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Abstract. Recent computers are getting fast enough to compute some dy-

namical or fractal objects in complex two-dimensional space. We show some
attempts to visualize bifurcation locus of two-dimensional parameter space for
complex dynamics in one variable by computer.

1. Introduction

Computer pictures of fractal objects such as the Mandelbrot set and Julia sets
by numerical computation plays quite an important role to give deep insights in
the study of complex dynamics. One can easily see that there are a lot of baby
Mandelbrot sets (homeomorphic copies of the Mandelbrot set in itself), the Julia
sets and filled Julia sets moves discontinuously, and many other phenomena.

Computers can numerically compute forward orbits quite fast (and backward
orbits for low degree cases), and complex one-dimensional objects fit well with
computer monitor. However, for higher-dimensional objects, although we can still
compute orbits easily, it becomes very difficult to visualize such an object.

One simplest way for visualization is taking a projection. But to project an
object in a higher dimensional space to a lower dimensional space, the object must
be sparse. For example, for complex one-dimensional object, it is often the case to
put a color on every pixel in the view. However, it is impossible to see such an object
in complex two-dimensional space by projecting real three or two-dimensional space.
Therefore, it is also necessary to develop algorithms to calculate sparse objects; the
following are examples of such sparse objects:

• For two-dimensional complex dynamical systems (such as Hénon
maps): Second Julia sets or (the closure of) the set of saddle or repelling
periodic points are analogues of Julia set for one-dimensional dynamics and
look sparse in many cases. Also, stable and unstable manifolds for a saddle
have complex one-dimensional, hence it might be possible to see them by
projecting to R3.

• For two-dimensional parameter space for one-dimensional dynam-
ics (such as the cubic polynomial family and the quadratic rational family):
The support of the bifurcation measure or (the closure of) the set of Misi-
urewicz parameters are ones of the most sparse analogues of the boundary
of the Mandelbrot set. As an analogue of (un)stable manifolds in higher-
dimensional phase spaces, one can consider one-parameter spaces and the
bifurcation loci in them.

In the past few years, Ushiki has been producing many pictures and movies of
complex two-dimensional Julia sets using his program Stereo Viewer [U] which runs
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on Mac OS X (recent versions seem to work only on Intel Macs). Stereo Viewer
uses Biham-Wenzel’s method [DMS] to numerically find a lot of periodic points,
which is mathematically wrong in general, but seems to work very well. Then it
projects those points to R3 and displays using OpenGL library. Recently, one can
also see stable and unstable manifolds of saddle fixed points together with those
periodic points.

Here, we consider some complex two-dimensional parameter spaces of one-dimensional
dynamics, mainly the simplest one; the family of cubic polynomials. We explain
how to calculate numerically fractal objects in the cubic polynomial family for
visualization by Stereo Viewer and show some pictures we have obtained.

In parameter spaces, natural objects corresponding to (repelling or saddle) pe-
riodic points are Misiurewicz maps. For the family of polynomials of given degree,
Dujardin and Favre proved that the support of the bifurcation measure coincides
with the closure of the Misiurewicz parameters [DF]. Thus instead of the Biham-
Wenzel’s method, we use their landing theorem to calculate the bifurcation measure.

This is a very first attempt to see complex two-dimensional parameter space
somewhat directly, hence the pictures are clearly not enough to see various phe-
nomena. We also discuss what prevents from making finer pictures. We also discuss
further possible improvements to refine those pictures.

Acknowledgment. The author would like to express his gratitude to Shigehiro
Ushiki for explaining the usage of Stereo Viewer and helpful comments. He would
also thank William Thurston for variable suggestions.

2. Family of cubic polynomials

For (a, b) ∈ C2, we consider the following family of cubic polynomials:

fa,b(z) = z3 − 3a2z + b.

This family is considered as the family of affine conjugacy class of cubic polynomials
with the following two markings:

• Critical marking: the critical point +a is considered as the marked (or first)
critical point and −a is the other (or second) critical point of fa,b.

