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Introduction

In early 90’s, Gross and Prasad [12], [13] gave a series of fascinating
conjectures on the restriction of automorphic representation of a special
orthogonal group to a smaller special orthogonal subgroup. We now
recall their global conjecture. Let k be a global field with char(k) #
2. Let (Vo,Q0) C (V1,Q1) be quadratic forms over k with rank n
and n + 1, respectively. We assume that n > 2 and that (V, Qo) is
not isomorphic to the hyperbolic plane. We regard Gy = SOgq, as
a subgroup of G4 = SOq,. Let m ~ ®,m, and my ~ ®,m, be
irreducible tempered cuspidal automorphic representations of G;(A)
and Go(A), respectively. Assume that Home,k,) (1,0 ® To, C) # {0}
for any place v of k. Then the global Gross-Prasad conjecture [12]
asserts that

(e1lcos o) = / ©1(90)%0(g0) dgo # 0
Go(k)\Go(A)

for some ¢ € m and ¢g € 7 if and only if L(1/2,m K m) # 0. Here,
L(s,m W mp) is the “product” L-function of 7; and 7.

In this paper, we would like to formulate a conjecture, which ex-
presses the period (¢1]|g,, o) in terms of L-values. Put

C(2)¢(4)---¢(20) if dimV) =20+ 1,
Ag, = o
C(2)¢(4) - ¢(20 =2) - L(l, xq,) if dimV; =21,
where x(, is the quadratic Hecke character associated with the discrim-
inant of @;. Let m ~ ®,m, and 7y ~ ®,m, be irreducible cuspidal
automorphic representations of G1(A) and Gy(A), respectively. We
assume, for simplicity, m; and my are tempered. We put

L(s,m X mp)
L(s+ (1/2),m,Ad)L(s + (1/2), 7, Ad)’
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where L(s, m1, Ad) and L(s, mg, Ad) are the adjoint L-function of m; and
that of mg, respectively. We assume that the L-functions L(s, m X m),
L(s,m,Ad), and L(s,my, Ad) have meromorphic continuation. For a
sufficiently large finite set of bad places S, we denote the partial Euler
products for Pr, x,(s) and Ag, by P2 . (s) and A , respectively.

Let ¢1 = Qup1,, € m and @y = @ypo, € mo be cusp forms. We
consider the matrix coefficients

(I)m,v,m,u (1) = <7Tl,v(gl)901,v7901,v>va g1 € Gi(ky),
(I)cpo,u,cpo,u (90> = <770,v<90)900,v7 9007v>va 9o € GO(kv)~
Put

](9017117 900,11) = / q)sol,v,m,v (gO,v)q)l.Do,v,t.Do,v (gO,v) ng,v-
Go(kv)

It will be proved that this integral is convergent (Proposition 1.1).
Then we conjecture that there exists an integer 3 such that

|<901|G07900>|2 8 S pS I{(p10, Pow)
* = 2CoAE P (1/2 o Pou)
6) o o ey = 2 CA&PAm 2 L o

veS

where Cj is a constant determined by the choice of the local and global
Haar measures of Go(A) (Conjecture 1.5). For more precise defini-
tions, see §1. When n = 2, our conjecture reduces to the theorem of
Waldspurger [46].

One can give a possible interpretation of the factor 2° in (%) in terms
of the Arthur conjecture [2]. Let L£; be the hypothetical Langlands
group for k. Then, if we admit the Arthur conjecture, for an irreducible
cuspidal tempered automorphic representation m; of G;(A) (i = 0,1),
one can attach an L-homomorphism ; : £, — G, = GZ X Wy,
where Wy, is the Weil group [45] of k. It is generally believed that
the structure of the L-packet for 7; is closely related to the finite group
Sy, = Centg (Im(t);)). Then, we conjecture that

1

=

Sy |- [Syol
(cf. Conjecture 2.1.)

This paper consists of three parts. In Part I (§§1-3), we formulate
our conjecture in detail. We first formulate our conjecture in the tem-
pered case. Then we discuss the relation with the Arthur conjecture.
In particular, a possible interpretation of the factor 2° in terms of
Arthur parameter will be given. In §3, we discuss the non-tempered
case. In the non-tempered case, several difficulties will arise. One is

that the factor Py, r,(s) may not be holomorphic at s = 1/2. Another



3

difficulty is that the integral I(y1 ,, ©0,) may not be convergent. Nev-
ertheless, several examples suggest that an analogue of (¥) holds in
non-tempered case. We give a somewhat optimistic conjecture in §3
for non-tempered case.

