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Abstract.

Suppose G acts acylindrically by isometries on a δ-hyperbolic
graph Γ. We discuss subgroups generated by two hyperbolic elements
in G and give sufficient conditions for them to be free of rank two.

We apply our results to the mapping class group Mod(S) of a
compact orientable surface S and its action on the curve graph such
that S is non-sporadic. There exists a constant Q, depending only on
S, with the following property. If a, b ∈ Mod(S) are pseudo-Anosovs
such that 〈a, b〉 is not virtually cyclic, then there exists M > 0, which
depends on a, b, such that either 〈an, bm〉 is free of rank two for all
n ≥ Q, m ≥ M , or 〈am, bn〉 is free of rank two for all n ≥ Q, m ≥ M
(Theorem 2.3).

At the end we ask a question in connection to the uniformly
exponential growth of subgroups in a mapping class group (Question
3.4).

§1. δ-hyperbolic geometry and the Nielsen condition

In the paper, we expect that the readers are familiar to δ-hyperbolic
geometry. We give definitions and references, and describe the idea of
the argument without all details for standard facts and techniques. We
recommend [BrHa, III, H] as a good reference book.

1.1. Nielsen condition for free generators

A geodesic space is called δ-hyperbolic for δ ≥ 0 if for any geodesics
α, β, γ which form a triangle, α is contained in the δ-neighborhood of
β ∪ γ ([Gr]). Let Γ be a δ-hyperbolic graph. Let a be an isometry
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2 Mapping class groups and uniform exponential growth

of Γ. If there exist a point x ∈ Γ and a constant C > 0 such that
d(x, an(x)) ≥ Cn for any n > 0, then a is called hyperbolic.

Suppose a is a hyperbolic isometry. If there exists a bi-infinite geo-
desic α such that a(α) is contained in the C-neighborhood of α for some
C ≥ 0, α is called a quasi-axis of a. By δ-hyperbolicity of Γ, it then
follows that a(α) is in the 2δ-neighborhood of α (use [BrHa, III.H.3.3
Lemma]). If α and β are quasi-axes of a (they are geodesics by defini-
tion), then they are contained in the 2δ-neighborhood of each other. If
C = 0 we say α is an axis of a.

For two points x, y ∈ Γ, we may denote a (non-unique) geodesic
joining them by [x, y]. We may write the distance between the two
points as |x− y|. For an isometry a, we define its translation length, (or
stable length), tr(a), by

tr(a) = lim
n→∞

|x − an(x)|
n

≥ 0

for a point x. It is easy to see tr(a) does not depend on the choice of x.
Also, tr(an) = |n|tr(a). The isometry a is hyperbolic iff tr(a) > 0.

For any point z ∈ Γ, we have |z − a(z)| ≥ tr(a) by the triangle
inequality. If a has an axis α, then |z − a(z)| = tr(a) for any point
z ∈ α. If α is a quasi-axis of a, then |z − a(z)| ≤ tr(a) + 10δ (otherwise,
use that an(α) is in the 2δ-neighborhood of α for any n > 0 and show
|z − an(z)| ≥ n(tr(a) + δ), which gives a contradiction if δ > 0). This
last inequality will be used, sometimes implicitly since we do not always
spell out all details, in the rest of the paper. We recommend interested
readers who want to know all details, in particular estimates regarding
δ, first to imagine δ = 0 and/or quasi-axes are axes, then try to modify
the estimates and the arguments.

Let C ≥ 0 be a constant. For geodesics α and β, we define the
C-overlap, denoted by α ∩C β, by

α ∩C β = (α ∩ NC(β)) ∪ (β ∩ NC(α)),

where NC(α) is the C-neighborhood of α. Let |α ∩C β| denote the
diameter of this set.

In the following argument, we often take C = 10δ. By δ-hyperbolicity,
if |α∩10δ β| is finite, then the longest segment of α, the longest segment
of β and the longest geodesics which are contained in α ∩10δ β all have
length between |α∩10δ β|−20δ and |α∩10δ β|+20δ, and those segments
are in the 20δ-neighborhood of each other.

