denote w. For the definition of quasi-convexity, see
[28], [10].
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Proposition 3.13. Let G be a non-elementary word-hyperbolic group. Then
there exist a quasi-convex subgroup F < [G, G] which is isomorphic to a rank-
two free group and a constant D such that for each non-trivial element w ∈ F
we have the following:

(1) cw,1(w
n) ≥ n/2 for all n > 0.

(2) cw−1,1(w
n) = 0 for all n > 0.

(3) D(hw,1) ≤ D, where hw,1 = cw,1 − cw−1,1.

In particular, hw,1 is an unbounded quasi-homomorphism. Moreover, one
can show (see [19]) that there is a sequence of elements wi ∈ F such that
the corresponding quasi-homomorphisms hi are linearly independent. This
proves Theorem 3.7. Since w ∈ [G, G], it follows that h̄ ∈ HQH(G) is not a
homomorphism.

3.2 Mapping class groups and curve complexes

We apply the construction of quasi-homomorphisms in Section 3.1 to mapping
class groups.

Let S be a compact orientable surface of genus g and p punctures. The map-
ping class group of S, MCG(S), is the group of isotopy classes of orientation-
preserving homeomorphisms S → S. This group acts on the curve complex
C(S) of S defined by Harvey [35] and successfully used in the study of map-
ping class groups by Harer [34], [33]. For our purposes, we will restrict to
the 1-skeleton of Harvey’s complex, so that C(S) is a graph whose vertices are
isotopy classes of essential, nonparallel, nonperipheral, simple closed curves
in S and two distinct vertices are joined by an edge if they can be realized
simultaneously by pairwise disjoint curves. If a non-empty (finite) collection
of vertices are realized simultaneously by pairwise disjoint curves, we call it
a curve system (or multi curve). (The actual curve complex of S is the flag
complex made from C(S), and it is quasi-isometric to C(S). A curve system
defines a simplex in the curve complex.)

In certain sporadic cases C(S) as defined above is 0-dimensional or empty.
This happens when there are no curve systems consisting of two curves, i.e.
when g = 0, p ≤ 4 and when g = 1, p ≤ 1. One could rectify the situation
by declaring that in those cases two vertices are joined by an edge if the
corresponding curves can be realized with only one intersection point.

The mapping class group MCG(S) acts on C(S) by a · [c] = [a(c)], where
a ∈ MCG(S) and [c] is the isotopy class of a simple closed curve c on S. A
classification of each element a in MCG(S) is known (cf [36, Section 7.1]):

(1) a has finite order.
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(2) There exists a curve system M on S such that the simplex that M
defines is invariant by a (maybe its vertices are permuted). Then a is
called reducible.

(3) a is not reducible and has infinite order. a is called pseudo-Anosov.

Two pseudo-Anosov elements a, b are called independent if the subgroup gen-
erated by a, b does not contain Z as a subgroup of finite index.

H. Masur and Y. Minsky proved the following remarkable result.

Theorem 3.14 ([44]). Let S be a nonsporadic surface. The curve complex
C(S) is δ-hyperbolic. An element of MCG(S) acts hyperbolically on C(S) if
and only if it is pseudo-Anosov .

It follows that a ∈ MCG(S) has positive (indeed, uniformly positive by [9])
translation length on C(S) (Definition 3.5) if and only if a is pseudo-Anosov .

Remark 3.15. Theorem 3.14 is generalized to a non-orientable surface [7].
When a surface S is non-orientable, we consider the group of isotopy classes of
all homeomorphisms S → S. This group is called the extended mapping class
group of S. When S is orientable, the extended mapping class group contains
MCG(S) as a subgroup of index two.

The action of MCG(S) on C(S) is not proper. We introduce the following
notion.

Definition 3.16 (WPD). We say that the action of G on a δ-hyperbolic space
X satisfies WPD (weak proper discontinuity) if

• G contains at least one element that acts on X as a hyperbolic isometry,
and

• for every hyperbolic element g ∈ G, for every x ∈ X , and for every
C > 0, there exists N > 0 such that the set

{γ ∈ G|d(x, γ(x)) ≤ C, d(gN (x), γgN (x)) ≤ C}

is finite.

Proposition 3.17 ([6]). Let S be a nonsporadic surface. The action of
MCG(S) on the curve complex C(S) satisfies WPD.

The following is a generalization of Theorem 3.7, which is the case when
the action of G on X is proper (and co-compact). As we point out in Remark
3.8, that the action is co-compact is not important.