In Part IT (§§4-5), we develop some local theory to show that our
conjecture (¥ ) makes sense. In §4, we prove that the local integral
I(¢1.4, pow) is convergent if both 7, and m, are tempered. In §5, we
show that

[<901,v7 ()00,1)) = AGI,U,Pﬂ.I,'U77TO,U(1/2)

for unramified case (Theorem 1.2). In particular, the right hand side of
(%) is independent of the choice of the set S of bad primes. In course
of the proof, we make use of the results of Ginzburg, Piatetski-Shapiro,
Rallis [9] and those of Kato, Murase, Sugano [29]. We emphasise the
fact that the factor Py, r,(s) already appeared in [9].

In Part IIT (§86-12), we give several examples over number fields.
One can also give several examples over function fields, but we do not
discuss such cases in this paper. In §6, we show that our conjecture is
compatible with the theorem of Waldspurger [46]. In §7, we prove our
conjecture for n = 3 by using the first named author’s result [25]. Then
we show that our conjecture is compatible with the result of Watson
[47] in some cases. We also discuss the relation with the conjecture of
Deligne [7] and the conjecture of Shimura [39], [40]. In §8, we consider
the restriction of the Yoshida lift to the diagonal subgroup. We recall
the result of Gan and the first named author [8], which is compatible
with our conjecture. In §9, we consider the restriction of the Saito-
Kurokawa lift to the diagonal subset. We show that the first named
author’s result [24] is compatible with our conjecture. Note that this
example is non-tempered. In §10, we consider our result on the re-
striction of the hermitian Maass lift to the space of Saito-Kurokawa
lifts [26]. This example is also non-tempered, and is compatible with
our conjecture. In §11, we consider the trivial representation. This
example reduces to the mass formula for the quadratic forms. In §12,
we collect the calculation over the real place, which is necessary to get
the result of §7, §9, and §10.

The authors would like to thank Kaoru Hiraga for helpful discussions.

Part I. Global theory
1. FORMULATION OF THE CONJECTURE

In this paper, we would like to formulate a conjecture on a relation
between a certain period of automorphic forms on special orthogonal
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groups and some L-value. Our conjecture can be considered as a re-
finement of the global Gross-Prasad conjecture [12].

Let k be a global field with char(k) # 2. Let (V1, Q1) and (Vp, Qo) be
quadratic forms over k with rank n+ 1 and n, respectively. We assume
n > 2. When n = 2, we also assume (1, Q)g) is not isomorphic to the
hyperbolic plane over k. We denote the special orthogonal group of
(Vi, Qi) by G; (i = 0,1). From now on, the subscript ¢ will indicate
either 0 or 1, except for some obvious situation. We assume there
is an embedding ¢ : V) <— V; of quadratic spaces. Then we have an
embedding of the corresponding special orthogonal groups ¢ : Gg — Gj.
We regard Gy as a subgroup of G by this embedding. The group G;(k,)
of k,-valued points of G; is denoted by G ,.

For even-dimensional quadratic form (V, @), the discriminant field
Kg is defined by Ko = k(y/(=1)dmV/2det Q). We put K = Kg,
(resp. K = Kg,), if dim 'V} is even (resp. if dim V] is even). We call K
the discriminant field for the pair (V1,V5). Let x = xx/x be the Hecke
character associated to K/k by the class field theory.

Put

(4)---¢(20) if dimV; = 21 + 1,
C(2)¢C(A4)---C(2t—2) - L(l,y) if dimV; = 21.

Note that Ag, = L(M,’(1)), where M,’ is the dual motive of the motive
M; associated to G; by Gross [11].

Let m; ~ ®,m; , be an irreducible square-integrable automorphic rep-
resentation of G;(A). There is a canonical inner product (, ) on forms

on G;(k)\G;(A) defined by
(i, 7) :/ ei(9:)¢;(9:) dgi,
Gi(k)\Gi(A)

where dg; is the Tamagawa measure on G;(A). We choose a Haar
measure dg;, on G;, for each v. There exists a positive number C;
such that dg; = C;[], dg;», when the right hand side is well-defined.
In this paper, we call C; the Haar measure constant. Since m;, is an
unitary representation, there is an inner product ( , ), on m;, for any
place v of k. We put ||;,| = <gpi7v,gpi7v>ll,/2, as usual. There exists
a positive constant Cy, such that (¢;, ;) = Cr, [, {@iw, ¢}.)v for any

decomposable vectors p; = ®,@;, € ®uTi, and ; = @@, € QyTi .
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We fix maximal compact subgroups Ky = [, K1, C Gi(A) and
Ko =11, Kow C Go(A) such that [ICy : K1 N Ky] < co. We choose a
KC;-finite decomposable vector ¢; = ®,¢;, € ®,T;,. We are interested
in the period (p1|a,, o) where ¢1|g, is the restriction of ¢; to Go(A).