• Böttcher marking: since fa,b is monic, it has the Böttcher coordinate φa,b

of fa,b at infinity, i.e., a conformal map defined near infinity such that

(1) φa,b(fa,b(z)) = (φa,b(z))
3

and φa,b is asymptotic to the identity (limz→∞
φa,b(z)

z = 1).

More precisely, for any triple (f, ω, φ) of a cubic polynomial, a critical point and
a Böttcher coordinate for f (without the asymptotic condition at infinity), there
exists a unique (a, b) ∈ C2 and an affine map A : C → C such that

fa,b = A ◦ f ◦A−1, A(ω) = a, φa,b ◦A = φ.

There are two natural involutions ιcan : C2 → C2 and ιcp : C2 → C2 as follows:

• The canonical involution ιcan(a, b) = (−a,−b) is given by the conjugacy
−fa,b(−z) = f−a,−b(z).

• ιcp(a, b) = (−a, b) preserves the dynamics and swaps the role of two critical
points of fa,b.



VISUALIZATION OF THE BIFURCATION LOCUS OF CUBIC POLYNOMIAL FAMILY 3

Simply as a cubic polynomial (without any marking), four maps f±a,±b are affinely
conjugate in general.

For (a, b) ∈ C2, let us denote the filled Julia set and the Julia set for fa,b as
follows:

Ka,b = {z ∈ C; {fn
a,b(z)}n≥0 is bounded},

Ja,b = ∂Ka,b.

It is well-known that Ka,b (equivalently, Ja,b) is connected if and only if both of
the critical points ±a are contained in Ka,b. Let us denote

C = {(a, b); Ka,b is connected} = {(a, b); +a,−a ∈ Ka,b}
S = {(a, b); +a,−a ∈ C \Ka,b}.

We call C the connectedness locus and S the shift locus.
We say a map fa,b is Misiurewicz if both of the critical points ±a are strictly

preperiodic. We denote the set of all Misiurewicz parameters by Mis.
The Böttcher coordinate φa,b defines external rays for fa,b: First assume the

filled Julia set is connected. Then φa,b can be extended to a conformal map φa,b :

C \Ka,b → C \ D by the functional equation (1), where D = {|z| < 1} is the unit
disk. The external ray of angle θ ∈ R/Z for fa,b is defined by

Ra,b(θ) = φ−1
a,b{exp(r + 2πiθ); r ∈ (0,∞)}.

If Ka,b is not connected, then φa,b cannot be defined on the whole of C \ Ka,b.
However it is known that Ra,b(θ) can still be defined unless it “bifurcates” at a
backward image of escaping critical points (see figure 1). In particular, if at least
one of the critical points ±a escapes to infinity, there are always two or more rays
which bifurcates at the critical point for the first time.

By the functional equation (1), we have

(2) fa,b(Ra,b(θ)) = Ra,b(3θ).

The Green’s function ga,b : C → [0,∞) for fa,b is defined as follows:

ga,b(z) = lim
n→∞

1

3n
log+ |fn

a,b(z)|,

where log+(x) = max{log(x), 0}. The set

Ea,b(r) = {ga,b(z) = r}

for r > 0 is called the equipotential curve of potential r for fa,b. The Green’s
function and the Böttcher coordinate satisfy the following equations:

ga,b(fa,b(z)) = 3ga,b(z),

log |φa,b(z)| = ga,b(fa,b(z)), if φa,b(z) is defined.

3. Bifurcation measure

In this section, we describe the definition of the bifurcation measure and the
landing theorem by Dujardin and Favre [DF].

The landing theorem states that the bifurcation measure is the image by the
“landing map” e : Cb → C of the natural measure of the combinatorial space Cb.
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Figure 1. The external rays of angle 1/6 and 5/6 bifurcate at the
escaping critical point. Backward images of those rays also bifur-
cate.

3.1. Critical portrait and combinatorial space. We describe the combinatorial
space only for cubic polynomials. See [DF] for more details.