The following result is fundamental and classical. It has its origin
in combinatorial group theory and was generalized in [Gr] to the setting
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of δ-hyperbolic geometry. It was used in [De] and [Ko] as an essential
tool. For a proof, see [Ko, Lemma 2.4] or [Fu], where the convexity (see
[FaMo]) of 〈an, bm〉 is also discussed.

Proposition 1.1 (Nielsen condition). Suppose a, b act as hyperbolic
isometries on a δ-hyperbolic graph Γ with quasi-axes α, β, respectively.
Suppose |α ∩10δ β| < ∞. If 1 ≤ n, m ∈ Z are such that

tr(an) ≥ |α ∩10δ β| + 100(δ + 1), tr(bm) ≥ |α ∩10δ β| + 100(δ + 1),

then an and bm freely generate a rank-two free subgroup in Isom(Γ).

1.2. Quasi-geodesic axis

The existence of quasi-axes, which are geodesics by our definition,
is not strictly necessary for Proposition 1.1 or for some other results in
this paper. Indeed, we can use certain quasi-geodesics as discussed in
section 2.2. As we do not use this for our main application to mapping
class groups, uninterested readers may skip this section. First, a path α,
parametrized by arclength, is called a (K, ε)-quasi-geodesic for 0 < K ≤
1 and 0 ≤ ε if for all t, s we have K|t−s|−ε ≤ d(α(t), α(s)). (A standard
definition of quasi-geodesics also requires d(α(t), α(s)) ≤ |t − s|/K + ε
but this is trivially satisfied since α is parametrized by arclength.)

If a is a hyperbolic isometry of a δ-hyperbolic graph Γ, there exists
a (K, ε)-quasi-geodesic α for some K, ε such that

(1) an(α) and α are in the 30δ-neighborhood of each other for any
n. (Namely, α is almost invariant by a.)

(2) Let p, q ∈ α. Then the subpath of α between p, q and any
geodesic [p, q] are in the 10δ-neighborhood of each other.

We call such a path α a quasi-geodesic axis of a in this paper. To be
precise, we should use the term quasi-geodesic quasi-axis, but we make
it shorter. One can easily show from (1) and (2) that any two quasi-
geodesic axes of a are in the 30δ-neighborhood of each other. Note that
(2) concerns only the path and not the element a. Also, the quasi-
geodesic constants of α are not important for our purpose. What is
useful for us is (2).

We briefly review how to find a quasi-geodesic axis for a. Fix a point
x ∈ Γ. Choose I > 0 such that tr(aI) ≥ 1000δ. Set y = aI(x). Then,
|x − y| ≥ 1000δ. Choose N > 0 such that |aN(x) − x| ≥ 100|aI(x) − x|.
Let m be the mid point of a geodesic [x, aN (x)]. Define a path, which
is invariant by aI , by

α = ∪n∈ZanI([m, aI(m)]).



4 Mapping class groups and uniform exponential growth

Since a is hyperbolic, α is a quasi-geodesic. Observe that α trivially
satisfies (1) for the element aI (not for the element a yet). We claim that
α also satisfies (2). Firstly, by the way we chose I and N , most parts
of the geodesics, except for a small portion near each end, [x, aN (x)]
and [y, aN (y)] = aI([x, aN (x)]) are in the 2δ-neighborhood of each other.
This is because |x−aN (x)| is much larger than |x−y|. (Draw a geodesic
rectangle joining x, aN (x), aN (y) and y in this order. Then the rectangle
is narrow.) Also, |m − aI(m)| ≥ tr(aI) ≥ 1000δ. Those two estimates
imply (2) for α by δ-hyperbolic geometry. Note that |m−aI(m)| is much
smaller than |x − m| = |m − aN(x)|. (See Figure 1.)

x aN(x)m

a2I(m)
aI(m)

a−I(m)

y = aI(x)
aN (y) = aI(aN (x))

aIα

Fig. 1. Two geodesics [x, aN(x)] and [y, aN (y)] stay 2δ- close
for the most part. The geodesic [m, aI(m)] is “pinched”
between those two geodesics.