Let S be a finite set of bad places containing all archimedean places.
We may and do assume the following conditions hold for v ¢ S:

Ul) G, is unramified over k.
U2) K, is a hyperspecial maximal compact subgroup of G; .
U3) Koo C K.
U4) m;, is an unramified representation of G; .
U5) The vector ¢;, is fixed by K;,, and ||¢;.] = 1.
UG) flCi . dgi,v =1.
When G; is unramified over k,, we shall say that a Haar measure
on G, , is the standard Haar measure if the volume of a hyperspecial
maximal compact subgroup is 1. Thus the condition (U6) means that
the measure dg;, is the standard Haar measure.

The L-group “G; of G; is a semi-direct product G, x Wy. Here, Wy,
is the Weil group of £ and

& {Sp,(C) if dim V; = 20 + 1,

" 1S0(21,C) if dimV; = 2I.

We denote by st the standard representation of “G;. The completed
standard L-function for m; is denoted by L(s,m;,st) for an irreducible
automorphic representation 7; of G;(A). For simplicity, we sometimes
denote L(s,m;,st) by L(s,m;). For v ¢ S, the Euler factor for L(s, m;) is
given by det(1 —st(Ax,,) ¢, )", where A,  is the Satake parameter
of m;,. We consider the tensor product L-function L(s,m; X m). The
Euler factor of L(s,m M ) for v ¢ S is given by det(1 — st(As,,) ®
St(Any,) - 4,°) .

Consider the adjoint representation Ad : ’G; — GL(Lie(G;)). The
associated L-function L(s,m;, Ad) is called the adjoint L-function. We
assume that L(s, m1Xmy) and L(s, m;, Ad) can be analytically continued
to the whole s-plane.

We put

L(s,m K m)
L(s+(1/2),m,Ad)L(s + (1/2), 7, Ad)’

Let m;, be an irreducible admissible representation of G;,. We de-
note the complex conjugate of m; , by 7;,. It is believed that

(MF) dim¢ Homg,, , (71,, ® 7o, C) < 1

Pm,ﬂo (S) -
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for any place v of k. We do not assume (MF) in this paper. Note that
an analogue of (MF) for orthogonal groups has been proved by Aizen-
bud, Gourevitch, Rallis, Schiffmann [1] for non-archimedean place and
by Sun and Zhu [44] for irreducible Harish-Chandra smooth represen-
tations for archimedean place.

We consider the matrix coefficient

Dy, v, (90) = (i w(90) i Piudvs  Gi € G

for IC; ,-finite vectors 1 ,, 90/1,1; € m, and Ky ,-finite vectors ¢y ,, go{)’v €
T0,0- Put

I(Sol,v; 90/1,& ©0,v; 906,1;) = /G’ (I)sm,v,so’l,v (90,11)(1)5007@,30671, (go,v) ng,v;
0,v

(P10, P03 Pos P00) =BG, 0 Prawimon (1/2) 7 (01,0, 01,05 P00 Po0)-
When ¢, = ¢, and @, = ¢y, we simply denote these objects by
I(¢1,0, P0v) and ay, (14, Po,v), respectively.

Proposition 1.1. If both 7, and m, are tempered, then the integral
I(1.4, pow) is absolutely convergent and I(p1., ov) > 0 for any IC; -
finite vector @, ., € ;.

Theorem 1.2. Let v be a non-archimedean place. Assume that the
conditions (U1), (U2), (U3), (U4), (Ub), and (U6) hold. If the integral
I(1.0, pow) is absolutely convergent, then we have ay, (Y14, Yow) = 1.

The proofs of Proposition 1.1 and Theorem 1.2 will be given in Part
II.

Conjecture 1.3. Assume that both 7, and 7, are tempered. Then
dim¢ Homg, , (71, ® 7o, C) # {0} if and only if o (1,0, poe) > 0 for
some K; ,-finite vector ¢;, € m;,.