Theorem 3.18 ([6]). Let X be a δ-hyperbolic space and suppose G acts on X
by isometry and WPD. If G contains a hyperbolic isometry and is not virtually
Z, then Q̃H(G) is infinite dimensional.
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The argument for Theorem 3.18 is similar to Theorem 3.7. To construct
counting functions on G using its action on X , we modify the definition of
counting functions (section 3.1) as follows. Let w be a path in X and call
a(w) for a ∈ G a copy of w. For a path α in Γ, define |α|w to be the maximal
number of disjoint oriented copies of w which can be obtained as subpaths
of α. All other definitions are the same as before. To find many elements w
which give unbounded quasi-homomorphisms, we prove something similar to
Proposition 3.13. This is where WPD is essentially used.

By Theorem 3.14 and Proposition 3.17, we can apply Theorem 3.18 to the
action of MCG(S) on C(S). We obtain the following. This settles Morita’s
conjectures 6.19 and 6.21 [52] in the affirmative.

Theorem 3.19 ([6]). Let S be a compact orientable surface. Suppose G <

MCG(S) is a subgroup. If G is not virtually abelian, then Q̃H(G) is infinite
dimensional.

In the argument for Theorem 3.19, we use the following classification of
subgroups of a mapping class group (see [46] ).

Theorem 3.20. Let G be a subgroup of the mapping class group of an ori-
entable surface S. Then one of the following holds:

(1) G contains two pseudo-Anosov elements which are independent. (Called
sufficiently large.) Then, G contains a free group of rank two.

(2) G contains Z as a subgroup of finite index.

(3) G fixes a multi curve on S. (called reducible).

From this classification, a Tits alternative follows (cf. Theorem 3.6), namely,
either G contains a free group of rank two, or else G contains a free abelian
group of finite rank as a subgroup of finite index ([11]).

3.3 Rank-1 manifolds

Let M be a complete Riemannian manifold of non-positive sectional curvature
of finite volume, and G = π1(M). We briefly discuss Q̃H(G) in this section.
Suppose dimM ≥ 2. Assume that G is irreducible, namely, it does not contain
a subgroup H of finite index such that H is product of two infinite groups. If
M is a locally symmetric space, namely the universal cover M̃ is a symmetric
space (cf [10]), then Q̃H(G) is trivial if the rank of M is at least two (Theorem

4.1), or Q̃H(G) is infinite dimensional if the rank is one (see the proof of
Theorem 5.4, cf Theorem 3.18).

Indeed the converse of Theorem 4.1 is true. In other words, Q̃H(Γ) = 0
characterizes locally symmetric spaces of rank at least two.
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Theorem 3.21 ([8]). Let M be a complete Riemannian manifold of nonposi-
tive curvature and finite volume. Assume that Γ = π1(M) is finitely generated
and does not contain a subgroup of finite index which is cyclic or a Cartesian
product of two infinite groups. Then the universal cover M̃ is a symmetric
space of rank at least two if and only if Q̃H(Γ) = 0. Otherwise, Q̃H(Γ) is
infinite-dimensional.

The proof uses the celebrated Rank Rigidity Theorem ([1]), as well as a new
construction of quasi-homomorphisms on groups that act on CAT(0) spaces
and contain rank-1 elements, which can be thought of as a generalization of
Theorem 3.18. (See [10],[1] for the definitions of CAT(0) spaces and rank-1
elements.) In connection to Theorem 4.1, we remark that a symmetric space
of non-compact type is CAT(0), and if it has rank at least two then any
hyperbolic isometry of the space is not rank-1.

4 Rigidity

We discuss a version of superrigidity for mapping class groups. Theorem 4.2
was conjectured by N.V. Ivanov and proved by Kaimanovich and Masur [39]
using random walks in the case when the image group contains independent
pseudo-Anosov elements and it was extended to the general case by Farb and
Masur [22] using the classification of subgroups of MCG(S) (see section 3.2).
We give an argument based on the work of M. Burger and N. Monod [13] on
bounded cohomology of lattices.

Theorem 4.1 ([13],[14]). Let Γ be an irreducible lattice in a connected semi-
simple Lie group G with no compact factors, with finite center, and of rank
> 1. Then the kernel of H2

b (Γ; R) → H2(Γ; R) is trivial.

They indeed show that Q̃H(Γ) is trivial. Their approach is out of the range
of this chapter. It was known that H1(Γ; R) is trivial by Matsushima and
others.

Theorem 4.2. Let Γ be an irreducible lattice in a connected semi-simple Lie
group G with no compact factors, with finite center, and of rank > 1. Then
every homomorphism Γ → MCG(S) has finite image.