Now we claim that α satisfies (1) for the element a, namely, it is
a quasi-geodesic axis for a. Let L > 0 be a large integer, which we
decide later. By (2), the geodesic [m, aLI(m)] and the subpath α′ of
α between the two points m and aLI(m) are in the 10δ-neighborhood
of each other. Therefore, the geodesic a([m, aLI(m)]) and a(α′) are
also in the 10δ-neighborhood of each other. On the other hand, by δ-
hyperbolic geometry, most parts of [m, aLI(m)] and a([m, aLI(m)]) are
in the 2δ-neighborhood of each other if |m − aLI(m)| is much larger
than |m− a(m)|. (This follows from the same argument using a narrow
geodesic rectangle as before.) We choose L this way. As a consequence,
most parts of α′ and a(α′), except for a small segment at each end, are
in the 30δ-neighborhood of each other. Replacing L by a larger integer,
we find that α and a(α) are in the 30δ-neighborhood of each other. A
similar argument works for an(α) for all n. This proves that α satisfies
(1) for a.

§2. Acylindricity and free subgroups

2.1. Free subgroups
Suppose G acts on Γ. Bowditch [Bo] defined that the action of G is

acylindrical if for any R > 0, there exist K(R), L(R) ≥ 1 such that for
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any vertices x, y ∈ Γ with d(x, y) ≥ L, the following set has at most K
elements.

{g ∈ G|d(x, g(x)) ≤ R, d(y, g(y)) ≤ R}.
We show one lemma (see Lemma 2.5).

Lemma 2.1. Suppose G acts on a δ-hyperbolic graph Γ. If the
action is acylindrical, then there exists an integer P ≥ 1 such that
tr(aP ) ≥ 1 for any element a ∈ G which acts hyperbolically on Γ with a
quasi-axis.

Proof. If δ = 0, then Γ is a tree. Therefore tr(a) ≥ 1. Set P = 1.
Suppose δ > 0. Fix a constant R ≥ 100δ. Let α be a (geodesic) quasi-
axis of a. Take a point x ∈ α. Let y ∈ α be a point with |x−y| ≥ L(2R).
If |ai(x)−x| ≤ R for some i, then |ai(y)−y| ≤ 2R. This is because ai(α)
is in the 2δ-neighborhood of α. Therefore, by the acylindricity, there is
some I, with 1 ≤ I ≤ K(2R), such that |aI(x) − x| > R. Since x lies
on a quasi-axis of a, it then follows that |aIn(x) − x| > n(R − 10δ) for
any n ≥ 1. To verify this estimate, imagine first that the geodesic α is
exactly invariant by a, namely, an axis. Then, clearly, |aIn(x)−x| > nR.
Now, try to estimate the error terms using that α is only a quasi-axis.
We leave the details to readers.

This implies that

tr(a) ≥ R − 10δ

I
≥ R − 10δ

K(2R)
.

Take P such that P ≥ K(2R)
R−10δ . Q.E.D.

The following lemma is a generalization of a result by Koubi ([Ko,
Lemma 5.4]). He discusses the case such that the action of G is (uni-
formly) proper and tr(a) = tr(b). The commutator of two elements is
defined by

[f, g] = f−1g−1fg.

Lemma 2.2. Let Γ be a δ-hyperbolic graph and G a group acting
acylindrically on Γ with constants K(R), L(R). Suppose a, b ∈ G act
hyperbolically with quasi-axes α, β ⊂ Γ, respectively.

(1) If anb �= ban for all n �= 0 or bna �= abn for all n �= 0, then

|α ∩10δ β| < 4PK(20δ)L(20δ)max(tr(a), tr(b)) + 100δ,

where P is the constant from Lemma 2.1.
(2) If tr(a) = tr(b) and for all n �= 0, an �= b±n, then we have the

same inequality as above.
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Proof. 1. To argue by contradiction, assume that the inequality is
false. It suffices to show that anb = ban for some n �= 0 and also bna =
abn for some n �= 0. Set K = K(20δ), L = L(20δ). For concreteness,
suppose tr(b) ≤ tr(a). By our assumption, since |α∩10δ β| is much larger
than 2δ, the set α ∩10δ β looks like a narrow tube.

Let � ⊂ α be the longest segment which is contained in α ∩10δ β.
Then, by our assumption, |�| ≥ 4PKLtr(a) + 80δ. Take a point p ∈ �
such that the following points are in N2δ(�):

p, a(p), a2(p), · · · , a4PKL(p).