For simplicity, we only consider the case fa,b ∈ S and

(3) ga,b(a) = ga,b(−a) = r

for some r > 0. Let Θ± = Θ±
a,b be the set of external angles for ±a, i.e., the set of

θ ∈ R/Z such that Ra,b(θ) contains (in fact, bifurcates at) ±a. Since fa,b(±a) has
potential 3r > r, there exists a unique external ray Ra,b(η

±) for some η±. Then
by (2), for any θ ∈ Θ±, we have 3θ = η±. It implies that the cardinality of Θ± is
two if ±a is a simple critical point, and three if ±a is double (equivalently, a = 0).
Therefore, we have exactly one of the following:

Non-degenerate case (a ̸= 0): #Θ± = 2 and they are unlinked.
Degenerate case (a = 0): Θ+ = θ−, and #Θ+ = 3.

We say two sets A,B ⊂ R/Z are unlinked if B is contained in a component of
R/Z \A (equivalently, vice versa).

The pair Θ = (Θ+,Θ−) is called the critical portrait of fa,b. The combinatorial
space Cb is the set of possible critical portraits for such fa,b:

Cb = {(Θ+
a,b,Θ

−
a,b); (a, b) ∈ S satisfying (3)},
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And let Cb0 be the set of critical portraits for non-degenerate fa,b:

Cb0 = {(Θ+
a,b,Θ

−
a,b) ∈ Cb; a ̸= 0}.

To describe the combinatorial space Cb in more understandable way, we intro-
duce the notion of cocritical points, which are the points having the same image as
the critical points. For fa,b, we have fa,b(∓2a) = ∓2a3 + b = fa,b(±a), hence the
cocritical points are ∓2a.

Now consider the non-degenerate case. Then there exists a unique external angle
θ± of ∓2a for fa,b. Then it follows that 3θ± = η± and m−1

3 (η±) = Θ± ∪ {θ±},
where m3 : R/Z → R/Z is the three-fold covering map m3(t) = 3t.

Then R/Z \Θ+ has two components; say A and B and we may assume θ+ ∈ A.
Then A has length 2/3 and B has length 1/3. Since Θ− is contained in one of A and
B and the two angles α−

1 , α
−
2 ∈ Θ− differs by 1/3, the only possibility is Θ− ⊂ A.

Hence it follows that θ− ∈ B. In other words, we have θ− ∈ (θ+ + 1
3 , θ

+ + 2
3 ).

It is known that one can define critical portrait combinatorially and all such com-
binatorially defined critical portrait can be realized as the one of some polynomial
[G, Proposition 3.8]. In particular, we have a natural bijection

Cb0 → {(θ+, θ−); θ− ∈ (θ+ + 1
3 , θ

+ + 2
3 )} ⊂ (R/Z)2.

We identify Cb0 and its image by this bijection. Let µCb be the restriction of the
Lebesgue measure on (R/Z)2 to Cb0, normalized such that µCb(Cb0) = 1. We
consider µCb as a measure on Cb, i.e., extend µCb by µCb(A) = µCb(A ∩ Cb0).

Remark 3.1. In fact, Cb \ Cb corresponds to critical portraits of the form Θ =
({θ, θ + 1

3 , θ +
2
3}) for some θ ∈ R/Z. Hence Cb can be identified with

{(θ+, θ−); θ− ∈ [θ+ + 1
3 , θ

+ + 2
3 ]}/ ∼

where (θ+, θ−) ∼ (η+, η−) if θ−, η+, η− ∈ θ+ + 1
3Z.

Goldberg’s realization theorem [G, Proposition 3.8] allows us to define the fol-
lowing Goldberg map (see [DF, Proposition 7.12, 7.19]):

Theorem 3.2. There exists a unique continuous map Φg : Cb× (0,∞) → S such
that when Φg(Θ, r) = (a, b), the following hold:

(1) ga,b(±a) = r,
(2) the critical portrait of fa,b is Θ.
(3) Φg(·, r) is a homeomorphism from Cb onto G(r) = {(a, b); ga,b(±a) = r}.
(4) e(Θ) = limr↘0 Φg(Θ) exists for µCb-almost every Θ ∈ Cb.

A measurable map e : Cb → C is called the landing map.