Now let m; ~ ®,m;, be an irreducible cuspidal automorphic repre-
sentation of G;(A). We shall say that 7; is almost locally generic if 7;
satisfies the following condition (ALG).

(ALG) For almost all v, the constituent 7, , is generic.

It is believed that 7; is almost locally generic if and only if 7; ,, is generic
for some v. It is also believed that 7; is almost locally generic if and
only if 7; is tempered (the generalized Ramanujan conjecture).

Conjecture 1.4. Let m; >~ ®,m;, be an irreducible cuspidal automor-
phic representation of G;(A). We assume both 7 and 7 are almost
locally generic. Then

(1) The integral I(y1.4,¢0.) should be absolutely convergent and
I(¢1,0,90v) > 0 for any KC; ,-finite vector ¢;, € m;,.



(2) dime Homg, (1,0 70, C) # {0} if and only if ay (1., Go0) >
0 for some K; ,-finite vector ¢;, € m;,.

Now we state our global conjecture.

Conjecture 1.5. Let m >~ ®,m, and my ~ ®,7, be irreducible cus-
pidal automorphic representations of G1(A) and Gy(A), respectively.
We assume 7; and 7 are almost locally generic. Then there should be
an integer J such that

2
[{p1lcy o) —2ﬁCOAG1 o (1/2) H Qy 801u,§00v)

{e1, 1) (@0, #0) veS le10]* - [l0.]*

for any non-zero vectors 1 = ®,¢1, € m and @y = Qo € To.
We will discuss the nature of the integer 3 in the next section.

Remark 1.6. When 7 and my are tempered, it is believed that the
local L-factors L(s,my,, Ad), L(s,mo., Ad), and L(s, 7, X m,) are
holomorphic for Re(s) > 0. Therefore in this case our conjecture is
equivalent to

<P1 vy 900,1))
: ||900,v|

|<S01|G07<P0>|2 _2BCA
<(2017901><(2007900>

7l'1 770

>

UES

where AS and P;fl () are the partial Euler products. In particular,

the deﬁnitlon of the L-factors for bad primes plays no role in this case.
Note also that it is believed that L(1,m;, Ad) # 0 if 7; is tempered.

Remark 1.7. One can formulate Conjecture 1.5 in a different way as
follows. Assume the local measure dg;, and the local inner product
(, )y are normalised so that C; = C, = 1. Put

Hmmo = HomGO(A)xGO(A)((ﬂ-l X 7~T1) X (77'0 X %o), (C)

We define two elements [global [local < Hy », by

1,70 7 1,70

LEP (o1, 0500, 00) = (@110, o) (@ ]o» €h)

local

L2 (01,1390, 20) = [ [ 0to(Pr0: 94 15 o 0h)-

Then Conjecture 1.5 can be reformulated as

Lglobal — QQAGIPWlJO(]_/Q)Llocal

1,70 1,70 "
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2. RELATION TO THE ARTHUR CONJECTURE

This section is devoted to a somewhat speculative argument based
on the Arthur conjecture [2]. We recall the Arthur conjecture for au-
tomorphic representation of reductive algebraic groups. We assume,
for simplicity, G is a reductive algebraic group defined over k with
anisotropic center. The local Langlands group £, is defined by

o Wi, x SU(2) if v is non-archimedean,
Y W, if v is archimedean,

where Wy, is the Weil group of k,. A Langlands parameter is a homo-
morphism ¢, : £, — "G which satisfies certain additional conditions.
Two Langlands parameters are equivalent if they are conjugate by an
element of G. Langlands conjectured that for each equivalence class
of Langlands parameter, one can associate a finite set Il (G) of ir-
reducible admissible representations of G,. The finite set I, (G) is
called the L-packet for ¢,. The set II(G,) of all equivalence classes
of irreducible admissible representations of G, should be decomposed
into a disjoint union

I(G,) = [ 16, (G).
bu

where ¢, extends over the equivalence classes of Langlands parameters.
The L-packet 114, (G) should contain a tempered representation if and
only if the Langlands parameter ¢, has a bounded image, in which case
¢, is called tempered. If ¢, is tempered, then all members of Il (G)
should be tempered.