Proof. Let φ : Γ → MCG(S) be a homomorphism. By the Margulis-Kazhdan
theorem [55, Theorem 8.1.2] either the image of φ is finite or the kernel of φ
is contained in the center. When Γ is a nonuniform lattice, the proof is easier
and was known to Ivanov before the work of Kaimanovich-Masur (see Ivanov’s
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comments to Problem 2.15 on Kirby’s list). Since the rank is ≥ 2 the lattice
Γ then contains a solvable subgroup N which does not become abelian after
quotienting out a finite normal subgroup. If the kernel is finite, then φ(N) is
a solvable subgroup of MCG(S) which is not virtually abelian, contradicting
[11] (see the classification of subgroups in mapping class groups in section 3.2).

Now assume that Γ is a uniform lattice. If the kernel Ker(φ) is finite then
there is an unbounded quasi-homomorphism q : Im(φ) → R by Theorem 3.19.
But then qφ : Γ → R is an unbounded quasi-homomorphism contradicting
Theorem 4.1 that every quasi-homomorphism Γ → R is bounded.

In connection to Theorem 4.1, we ask a question.

Question 4.3. Let Γ be as in Theorem 4.1. Is there a constant C such that
for all a ∈ [Γ, Γ], cl(a) ≤ C ?

Note that [Γ, Γ] has finite index in Γ since H1(Γ; R) is trivial. The answer
is yes if Γ is SLn(Z) with n ≥ 3 (see section 1.2).

5 Bounded generation

A group G is said boundedly generated if there exist finitely many elements
g1, · · · , gk ∈ G such that for any g ∈ G there exist ni ∈ Z with

g = gn1

1 · · · gnk

k .

One may say G is boundedly generated by g1, · · · , gk.
Kotschick related bounded generation of a group G and HQH(G) as follows.

Theorem 5.1 (Prop 5 [41]). If G is boundedly generated by g1, · · · , gk then
the dimension of HQH(G) as a vector space is at most k.

If G is generated by k elements, then the vector space of all homomor-
phisms from G to R is at most k-dimensional. One may see this theorem as
a generalization. He combined this result and Theorem 3.19, and gave a new
proof to the following theorem by Farb-Lubotzky-Minsky.

Theorem 5.2 ([23]). The mapping class group MCG of a closed orientable
surface S of genus at least one is not boundedly generated.

In fact, since Theorem 3.19 applies to all subgroups in MCG(S), a subgroup
G in MCG(S) is not boundedly generated if G is not virtually abelian (cf. [26]).

It is observed in [23] that non-elementary word-hyperbolic group G is not
boundedly generated. Their argument uses the deep result by Gromov [28]
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such that such G has an infinite quotient which is a torsion group. Clearly,
a boundedly generated group cannot have an infinite torsion quotient. By
Theorem 5.1 and Theorem 3.7 (and Remark 3.8), we have the following([26]).

Theorem 5.3. A non-elementary subgroup in a word-hyperbolic group is not
boundedly generated.

It follows that a uniform lattice G in a simple Lie group of rank one is not
boundedly generated since G is non-elementary word-hyperbolic. Margulis
and Vinberg [43] showed that many discrete subgroups in a rank-1 simple Lie
group are virtually mapped by homomorphisms to non-abelian free groups, so
that they are not boundedly generated. A group is said to virtually have some
property if some subgroup of finite index in the group has this property. In
fact we have the following.

Theorem 5.4 ([26]). Let G be a discrete subgroup in a rank-1 simple Lie
group. If G does not contain a nilpotent subgroup of finite index then it is not
boundedly generated.

Proof. G acts on the rank-1 symmetric space, which is δ-hyperbolic. The
action is proper. If G is not virtually nilpotent, then G contains a hyperbolic
isometry (we use a classification of discrete subgroups in a rank-1 simple Lie
group). Then a theorem from [24] (the theorem applies to proper G-actions

on δ-hyperbolic spaces. Or one can use Theorem 3.19) says that Q̃H(G) is
infinite dimensional since G is not virtually cyclic.

Note that Theorem 5.4 gives a classification of virtually nilpotent sub-
groups among discrete subgroups in terms of bounded generation since the
converse is true. It is not hard to check that a finitely generated nilpotent
group is boundedly generated. It then follows that a finitely generated virtu-
ally nilpotent group is boundedly generated. If G as in the theorem is virtually
nilpotent, then it is finitely generated, therefore, boundedly generated.

Non-uniform lattices in a Lie group of rank at least two are known to be
boundedly generated (cf. [54]). For example, SL(n, Z), n > 2 and SL(2, Z[1/p])
such that p is a prime number are boundedly generated.

There is a more direct way to show Theorem 5.2, 5.3, 5.4 using quasi-
homomorphisms. We discuss it in the next section (for example see Remark
6.7).
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6 Separation by quasi-homomorphisms

Definition 6.1 (Separation, [53]). Let G be a group and a 6= b ∈ G. If there
exists a homogeneous quasi-homomorphism f on G such that f(a) = 1 and
f(b) = 0, then we say that a is separated from b (by f).