Remark 3.3. The set

{Φg(Θ, r); r ∈ (0,∞)}
is an example of stretching rays, introduced by Branner and Hubbard [BH].

Stretching rays are generalization of external rays for the Mandelbrot set. It is
conjectured that the Mandelbrot set is locally connected. Hence, by Carathéodory’s
theorem, all external rays conjecturally land. On the contrary, Komori and Nakane
[KN] proved that there exist stretching rays such that the accumulation set as r ↘ 0
is non-trivial; namely, such stretching rays do not land.
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3.2. Bifurcation measure and landing theorem. The bifurcation measure µbif

is first defined by Bassanelli and Berteloot, in terms of bifurcation current, which
is introduced by DeMarco [DM]. Here we briefly recall the definition and state the
landing theorem. See [DF, Section 6] for more details.

Let G±(a, b) = ga,b(±a). Since ga,b is a subharmonic function, G+ and G− are
plurisubharmonic functions on C2. Hence we can consider (1, 1)-currents

T± = ddcG±.

A current defined by Tbif =
1
2 (T+ + T−) is called the bifurcation current and µbif =

T+∧T− = 1
2Tbif ∧Tbif is a well-defined positive measure. We call µbif the bifurcation

measure. Its support is equal to the Shilov boundary of C, and also equal to the
closure of Misiurewicz parameters Mis [DF, Corollary 6, Theorem 9].

The landing theorem [DF, Theorem 8] states the relationship between µbif and
µCb:

Theorem 3.4 (Landing theorem). µbif = e∗µCb.

We explain how to numerically compute µbif in Section 5.2.

4. Superattracting curves

For p > 0, let

Sp = {(a, b); fn
a,b(a) ̸= a (1 < n < p), fp

a,b(a) = a}

be the family of cubic polynomials whose marked periodic points have exact period
p. It is called the period p superattracting curve.

Example 4.1. Case p = 1: Direct calculation shows that S1 = {(a, b); b =
2a3 + a}, which is isomorphic to C.

Case p = 2: Let fa,b ∈ S2. By an affine change of coordinate, we may assume the
marked critical point is 0 and its forward orbit is

0 7→ 1 7→ 0.

Then it has the form

f̃t(z) = tz3 − (t+ 1)z2 + 1

for some t ∈ C∗ = C \ {0}. The free critical point for f̃t is
2(t+1)

3t .

To take an affine conjugacy of f̃t to a monic polynomial, we need to take a square
root of t (the leading coefficient). Therefore, to embed f̃t to (a, b)-plane, we put

t = s2 and parametrize f̃t by s. Then f̃s2 is affinely conjugate to fa,b, where

(a, b) =

(
s2 + 1

3s
, − (s2 − 2)(2s4 − is2 − 1)

27s3

)
.

Therefore, S2
∼= C∗.

Case p = 3: Similarly, any fa,b ∈ S3 is affine conjugate to a polynomial of the
form

f̂α,β(z) = αz3 + βz2 + 1

with

α = −c3 − c2 + 1

c3 − c2
, β =

c4 − c3 + 1

c3 − c2
,



VISUALIZATION OF THE BIFURCATION LOCUS OF CUBIC POLYNOMIAL FAMILY 7

Figure 2. The superattracting curves Sp for p = 1, 2, 3.

which has a period 3 critical orbit

0 7→ 1 7→ c 7→ 0.

Similarly, to take a single branch of γ =
√
α, we need to solve the following equation

on (γ, c):
(c3 − c2)γ2 = −c3 + c2 − 1.

This equation is equivalent to(
2icγ

c− 1

)2

= 4p3 − g2p− g3

where

p =
1

c− 1
+

1

3
, g2 = −20

3
, g3 = −44

27
.(4)

Therefore, S3 is a torus with punctures (indeed there are 8 punctures) and it can
be parametrized using a Weierstrass ℘-function satisfying

(5) (℘′)2 = 4℘3 − g2℘− g3.
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By definition, Sp (p ≥ 1) are mutually disjoint. Furthermore, since suppµbif =

Mis, it is also disjoint from Sp.
Milnor [M2] proved that Sp is a smooth affine curve for any p ≥ 1. It is not

known if Sp is always connected (equivalently, irreducible). As p increases, the
genus and the number of punctures of Sp grows exponentially, so it gets more and
more complicated rapidly.