(See Figure 2. For simplicity, we put those points on � in the figure.)
To see that we can take such a point p, as usual, first imagine that α is
invariant by a. Then most parts of � and a(�) coincide, therefore, one
can take p such that all the above points are on �. Now, in general,
most parts of � and a(�) are in the 2δ-neighborhood of each other by
δ-hyperbolic geometry, hence a required point p exists.

Set
x = aPKL(p), y = a2PKL(p).

Since y = aPKL(x), it follows from Lemma 2.1 that d(x, y) ≥ PKLtr(a) ≥
KL ≥ L.

β

a4PKL(p)�p x = aPKL(p) y = a2PKL(p)

b(or b−1)

a

α

Fig. 2. Apply the acylindricity to the pair x, y.

Claim. For each i, (1 ≤ i ≤ PKL),

d(x, [b, ai](x)) ≤ 20δ, d(y, [b, ai](y)) ≤ 20δ.

We first consider the special case that δ = 0, namely, Γ is a tree. Then,
α ∩10δ β coincides the segment α∩ β, and also the segment �, therefore,
all above points an(p), 1 ≤ n ≤ 4PKL, are in α ∩ β. We want to show
x = [b, ai](x), but this is obvious since when we apply ai, b, a−i, then
b−1 to x, the point moves within �. Thus, [b, ai](x) = x. If δ > 0, we can
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show that the point moves in the 10δ-neighborhood of � when we apply
ai, b, a−i followed by b−1 to x. Therefore, we get d(x, [b, ai](x)) ≤ 20δ
by estimating the error terms from the tree case using triangle inequal-
ity. We leave the details to readers. (See Figure 3.) We can show
d(y, [b, ai](y)) ≤ 20δ in the same way. This proves the claim.

α

βa−ibai(x)

x

b−1a−ibai(x)
bai(x)

ai(x)

Fig. 3. How commutators act near α ∩10δ β.

Since |x − y| ≥ L = L(20δ), by the acylindricity of the action, it
follows from the claim that there are at most K distinct elements in the
set [b, ai], (1 ≤ i ≤ PKL). By the pigeon-hole principle, [b, ai] = [b, aj]
for some i �= j, (1 ≤ i, j ≤ PKL). It follows that aib−1a−i = ajb−1a−j,
therefore, ai−jb−1 = b−1ai−j . We get [b, an] = 1 for some n �= 0.
The same argument applies to the elements [a, bi] since tr(b) ≤ tr(a),
therefore we also get [a, bn] = 1 for some n �= 0 as well.

2. This is similar to 1. Assume that the inequality is false. Take a
segment � ⊂ α as before. Then, as we said, the set α ∩10δ β looks like
a narrow tube. Therefore, it makes sense to talk about the direction of
the action by a and b along this tube, and furthermore, the direction of
a coincides with the direction of one of b or b−1. We did not need this
consideration in 1 since we used commutators. Now, take points p, x, y ∈
� as before and apply the same argument to the set of elements {bnan :
1 ≤ n ≤ PKL} (if the action of a, b along � have the opposite direction)
or {b−nan : 1 ≤ n ≤ PKL} (if the actions have the same direction).
Then we conclude that there must be n �= m with bnan = bmam, or
b−nan = b−mam, respectively. This is a contradiction. Q.E.D.

As a consequence, a generalization of [Ko, Proposition 5.5] follows.

Proposition 2.3. Let Γ be a δ-hyperbolic graph, and G a group
acting acylindrically by isometries on Γ. Then there exists a constant
N > 0, which depends on δ and the set of the acylindricity constants
K(R), L(R), with the following property.

(1) Suppose a, b ∈ G act by hyperbolic isometries with quasi-axes
such that anb �= ban for all n �= 0, or bna �= abn for all n �= 0.
Then there exists a constant M > 0, which depends on a, b,
such that either 〈an, bm〉 is free of rank two for all n ≥ N, m ≥
M , or 〈am, bn〉 is a free group of rank two for all n ≥ N, m ≥
M .
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(2) Suppose a ∈ G acts by a hyperbolic isometry with a quasi-axis.
Let c ∈ G be such that for any n > 0, canc−1 �= a±n. Then the
subgroup 〈an, camc−1〉 is free of rank two for all n, m ≥ N .