Let B ⊂ G be a set of elements such that a 6∈ B. If there exists a homo-
geneous quasi-homomorphism f on G such that f(a) = 1 and f(b) = 0 for all
b ∈ B, then we say that a is separated from B (by f).

The condition that a quasi-homomorphism f is homogeneous is necessary,
otherwise, one can always separate a from b (by letting f(a) = 1 and f(c) = 0
for all c 6= a). On the other hand, as long as f(a) 6= 0, one can always normalize
f such that f(a) = 1. The normalization f(a) = 1 becomes important when
one tries to bound the defect D(f) from above. See (the second part of)
Theorem 7.3 and 7.4.

Our separation property has a similar flavor to the residual finiteness of
a group. A group G is said to be residually finite if for any non-trivial ele-
ment a ∈ G, there exists a finite group F and a homomorphism f : G → F
such that f(a) is non-trivial. Similarly, we may try to separated two elements
by a homomorphism to Z. But, for example, if G ≃ SL(2, Z), then any ho-
momorphism G → R is trivial since G is generated by two torsion elements.
Therefore, it is impossible to separate two elements by a homomorphism to Z.
On the other hand, we know that Q̃H(G) is infinite dimensional, and more-

over we can separate two elements by a map in Q̃H(G) (G is non-elementary
word-hyperbolic. Apply Theorem 3.7).

Suppose that one can separate a from b by a homogeneous quasi-homomorphism
f such that f(a) = 1, f(b) = 0. Then the elements a and b must satisfy the
following condition since f is a class function.

Condition 6.2. (1) For all n 6= m and c ∈ G, an 6= camc−1.

(2) For all n 6= 0, m and c ∈ G, an 6= cbmc−1.

Note that by Condition (1), a has infinite order. It is interesting to know
if Condition 6.2 is sufficient to separate a from b by a homogeneous quasi-
homomorphism. An affirmative answer is found by Polterovich and Rudnick
[53] for SL(2, Z).

Theorem 6.3. Suppose a, b ∈ SL(2, Z) satisfy Condition 6.2. Then, there is
a homogeneous quasi-homomorphism f such that f(a) = 1, f(b) = 0.

Polterovich and Rudnick asked if one can generalize the theorem to word-
hyperbolic groups.
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Theorem 6.4 ([16] cf.[19]). Let G be a word-hyperbolic group. Suppose a, b ∈
G satisfy Condition 6.2. Then, there is a homogeneous quasi-homomorphism
f on G such that f(a) = 1, f(b) = 0.

Moreover, let B ⊂ G be a finite collection of elements such that for a
and each b ∈ B Condition 6.2 holds. Then, there is a homogeneous quasi-
homomorphism f on G such that f(a) = 1 and for all b ∈ B, f(b) = 0.

We also show a separation theorem for mapping class groups.

Theorem 6.5 ([16] cf.[6]). Let S be a compact orientable surface and let
MCG(S) be its mapping class group. Suppose a, b ∈ MCG(S) satisfy Condition
6.2 and a is a pseudo-Anosov element. Then, there is a homogeneous quasi-
homomorphism f on G such that f(a) = 1, f(b) = 0.

Moreover, let B ⊂ MCG(S) be a collection of elements such that Condition
6.2 holds for a and each b ∈ B. Suppose there exists T such that the translation
length of each b ∈ B on C(S) is at most T . Then, there is a homogeneous
quasi-homomorphism f on G such that f(a) = 1 and for all b ∈ B, f(b) = 0.

In fact, Theorem 6.4, 6.5 are part of Theorem 7.3, 7.4, in which we obtain
upper bounds on the defect of f .

Note that it is free to assume that the set B contains all non-pseudo-
Anosov elements. This is because if c ∈ MCG(S) is not pseudo-Anosov, then
the translation length of c on C(S) is zero as c has a bounded orbit. It follows
that a homogeneous quasi-homomorphism f obtained in Theorem 6.5 satisfies
f(c) = 0.

To explain the connection of separation and bounded generation, we need
one definition.

Definition 6.6 (Product of subgroups). Let G be a group and H1, · · · , Hn <
G subgroups. Then, product, H1 · · ·Hn, is a subset of G defined as follows:

H1 · · ·Hn = {h1 · · ·hn|hi ∈ Hi}.

Remark 6.7. One can show Theorem 5.3 using Theorem 6.4 as follows.
Let G be a non-elementary word-hyperbolic group. Suppose that elements
b1, · · · , bn ∈ G are given. Then, one can find an element a ∈ G such that a
and each bi satisfy Condition 6.2 (this is not trivial). By Theorem 6.4, there
exists a homogeneous quasi-homomorphism f with f(a) = 1 and f(bi) = 0 for
all i. Then, |f | is bounded, by (n − 1)D(f), on the following subset in G.