The action of two involutions ιcan and ιcp are as follows:

• Since ιcan preserves the property that the marked critical point is periodic
of period p, ιcan : Sp → Sp is an conformal automorphism on Sp.

• The image S ′
p = ιcp(Sp) is the parameter set where the other critical point

−a is periodic of exact period p.

For p, p′ > 0, the intersection Sp ∩ S ′
p′ corresponds to the set of parameters such

that both a and −a are periodic of period p and p′ respectively. Milnor [M2] proved
that Sp and S ′

p′ intersect transversally for any p, p′ > 0.

5. Visualization

5.1. Stereo Viewer. Stereo Viewer was developed by Ushiki [U] to see complex
two-dimensional Julia sets. This program is divided into several parts: The main
part is only for visualization and the user interface, and it calls other programs, cal-
culating Julia sets and (un)stable manifolds for saddle fixed points, and outputting
data files (DTS file).

A DTS file consists of coordinates and colors of points in real 4-dimensional
space. Stereo Viewer reads up to five DTS files and projects the points in the DTS
files into 3-dimensional space, and show with help of OpenGL, a commonly-used
library for 2D and 3D graphics. One can dynamically rotate objects not only in
the 3-dimensional space, but also the in the 4-dimensional space. It is also possible
to show (cross-eyed) stereogram to see sterically.

Remark 5.1. A sample code to make a DTS file in C programming is as follows:

(1) First open a file:
sfile = fopen("filename.dts", "w");

(2) Output the number of points to be contained in the file:
fwrite(&num, sizeof(int), 1, sfile);

(3) Output the coordinates (of type float) and the color (of type unsigned

int) for each point:
fwrite(&xre, sizeof(float), 1, sfile);

fwrite(&xim, sizeof(float), 1, sfile);

fwrite(&yre, sizeof(float), 1, sfile);

fwrite(&yim, sizeof(float), 1, sfile);

col = (alpha << 24) | (b << 16) | (g << 8) | r;

fwrite(&col, sizeof(unsigned int), 1, sfile);

(4) Repeat (3) for all points.

The color format is RGBA, but it seems alpha channel (transparency) does not
affect. If a point is sufficiently close to the real plane, then it is automatically
colored in red.

Because of the endian and the size of the types (int, float, etc,.), one might need
to re-compile Stereo Viewer to work properly.
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Figure 3. Stereo Viewer showing the Julia set and the unsta-
ble and stable manifolds of a saddle fixed points of Hénon map
H(x, y) = (x2 − 1.4 + 0.3y, x).

5.2. Visualization of the bifurcation measure. We calculate the bifurcation
measure with help of the landing theorem (Theorem 3.4). Namely, we compute
the Goldberg map Φg(Θ, r) for small r > 0. Let Θ = (θ+, θ−) ∈ Cb0 ⊂ (R/Z)2
be a critical portrait. By using the fact that Böttcher coordinates are close to the
identity near infinity, we can approximate Φg(Θ, r) when r is large. First, observe
that if (a, b) = Φg(Θ, r), then we have φa,b(fa,b(±a)) = exp(3r+6πiθ±). Replacing
φa,b by the identity map, we get the following:

a3 =
e3r

4
(e6πiθ

−
− e6πiθ

+

),

b =
e3r

2
(e6πiθ

+

+ e6πiθ
−
).