Proof. Let K = K(20δ), L = L(20δ) be the acylindricity constants
evaluated at 20δ. Let P be the constant from Lemma 2.1. Set

N = 4PKL + 200P (δ + 1).

1. Let α, β be quasi-axes of a, b, respectively. Suppose tr(b) ≤ tr(a). Set
M = N tr(a)

tr(b) . We will show that an, bm generate a free group of rank
two if n ≥ N, m ≥ M .

By Lemma 2.2 (1), we have

|α ∩10δ β| < 4PKLtr(a) + 100δ.

It follows that if n ≥ N, m ≥ M then

tr(an) ≥ |α ∩10δ β| + 100(δ + 1), tr(bm) ≥ |α ∩10δ β| + 100(δ + 1)

by the way we chose N, M, P . Note that the first inequality follows from
our assumption and

tr(an) ≥ Ntr(a) = 4PKLtr(a)+200P (δ+1)tr(a) ≥ 4PKLtr(a)+200(δ+1).

The second inequality also holds by the way we chose M . Now we can
apply Proposition 1.1 to an, bm. If tr(b) ≥ tr(a), then set M = N tr(b)

tr(a)

and argue in the same way switching the roles of a and b.
2. Let α be a quasi-axis of a. Put b = cac−1. Then β = cα is a quasi-
axis of b and tr(a) = tr(b). By the hypothesis, for all n �= 0, an �= b±n.
By Lemma 2.2 (2), we have

|α ∩10δ β| < 4PKLtr(a) + 100δ.

We then argue in the same way as the previous case. Since tr(a) = tr(b),
M = N in the previous argument, therefore, the subgroup generated by
an, bm is free of rank two for all n, m ≥ N . Q.E.D.

It is more difficult to analyze a subgroup normally generated by two,
or even one, elements. See an interesting paper by T. Delzant [De] which
contains positive results and a warning example.

2.2. Hyperbolic isometries without quasi-axes
Although we have been assuming that hyperbolic isometries have

quasi-axes, this assumption is not necessary for our purpose if we only
assume the acylindricity of the action. In this section, we state results
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without assuming quasi-axes for potential application in the future since
the existence of quasi-axes is a strong assumption. Uninterested readers
may skip this section as it is unnecessary for our application to mapping
class groups.

Our main goal is to drop the assumption on quasi-axes from Propo-
sition 2.3 as follows.

Proposition 2.4. Suppose that G acts acylindrically by isometries
on a δ-hyperbolic graph Γ. Then there exists a constant N > 0, which
depends on δ and the set of the acylindricity constants K(R), L(R), such
that the conclusion of Proposition 2.3 (1), (2) holds without the assump-
tion that a, b have quasi-axes. (This constant N is maybe larger than the
one which is obtained in Proposition 2.3).

Proof. A hyperbolic isometry always has a quasi-geodesic axis (see
Section 1.2). Basically, we use quasi-geodesic axes instead of quasi-axes
for hyperbolic isometries. We then adapt the original argument to the
new setting. We may first need to modify the statements since some
of the original ones concern quasi-axes. Namely, we restate and prove
Proposition 1.1, prove Lemma 2.1, restate and prove Lemma 2.2, and
finally modify the proof of Proposition 2.3.

We only outline the arguments. As for Proposition 1.1, replace
quasi-axes α, β by quasi-geodesic axes α, β and also α∩10δ β by α∩1000δ β
in all places in the statement. We did not give a proof of Proposition
1.1 and only referred to [Ko] and [Fu]. The arguments there work with
minor modification using the properties (1) and (2) of the quasi-geodesic
axes.

We reprove Lemma 2.1 without using quasi-axes. This result says
that the existence of such P is a consequence of the acylindricity.

Lemma 2.5. Suppose G acts by isometries on a δ-hyperbolic graph
Γ. If the action is acylindrical, then there exists an integer P ≥ 1 such
that for any element a ∈ G which acts hyperbolically on Γ, we have
tr(aP ) ≥ 1.