〈b1〉 · · · 〈bn〉

Since f is unbounded on 〈a〉, we have G 6= 〈b1〉 · · · 〈bn〉. Therefore G is not
boundedly generated by b1, · · · , bn.

Similarly, one can show that MCG(S) is not boundedly generated using
Theorem 6.5.
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7 Gaps in stable commutator length

We discuss the image, or the spectrum, of the function scl on [G, G].

7.1 word-hyperbolic groups

D. Calegari [15] shows the following theorem.

Theorem 7.1. For every dimension n and any ǫ > 0, there is a constant
δ(ǫ, n) > 0 such that if M is a complete hyperbolic n-manifold and a ∈ π1(M)
has stable commutator length ≤ δ(ǫ, n), then a is represented by a closed
geodesic in M with length ≤ ǫ.

Since there are only finitely many closed geodesics of length at most ǫ
in M , this theorem says that there is a gap (at zero) in the spectrum of
stable commutator length. Calegari uses pleated surfaces in M to estimate
stable commutator length from below. A similar argument appears in [28],
where Gromov asserts that the hyperbolicity implies the positivity of scl. The
existence of a gap at zero was found by Calegari.

Via Theorem 1.4, Theorem 7.1 is related to quasi-homomorphisms on π1(M).
In some way, the following result [16] is a generalization to word-hyperbolic
groups.

Theorem 7.2 (Gap Theorem in hyperbolic groups, weak version [16]). Let G
be a word-hyperbolic group which is δ-hyperbolic with respect to a symmetric
generating set S with |S| generators. Then there is a constant C(δ, |S|) > 0
such that for every a ∈ G, either scl(a) ≥ C or else there is some positive
integer n and some b ∈ G such that ba−nb−1 = an.

Note that scl(a) = 0 if the condition ba−nb−1 = an holds for n > 0 (cf.
Condition 6.2 (1). This condition is called mirror condition in [16]). It follows
from this condition that b has finite order if a has infinite order. Therefore
the condition never holds in the fundamental group of a hyperbolic manifold
since there is no nontrivial torsion element (cf. Theorem 7.1).

Theorem 7.2 is a consequence of the first part of the following theorem
by Proposition 1.3 (cf. Theorem 1.4) with C = 1

2D
. The second part of the

theorem can be thought of a separation theorem (see section 6).

Theorem 7.3 (Gap Theorem in hyperbolic groups, strong version [16]). Let
G be a word-hyperbolic group which is δ-hyperbolic with respect to a symmetric
generating set S with |S| generators. There exists a constant D(δ, |S|) with
the following property. Let a ∈ G be a (non-torsion) element. Assume there
is no n > 0 and no b ∈ G with ba−nb−1 = an. Then there is a homogeneous
quasi-homomorphism h on G such that
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(1) h(a) = 1.

(2) The defect of h is ≤ D(δ, |S|).

Moreover, let ai ∈ G be a collection of elements for which T = supi τ(ai) is
finite. Suppose that for all integers n 6= 0, m and all elements b ∈ G and
indices i, that there is an inequality

banb−1 6= am
i .

Then there is a homogeneous quasi-homomorphism h on G such that

(1) h(a) = 1, and h(ai) = 0 for all i;

(2) the defect of h is ≤ D′(δ, |S|, T, τ(a)).

Note that the translation length τ concerns the Cayley graph of G with
respect to S. The argument for Theorems 7.2, 7.3 is a refinement of the one for
Theorem 3.7. We construct a quasi-homomorphisms f by counting functions,
and the issue is to bound the defect of f .

7.2 Mapping class groups

We show a theorem similar to Theorem 7.3 for mapping class groups.

Theorem 7.4 ([16]). Let S be a compact orientable surface of hyperbolic type
and MCG(S) its mapping class group. Then there is a positive integer P
depending on S such that for any pseudo-Anosov element a, either there is an
0 < n ≤ P and an element b ∈ MCG(S) with ba−nb−1 = an, or else there
exists a homogeneous quasi-homomorphism h on MCG(S) such that h(a) = 1
and the defect of h is ≤ D(S), where D(S) depends only on S.

Moreover, let ai ∈ MCG(S) be a collection of elements for which T =
supi τ(ai) is finite. Suppose that for all integers n 6= 0, m and all elements
b ∈ MCG(S) and indices i, that there is an inequality

banb−1 6= am
i

Then there is a homogeneous quasi-homomorphism h on MCG(S) such that

(1) h(a) = 1, and h(ai) = 0 for all i.

(2) The defect of h is ≤ D′(S, T, τ(a)).