Now we need to choose a cubic root of a3 appropriately. By a combinatorial as-
sumption that θ− ∈ (θ+ + 1

3 , θ
+ + 2

3 ), we can take representatives θ+, θ− ∈ R
satisfying θ− − θ+ ∈ ( 13 ,

2
3 ). Then we have 6π(θ+ − θ−) ∈ (−4π,−2π), hence it

follows that

arg(a3) = arg(e6πiθ
−
(1− e6πi(θ

+−θ−)))

= 6πθ− +
1

2
(6π(θ+ − θ−) + 4π)− π

2

≡ 3π(θ+ + θ−)− π

2
mod 2π.
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Therefore,

arg a ∈ π

(
θ+ + θ− − 1

6

)
+

2π

3
Z

= 2πθ+ + π

(
θ− − θ+ − 1

6

)
+

2π

3
Z.

Thus the argument of the marked cocritical point −2a satisfies the following:

1

2π
arg(−2a)− θ+ ∈ 1

2
+

1

2
(θ− − θ+)− 1

12
+

1

3
Z

⊂
[
7

12
,
9

12

]
+

1

3
Z

=

([
7

12
,
9

12

]
∪
[
− 1

12
,
1

12

]
∪
[
3

12
,
5

12

])
+ Z.

Therefore, in order to let arg(−2a) close to θ+, we get

arg a = π

(
θ+ + θ− − 1

6

)
+

2π

3
= π(θ+ + θ−) +

π

2
.

As a conclusion, when r > 0 is sufficiently large, then Φg(Θ, r) is approximated by
fa,b such that

a =
er

4
1
3

(e2πiθ
−
− e2πiθ

+

), b =
e3r

2
(e6πiθ

+

+ e6πiθ
−
).(6)

Now we let r ↘ 0. We repeatedly Newton’s method in C2 to solve the following
equations on (a, b):

(7) fn
a,b(±a) = exp(3nr + 3nπiθ±).

Fix r0 > 0 sufficiently large. For each Θ ∈ Cb0, let (a0, b0) be the initial value
defined by (6) for r = r0. The algorithm is as follows. Let ε > 0 be sufficiently
small.

(1) Let l = log r0 and (a, b) = (a0, b0).
(2) Decrease l by ε (i.e., l := l − ε).
(3) Take the smallest n > 0 which satisfy 3nel ≥ r0.
(4) Solve the equation (7) by Newton’s method with initial value (a, b), and

replace the variables (a, b) by the obtained solution.
(5) Repeat (2)-(4) until n gets sufficiently large.

Figure 4 shows a picture of the bifurcation measure approximated by this algorithm.
We also plotted the real part (i.e., the landing points for real stretching rays), which
corresponds to the bifurcation locus in the second and fourth quadrants for the
family of real cubic polynomials z3 − 3Az +

√
B (see Figure 5).

To execute Newton’s method, we need the derivative ∂
∂a (f

n
a,b(±a)). In most

cases, this diverges exponentially fast, so indeed it is impossible to iterate so many
times. We do the calculation until n = 30, but Newton’s method already diverges
for some Θ ∈ Cb0.

5.3. Visualization of superattracting curves. We can generally visualize any
one-parameter family. Here we only treats Sp, but one can apply similar method
to any algebraic curve in C2.
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Figure 4. A stereoscopic image of the bifurcation measure µbif

visualized by Stereo Viewer.

5.3.1. Direct calculation for p = 1, 2, 3. Since we know the exact parametrizations
of Sp for p = 1, 2, 3, we can use those to compute.

We would like to plot points in Sp which is close to the bifurcation locus. The
following algorithm is the simplest way to do this. To get a better approximation,
one can apply Milnor’s distance estimate algorithm to draw pictures of Julia sets
[M1, Appendix H] for instance.

Let us assume Sp is parametrized by t ∈ Ω ⊂ C.
(1) Fix R > 0 sufficiently large, integers N > N0 > 0, and a grid Γ ⊂ Ω (for

example, Γ = (εZ+ εiZ) ∩ Ω for small ε).
(2) For each t ∈ Γ, calculate the corresponding parameter (a, b) ∈ C2 and the

orbit {fn
a,b(−a)}n=1,...,N until it satisfies the escaping condition |fn

a,b(−a)| >
R. The smallest such n is called the escaping time.

(3) Plot the point (a, b) with the color corresponding to n if −a escapes to
infinity and the escaping time n satisfies N0 ≤ n ≤ N .

By definition, the marked critical point never escapes to infinity for fa,b ∈ Sp.
Thus we only need to check the orbit of the other (free) critical point −a. For
other curves, one might need to consider both of the critical points, so one need to
plot when either one of the critical points, or both of the critical points escapes to
infinity with the escaping time N0 ≤ n ≤ N .