The proof is essentially same as for Lemma 2.1. We use a quasi-
geodesic axis α instead of a quasi-axis. The key property is (2), which
says that a sub-path of α is at most 10δ-close to a geodesic with the
common end points with the sub-path.

Proof. We may assume δ > 0. Let α be a quasi-geodesic axis for
a. Set R = 1000δ. Take a point x ∈ α, and let y ∈ α be a point with
|x − y| ≥ L(1500δ). Since α is a quasi-geodesic axis, it follows that if
|ai(x) − x| ≤ R, then |ai(y) − y| ≤ R + 500δ = 1500δ. Therefore, by
acylindricity (look at the set of elements ai, 1 ≤ i ≤ K(1500δ), and a
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pair of points x, y), there exists some I, with 1 ≤ I ≤ K(1500δ), such
that |aI(x) − x| > 1000δ = R. From this, since again α is a quasi-
geodesic axis, for any n ≥ 1, |aIn(x) − x| > 500δn. Now, as before, we
get

tr(a) ≥ 500δ

K(1500δ)
.

Take P ≥ K(1500δ)
500δ . Q.E.D.

Next, we modify Lemma 2.2. Namely, we replace quasi-axes α, β
for a, b by quasi-geodesic axes in the assumption. The inequality in the
conclusion should be replaced, for example, by

|α ∩1000δ β| < 4PK(20δ)L(20δ)max(tr(a), tr(b)) + 10000δ,

where P is the constant from Lemma 2.5. The proof is same after an
appropriate modification regarding constants.

Having done all this, the argument for the proposition is same as
for Proposition 2.3 with minor modifications. For example, replace all
α∩10δβ by α∩1000δβ and define the constant N = 4PKL+20000P (δ+1),
where, P is the constant from Lemma 2.5. We omit details. Q.E.D.

§3. Application to mapping class groups

3.1. Two pseudo-Anosov maps

Let S be a compact orientable surface. Following [MM], we call S
sporadic when S is a sphere with p ≤ 4 punctures or a torus with p ≤ 1
puncture. Mapping class groups Mod(S) are already well-understood in
this case. Namely (see [Iv, 9.2]), Mod(S) is isomorphic to SL(2, Z) if S
is a torus with ≤ 1 puncture; Mod(S) is commensurable with PSL(2, Z)
when S is a sphere with 4 punctures; and Mod(S) is finite when S is a
sphere with ≤ 3 punctures.

The following result is well-known (for example, see [Iv1]) except for
a uniform bound on one of the exponents by Q.

Theorem 3.1. 1

Let S be a compact orientable surface and Mod(S) its mapping class
group such that S is non-sporadic. Then there exists a constant Q(S)
with the following property.

1In [Fu], this result will be improved such that in (1), 〈an, bm〉 is free of
rank two for all n, m ≥ Q(S), where we may need to take a larger constant
for Q(S) than in Theorem 3.1.
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(1) Suppose a, b ∈ Mod(S) are pseudo-Anosovs such that for all
n, m �= 0, anbm �= bman. Then the subgroup 〈an, bm〉 is free
of rank two for all sufficiently large m > 0 and all n ≥ Q, or
〈am, bn〉 is free of rank two for all sufficiently large m > 0 and
all n ≥ Q.

(2) Suppose a ∈ Mod(S) is pseudo-Anosov and c ∈ Mod(S) is
such that for any n > 0, canc−1 �= a±n. Then the subgroup
〈an, camc−1〉 is free of rank two for all n, m ≥ Q.

Regarding the assumption on two pseudo-Anosov elements a, b in
(1), it is equivalent to requiring that the subgroup generated by a, b is
not virtually cyclic, namely, it does not contain a cyclic subgroup of
finite index (see, for example, [Iv, Theorem 7.4.I]).

Proof. Let C(S) be the curve graph of S (see [Iv]). Mod(S) acts
on C(S) by isometries. It is known that C(S) is δ-hyperbolic, and an
element a ∈ Mod(S) acts as a hyperbolic isometry if and only if it is
pseudo-Anosov [MM, Theorem 1.1 and Proposition 4.6]. The action of
Mod(S) is acylindrical, and there is a quasi-axis for a pseudo-Anosov
element [Bo, Theorem 1.3 and 1.4].