The construction of a quasi-homomorphism is the same as in Theorem
3.19, but to have the desired bound on the defect, we need extra ingredients.
This extra part is more difficult than for word-hyperbolic groups since the
action of MCG(S) on C(S) is not proper, and C(S) is not locally finite. The
standard argument which has been developed in the theory of word-hyperbolic
groups does not apply immediately. To compensate this difficulty, we use the
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notion of tight geodesics, which is introduced by Masur-Minsky [44]. They
show a certain local finiteness property in terms of tight geodesics. Bowditch
[9] obtains more refined information than [44], which we use.

Theorem 7.5 ([9]). Let S be a compact orientable surface and MCG(S) its
mapping class group. For R > 0, there exist D(R), K(R), which depends on
S, such that for any two vertices x, y ∈ C(S) with d(x, y) ≥ D, the following
set contains at most K elements:

{a ∈ MCG(S)|d(x, a(x)) ≤ R, d(y, a(y)) ≤ R}.

Proposition 3.17 also follows from Theorem 7.5.

Theorem 7.6 ([9]). Let S be a compact orientable surface and MCG(S) its
mapping class group. There exists a constant M = M(S) > 0 such that for
any pseudo-Anosov element a ∈ MCG(S), there exists a geodesic α ⊂ C(S)
with aM (α) = α.

A similar result is known for word-hyperbolic groups in terms their action
on their Cayley graphs (for example, see [19, Theorem 5.1]).

Combining the first part of Theorem 7.4 and Proposition 1.3, we obtain
the following with C(S) = 1

2D(S) .

Theorem 7.7 (Gap theorem [16]). Let S be a compact orientable surface
of hyperbolic type and MCG(S) its mapping class group. Then there exists
C(S) > 0 such that for any pseudo-Anosov element a ∈ MCG(S), either there
is an 0 < n ≤ P (S) and an element b ∈ MCG(S) with ba−nb−1 = an (then
scl(a) = 0), or else scl(a) ≥ C.

This theorem is complementary to the following results.

Theorem 7.8. Let S be a closed orientable surface of genus g ≥ 2.

(1) [20] (cf. [40]) If a ∈ MCG(S) is a Dehn-twist along a separating simple
closed curve, then scl(a) ≥ 1

6(3g−1) .

(2) [21] There exists a ∈ MCG(S) such that for all n > 0 and c ∈ MCG(S),
an 6= ca−nc−1 and that scl(a) = 0.

Note that the element a in (2) is not pseudo-Anosov by Theorem 7.7. It fol-
lows from (1) that MCG(S) is not uniformly perfect, and that H2

b (MCG(S); R)
is not trivial (and indeed infinite dimensional by Theorem 3.19).
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8 Appendix. Bounded cohomology

The theory of bounded cohomology was developed in Gromov’s seminal work
[29]. We already mentioned in Section 1.3 that the space of quasi-homomorphisms
on a group is closely related to the second bounded cohomology of the group.
We review a part of the theory in this chapter. We recommend survey articles
[5] and [50] for interested readers. All spaces and manifolds in this section are
connected.

8.1 Riemannian geometry

In [29], Gromov defined the minimal volume, MinVol(M), of a compact man-
ifold M to be the infimum of the volume of all Riemannian metric g on M
such that the sectional curvature Kg satisfies −1 ≤ Kg ≤ 1. If dimM = 2,
then Gauss-Bonnet formula gives

∫

M

Kgdvg = 2πχ(M),

where χ(M) is the Euler characteristic of M . It immediately follows that
MinVol(M) = 2π|χ(M)|, and if χ(M) < 0, then the minimal volume is at-
tained (only) by a metric of constant curvature −1.

It is difficult to compute MinVol(M) in general. To give a lower bound for
MinVol(M), Gromov defined the simplicial volume, ||M ||, of M , which can be
used in general as a replacement of the Euler characteristic of a surface. Let
c =

∑
rici(ri ∈ R) be a real singular chain of M . Consider the l1-norm defined

by ||c||1 =
∑

|ri|. For a homology class α ∈ H∗(M ; R), define a semi-norm by

||α|| = inf{||z|| : z is closed and [z] = α}.

If M is orientable, define ||M || = ||[M ]||, where [M ] is the fundamental n-
class. If M is not orientable, then pass to the double cover M ′ and define
||M || = 1

2 ||M
′||.

Theorem 8.1 ([29]). If M is a compact n-dimensional manifold, then

Cn||M || ≤ MinVol(M),

where Cn > 0 is a constant which depends only on n.

Of course, if ||M || = 0, then this estimate is useless. Suppose f : M → N
is a continuous map such that M and N are compact orientable manifolds of
the same dimension. Then it is easy to see from the definition that

||M || ≥ | deg f | · ||N ||.