Figures 6–9 show the bifurcation loci of Sp for p = 1, 2, 3, visualized by Stereo
Viewer. By rotating dynamically on a computer, one can see how Sp and S ′

p′

intersects for p, p′ ≤ 2. Although S3 is topologically just an eight-punctured torus,
the picture looks too complicated to see how it is embedded into C2.

Remark 5.2. To draw S3, we also need to calculate a Weierstrass ℘-function. Co-
quereaux, Grossmann and Lautrup [CGL] gave a quite effective method to compute
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Figure 5. A stereoscopic image of the real part of the bifurcation
measure and the family of real cubic polynomials z3 − 3Az +

√
B.

the ℘-function defined by the differential equation (5). Their method is iterative;
they use the duplication formula

℘(2z) = −2℘(z) +
[6℘3(z)− 1

2g2]
2

4[4℘3(z)− g2℘(z)− g3]
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Figure 6. The bifurcation loci of S1 and S ′
1 embedded in C2.

Compare Figure 2.

Figure 7. The bifurcation loci of S2 embedded in C2. Compare Figure 2.

and the Laurent expansion near the origin. Moreover, they also give an iterative
way to compute the periods for given g2 and g3.

An implementation of their method is included in the source code of QFract
which is available from the author’s website.
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Figure 8. The bifurcation loci of S1, S ′
1 and S2 embedded in C2.

Compare Figure 2.

Figure 9. The bifurcation locus of S3 embedded in C2. Compare Figure 2.

For S3, the constants g2 and g3 are given in (4). A numerical computation shows
that the periods are given by the following:

A = 3.410..., B = 1.705...+ 1.509...i.
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5.3.2. Solving Hamiltonian dynamics. Even when we have a direct parametrization
for a given smooth affine curve in C2, one can get a local holomorphic coordinate
using Hamiltonian dynamics. See [AC] and [BKM] for more details. Hence we
can similarly draw any curve if one can calculate the defining equation and its
derivatives.

We have not yet implemented this method, because S3 is already too compli-
cated. It seems we need to develop a better user interface first to understand Sp

for p ≥ 4 (cf. Section 7).

6. Quadratic rational family

Although we gave the definition of the bifurcation measure only for the cubic
polynomial family, it is defined not only for any degree at least two, but also (in
fact, originally) for the family of rational maps (see [BB] and [DF]). However, we do
not know how to compute the bifurcation measure, neither Misiurewicz parameters.

On the other hand, one can similarly draw one-parameter families for the qua-
dratic rational family, which is essentially of complex dimension two.

Figure 10 shows complex one-dimensional picture of Sp for p = 2, 3, 4. Fig-

ures 11–13 show those curves under the parametrization fa,b(z) =
z2+a
z2+b . Observe

that the critical points for fa,b are 0 and ∞. We regard ∞ as the marked critical
point and similarly define curves superattractive curves Sp (p ≥ 1).

p = 1: S1 is just the well-known Mandelbrot set. Since we always have
fa,b(∞) = 1, the curve S1 indeed lie in the line at infinity of this parameter
space. The involuted image S ′

1 = ιcp(S1) is equal to a line {b = 0}.
p = 2: We have S2 = {fa,b(1) = ∞} = {a = −1} is a line and S ′

2 =
{fa,b(ab ) = 0} \ S ′

1 = {a = b2}.
p = 3: For fa,b ∈ S3, let t = fa,b(1) = f2

a,b(∞). Then we have fa,b(t) = ∞,
hence it follows that

S3 = {(1− t2)t− 1,−t2) ∈ C2}.

p = 4: Let us take a Möbius conjugacy for fa,b ∈ S4 such that ∞ 27→ 0 7→
1 7→ s 7→ ∞. Then it must have the following form:

z 7→ s(s− 1)

(z − s)((s− 2)z + 1− s)
.

See Figure 10. Note that since the bifurcation locus for S4 is unbounded in the
s-plane, a Möbius coordinate change is applied to get a bounded picture.