Apply Proposition 2.3 to the action of Mod(S) on C(S) and let N
be the constant from the proposition. Set Q(S) = N .
1. We apply Proposition 2.3 (1) to a, b and obtain M . Then the claim
holds for all m ≥ M and n ≥ Q.
2. Apply Proposition 2.3 (2) to a and c. The claim holds for all n, m ≥
Q. Q.E.D.

We remark that the existence of P in Lemma 2.1 for this setting
was already known in [MM] before [Bo].

3.2. Exponential growth rate
Definition 3.2 (Growth rate (see [Har])). Let G be a finitely gen-

erated group. For a finite generating set A, and for an integer n ≥ 0, let
b(G, A; n) be the number of elements in G whose word length in terms
of A are at most n.

The exponential growth rate of (G, A), ω(G, A), is defined as

ω(G, A) = lim sup
n→∞

(b(G, A; n))
1
n .

The group G is said to be of exponential growth if ω(G, A) > 1 for
some (and consequently all) A.

The minimal growth rate of a finitely generated group G of expo-
nential growth is defined to be

ω(G) = inf ω(G, A),
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where the infimum is taken over all finite generating sets A. G is said
to be of uniformly exponential growth if ω(G) > 1.

Let Fk be a free group of rank k > 1. By computation, ω(Fk, Ak) =
2k − 1 for a free generating set Ak. It is a non-trivial fact ([Har, Propo-
sition 13]) that

ω(Fk) = 2k − 1.

If G is a non-elementary word-hyperbolic group, then G contains a
free group of rank two as a subgroup, therefore clearly G has exponential
growth. Moreover, Koubi [Ko] showed that G has uniformly exponential
growth. The key result in his argument is Proposition 5.5 [Ko], which
we generalized in Proposition 2.3. In his case, Γ is a Cayley graph of G,
therefore the action is proper, in particular, acylindrical.

Corollary 3.3. Let S be a compact orientable surface and Mod(S)
its mapping class group such that S is non-sporadic. Let Q(S) > 0 be the
constant from Theorem 3.1. Suppose G < Mod(S) is a finitely generated
subgroup which is not virtually cyclic.

Let Σ be a finite generating set of G. If Σ contains a pseudo-
Anosov element a, then there is an element c ∈ Σ such that the subgroup
〈an, camc−1〉 is free of rank two for all n, m ≥ Q. In particular,

ω(G, Σ) ≥ 3
1

Q+2 .

Proof. There must be an element c ∈ Σ such that canc−1 �= a±n

for all n > 0, since otherwise, Σ would generate a virtually cyclic group.
Apply Theorem 3.1 (2) to a and c. Then, 〈aQ, caQc−1〉 is free of rank
two. The word length of the two elements aQ, caQc−1 in terms of Σ is at
most Q+2. Thus, the inequality on ω(G, Σ) follows from ω(F2, A2) = 3,
where A2 is a free generating set. Q.E.D.

It is not clear if every finitely generated, non-virtually-abelian sub-
group G < Mod(S) has uniformly exponential growth. 2 We ask the
following question.

Question 3.4 (Short pseudo-Anosov elements). Let G < Mod(S)
be a finitely generated, non-virtually-cyclic subgroup which contains a
pseudo-Anosov element. Does there exist a constant U which depends
only on G, or even just on the surface S, such that if Σ is a finite
generating set of G, then there is a pseudo-Anosov element a ∈ G whose
word length in terms of Σ is at most U ?

2After this paper, an affirmative answer is announced by J. Mangahas in
December 2007, using Theorem 3.1(2) combined with her result concerning
non pseudo-Anosov generators. The question 3.4 seems to be still open.
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A positive answer to this question would imply ω(G) ≥ 3
1

UQ+2 by
Corollary 3.3. It seems the answer is not known even for G = Mod(S),
although Mod(S) has uniformly exponential growth if Mod(S) is not
virtually abelian [AAS]. This is because Mod(S) has a surjective ho-
momorphism to Aut(H1(π1(S)), Z)), which has uniformly exponential
growth as it is linear and not virtually nilpotent [EMO]. The kernel of
this homomorphism is called the Torelli group. We do not know if this
subgroup has uniformly exponential growth (see the footnote 2).
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