24 Koji Fujiwara

It follows that if there exists a continuous map g : M → M such that deg g 6=
0,±1, then ||M || = 0 (if M is compact). For example, if M is a sphere or a
torus, then ||M || = 0.

There are examples of M with ||M || > 0.

Theorem 8.2 (Gromov-Thurston [29]). Let (M, g) be an n-dimensional com-
plete Riemannian manifold with finite volume. Suppose there exists a constant
k such that −k ≤ Kg ≤ −1. Then,

vol(M, g) ≤ cn||M ||,

where cn is a constant which depends only on n.
Moreover, if Kg = −1, then

vol(M, g) = Tn||M ||,

where Tn is the supremum of the volume of all geodesic n-simplices in the
n-dimensional real hyperbolic space, H

n.

It is shown in [29] that one can take cn = (n − 1)nn!. A simplex is called
geodesic if all of its faces are totally geodesic. The proof is by “straightening”
(into a geodesic one in the case Kg = −1) the lift of an n-simplex contained in
[M ] in the universal cover of M . That’s how Tn comes into the estimate. It is
known by now ([31]) that Tn is equal to the volume of ideal regular n-simplices
in H

n. Thus one needs to consider only regular (namely, all edges have same
length) geodesic n-simplices in the definition of Tn.

We explain the connection of the simplicial volume and the bounded coho-
mology. The definition of bounded cohomology of a topological space X differs
from the one for the ordinary real singular cohomology in that one considers
only the set of singular cochains each of which is bounded as a function.

Let Sn(X) be the set of n-dimensional singular simplexes in X . Real n-
dimensional singular cochains are functions Sn(X) → R. They form a vector
space over R, which we denote Cn(X). Let δ be the standard coboundary
map Cn(X) → Cn+1(X) for each n. The real singular cohomology of X ,
H∗(X ; R) (sometimes we omit R in this chapter), is the cohomology of this
cochain complex.

Now let Bn(X) ⊂ Cn(X) be the set of all bounded functions on Sn(X).
Each element in Bn(X) is called a bounded n-cochain. It is easy to see that
δ(c) ∈ Bn+1(X) if c ∈ Bn(X). The cohomology of the complex B∗(X) is the
bounded cohomology of X , denoted by H∗

b (X). Each element c ∈ Cn(X) has
a natural l∞-norm.

||c||∞ = sup
σ∈Sn(X)

c(σ) ≤ ∞.
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For an element β ∈ H∗(X), define

||β|| = ||β||∞ = inf
y
||y||∞ ≤ ∞,

where y are all cochains such that δy = 0 and [y] = β.
The inclusion Bn(X) → Cn(X) induces a canonical map Hn

b (X) → Hn(X),
the comparison map. We say β ∈ Hn(X) is bounded if it is contained in the
image of this map, in other words, ||β||∞ < ∞.

The following two results in [29] are fundamental. There is a detailed
account of the argument in [38], where he discusses a countable CW-complex
X .

Theorem 8.3. Let X be a topological space. Then,

Hn
b (K(π1(X), 1); R) ≃ Hn

b (X ; R)

for all n.

Hn
b (K(π1(X), 1); R) can be computed as Hn

b (π1(X); R) using the definition
of the bounded cohomology of a group in Section 1.3. We obtain the follow-
ing theorem, which says that the bounded cohomology depends only on the
fundamental group.

Theorem 8.4. Let X be a topological space. Then,

Hn
b (X ; R) ≃ Hn

b (π1(X); R).

By this theorem, if M is a closed Riemannian manifold of negative sec-
tional curvature, then H2

b (M ; R) is infinite dimensional, in particular, non-
trivial. This is because G = π1(M) is non-elementary word-hyperbolic, there-

fore Q̃H(G) is infinite dimensional by Theorem 3.7, so that H2
b (G; R) is also

infinite dimensional since Q̃H(G) is a subspace as a vector space over R in
H2

b (G; R) (see Section 1.3).
The simplicial volume of a manifold M is related to the bounded cohomol-

ogy of M as follows.

Theorem 8.5. Let M be an n-dimensional closed orientable manifold and
α ∈ Hn(M ; R) the fundamental class such that 〈α, [M ]〉 = 1. Then,

||M ||−1 = ||α||∞.

In particular, if α is bounded, namely ||α||∞ < ∞, then ||M || 6= 0.

It follows that if M is simply connected, then ||M || = 0. This is because
Hn

b (M ; R) is trivial since π1(M) is trivial. Therefore, ||α||∞ = ∞.
The following is also proved using straightening.
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Theorem 8.6 ([29]). Let M be a closed Riemannian manifold such that the
sectional curvature is negative. Then the map Hn

b (M ; R) → Hn(M ; R) is
surjective for all n > 1.