7. Problems and further improvements

Here, we summarize problems and further possibility for improvements.

7.1. The case of the Mandelbrot set. First of all, to see how accurate our
picture is (or isn’t), we show a picture of the Mandelbrot set drawn with the same
algorithm in Figure 14.

Clearly it is quite rough, compared to any reasonable picture of the Mandelbrot
set we can get nowadays. Especially near parabolic parameters, we need much more
iteration and density to get detailed picture.

Hence, unfortunately, we do not have any nice mathematical suggestion which
can be read from those pictures. In the following, we discuss how one can improve
those pictures for better understanding.
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Figure 10. The superattracting curves Sp (p = 2, 3, 4) for the
quadratic rational family.

7.2. More iteration. As we have already mentioned in Section 5.2, derivatives
rapidly diverges to infinity as the number of iteration increases. That prevents to
solve the equation (7) by Newton’s method.

For example, as in the case of the Mandelbrot set, we need more iteration if a
stretching ray of critical portrait Θ ∈ Cb0 lands (or accumulates) at a parameter
(a∗, b∗) having a parabolic periodic point. Say the marked critical point a∗ is in the
parabolic basin for fa∗,b∗ . However, if we further assume that−a∗ is preperiodic and
repelling for fa∗,b∗ , then the derivative along the orbit of −a grows exponentially
for (a, b) close to (a∗, b∗). Therefore, Newton’s method diverges and we cannot very
get close to (a∗, b∗).

7.3. Subdivision. To visualize the bifurcation measure, it is reasonable to take an
equidistributed grid in Cb0 ⊂ (R/Z)2. However, to get a nice picture of its support
Mis, it is better to let points equidistributed in the parameter space C2 (this is
suggested by Thurston).
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Figure 11. Superattracting curves S ′
1, S2 and S ′

2 for quadratic
rational family.

Figure 12. Superattracting curve S3 for quadratic rational family.

In order to do that, we need to change the density in Cb0 depending on the
Jacobian matrix of the landing map e : Cb → C, or Φg(·, r) : Cb0 → C2 for small
r > 0. Hence we need to use some algorithm to dynamically subdivide Cb0.
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Figure 13. Superattracting curves S4 for quadratic rational family.

Figure 14. Bifurcation measure for the quadratic family.

This type of subdivision method should be also useful for one-parameter families.
We took equidistributed grids in the parameter spaces of the curves. Hence the
density in Stereo Viewer varies depending on derivatives of embeddings. Some part
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looks very small in the one-parameter family but it can be large in C2 (compare
Figure 2 and Figures 6-9).

7.4. The bifurcation measure for the quadratic rational family. As already
mentioned, we do not know how to compute the bifurcation measure, nor Mis-
iurewicz parameters (with high (pre)periods) for the family of quadratic rational
maps. One might need to find a non-rigorous method to find Misiurewicz parameter
in a reasonable time like Biham-Wenzel’s method.

7.5. Better user interface. A good graphical user interface (GUI) plays an im-
portant role to see many phenomena from pictures. The following is a list of some
nice functionalities implemented some programs drawing the Mandelbrot set, Julia
sets and so on:

Zooming: One can zoom in any part of the picture.
Dynamically drawing Julia sets: If one click (or double-click) the param-

eter space, then the corresponding Julia set is shown.
Forward and backward orbit: One can see the forward/backward orbits

of the pointed point in the phase space. Some programs can even draw
orbits of the set of many points to see the forward/backward images of a
curve, and so on.

As we see in Section 5.3, the embedded Sp is already too complicated to see in
Stereo Viewer when p = 3. Zooming feature looks necessary to see such knotty
objects. Since the space is real four-dimensional, we might need not only zooming,
but also moving and rotating around the whole space with help of keyboard or
joystick.

Then it might be helpful to add a functionality to dynamically show the Julia set
of the parameter at the center of the picture (it looks difficult to implement an user
interface to pick a parameter in C2), to see what happens in the dynamical space.
Drawing one-parameter families orthogonal to the screen might be also informative.
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