If M is an n-dimensional closed hyperbolic manifold (Kg = −1), then by
Theorems 8.1 and 8.2, Cn

Tn

vol(M) ≤ MinVol(M). The following result was
conjectured in [29].

Theorem 8.7 ([4]). Let (M, g) be a closed Riemannian manifold such that
Kg = −1. Then, MinVol(M) = vol(M, g) and a metric which attains MinVol(M)
is isometric to g.

We record one more recent progress. This is an answer in affirmative to a
question in [29].

Theorem 8.8 ([42]). Let M be a closed locally symmetric space of non-
compact type. Then ||M || > 0.

In particular it follows that MinVol(M) > 0 for such manifolds by Theorem
8.1, which was known for most cases([30], [17]).

8.2 Group theory

Theorem 8.6 is generalized to word-hyperbolic groups. In general, H1
b (G; R) =

0 since a bounded homomorphism from G to R is trivial.

Theorem 8.9 ([48]). Let G be a non-elementary word-hyperbolic group. Then
the map Hn

b (G; R) → Hn(G; R) is surjective for all n > 1.

In this chapter, we have seen several examples of a group G such that
Q̃H(G, R) is infinite dimensional. Those groups have infinite dimensional
H2

b (G, R). Here is a list of such G.

(1) Free groups of rank at least two (Theorem 2.1).

(2) Non-elementary subgroups of a word-hyperbolic group (Theorem 3.7,
Remark 3.8).

(3) Subgroups in MCG(S) which are not virtually abelian (Theorem 3.19).

(4) Discrete subgroups in a rank-1 simple Lie group which are not virtually
nilpotent (see the proof of Theorem 5.4).

(5) The fundamental group G of a complete Riemannian manifold of M of
dimension at least two such that vol(M) < ∞, the sectional curvature is
non-positive, M is not locally symmetric of rank at least two and G is
irreducible (Theorem 3.21).



Quasi homomorphisms on mapping class groups 27

(6) G = A ∗C B such that |C\A/C| ≥ 3 and |B/C| ≥ 2; or G = A∗C,φ such
that |A/C| ≥ 2 and |A/φ(C)| ≥ 2 (see [25]).

If there is a surjective homomorphism h : G → F , where F is a rank two
free group (sometimes then G is called large), then Q̃H(G), therefore, H2

b (G, R)
is infinite dimensional. This is because if f : F → R is a homogeneous quasi-
homomorphism, then f ◦ h : G → R is a homogeneous quasi-homomorphism.
(We do not need that G is finitely generated. Q̃H(F ) is indeed infinite dimen-
sional if we restrict it to [F, F ] as well.) For example, this argument applies
to the fundamental group of a closed orientable surface of genus at least two,
which is non-elementary word-hyperbolic. By the same reason, if a group G
has a surjective homomorphism to one of the groups in the list, then Q̃H(G)
is infinite dimensional.

Not much is known about Hn
b (G; R) for n > 2. If M is an n-dimensional

closed locally symmetric space, then Hn
b (π1(M); R) is non-trivial by Theorems

8.4, 8.6, 8.8. It is not known in general if the dimension of Hn
b (π1(M); R) is

finite.
There is a new direction of study of the second bounded cohomology with

non-trivial coefficient. It is revealed that it has a connection to rigidity in
terms of orbit equivalence of actions.

Let Γ and Λ be countable groups and (X, µ), (Y, ν) probability Γ− and Λ−
spaces respectively. A measurable isomorphism F : X → Y is said to be orbit
equivalence (OE) of the actions if for a.e. x ∈ X , F (Γx) = ΛF (x). (See [50],
[51].)

Let Creg be the class of countable groups G such that H2
b (G, ℓ2(G)) 6= 0.

Theorem 8.10 ([51]). A countable group G belongs to Creg if it admits one
of the following actions.

(1) A non-elementary simplicial action on a simplicial tree, proper on the
set of edges,

(2) a non-elementary, proper isometric action on a proper CAT(-1) space,

(3) a non-elementary, proper isometric action on a δ-hyperbolic graph with
bounded valency.

In particular, a countable group which is free of rank at least two, a non-
trivial free product of two countable groups except for Z2 ∗ Z2, and a non-
elementary subgroup of a word-hyperbolic group are in Creg.

Among many rigidity theorems, they showed the following.

Theorem 8.11 ([51]). Let Γ1, Γ2 be torsion-free groups in Creg, Γ = Γ1 × Γ2,
and let (X, µ) be an irreducible probability Γ-space. Let (Y, ν) be any other
probability Γ-space. If the Γ-actions on X and Y are orbit equivalent, then
they are isomorphic with respect to an automorphism of Γ.
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