A homomorphism v, : £, x SLy(C) — G whose restriction to
SLy(C) is holomorphic is called a (local) Arthur parameter if ¥z,
is a tempered Langlands parameter. One can consider the equivalence
of Arthur parameters as in the case of Langlands parameters. Arthur
conjectured that for each equivalence class of Arthur parameters 1,
one can associate a finite set of unitary representations Il (G). The
set Iy, (G) is called the A-packet of v,. A-packets are not necessarily
disjoint.

For each representation p, of £, x SLy(C), we associate an L-factor
as follows. We may assume p, is irreducible. Then there exists an
irreducible representation ¢, of £, and an integer ¢ > 0 such that

po = ¢, ¥ Sym”,
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where Sym’ is the unique irreducible representation of SLy(C) of degree
t+ 1. We put

Spv HL3_3+ t/2) ¢v)
Jj=

For each element 7, € II,, (G) and a finite-dimensional representation
r of 'G, we put L(s,m,,7) = L(s,r04,). Note that L(s,n,,r) depends
not only on m,, but also on 1,, since A-packets are not necessarily
disjoint, although the symbol suggests it does not.

Langlands conjectured that there exists a locally compact group Ly
such that the equivalence classes of irreducible n-dimensional represen-
tation of £, is in one-to-one correspondence with the set of irreducible
cuspidal automorphic representations of GL,(A). There should be a
homomorphism ¢, : £, — L for each v. A (global) Arthur parameter
is a certain equivalence class of homomorphisms

1/1 . ,Ck X SLQ((C) — LG

such that the image of £, is bounded. Let II,(G) be the set of square-
integrable automorphic representations m ~ ®,m, of G(A) such that
Ty € Iy, (G) for each v. The set II,(G) is called the A-packet of
1. Arthur conjectured that the set of square-integrable automorphic
representations of G(A) is a union

(@
P

If 7 € I1,(G), then v is called the Arthur parameter of 7. In general, ¢
is not uniquely determined by the equivalence class of 7, but for special
orthogonal groups or unitary groups, v should be determined by 7.

It is believed that the Arthur parameter ¢ : L x SLy(C) — G
associated with a square-integrable automorphic representation should
be elliptic in the sense that Im(¢)) is not contained in any proper Levi
subgroup of “G. This is the case if and only if Cents(Im(z)) is finite.
If ¢ is an elliptic Arthur parameter such that II,,(G) is non-empty, the
A-packet I1,(G) consists of only irreducible tempered cuspidal auto-
morphic representations if and only if the restriction v|gp, ) is trivial.
In this case, the Arthur parameter ¢ said to be tempered. For an
elliptic Arthur parameter ¢, we put

Sy = Centg(Im(v))).
Now we go back to the situation that G; = SO(n + 1) and Gy =

SO(n). Let 1; be an elliptic Arthur parameter for the group G;. In
this case, the group Sy, can be calculated as follows. Let st be the
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standard representation of “G;. Then st o1); can be decomposed into a
direct sum of irreducible representations of £ x SLy(C):

j=1

Here, the representations @/151), e 7%@ are mutually distinct orthogo-
nal (resp. symplectic) representations of £ x SLy(C) if dimV} is even
(resp. odd). Then

S ~ (Z/2Z)™='  if dim V; is even and rank " is odd for some j,
v (Z/2Z)"  otherwise.

In particular, Sy, is an elementary 2-abelian group.

Now we admit the Arthur conjecture. Let 7; be an irreducible cusp-
idal automorphic representation of G;(A), which satisfies the condition
(ALG). Then corresponding Arthur parameter v; must be tempered,
since otherwise 7; , cannot be generic for any v.

Conjecture 2.1. Assume that 7; is an irreducible tempered cuspidal
automorphic representation of G;(A) with Arthur parameter ;. Then
the constant 2° in Conjecture 1.5 should be equal to 1/(|Sy,| - |Sy,|)-
Equivalently, the equation

[{e1]os 00) |7 CoAg (P10, Po.w)
= Py (1/2) ——
(@1, 01)(0,0) Sy |- [Syel ™ 7 H 1,012 - [0,

holds.

veS

3. THE NON-TEMPERED CASE

Let m;, be an irreducible representation of G;,, which we do not
assume to be unitary for a moment. Note that if both 7 , and g, are
tempered, then oy, (01,0, 1 4; Po.us ¥0,,) gives an element of

HomGO,vXGO,U ((ﬂ-lﬂ) & 7’%17’0) ® (ﬁ-O,v IX %O,U)7 (C)v
where 7, , is the contragredient of ;.

Conjecture 3.1. The quantity o, (1,4, ¥ .} Po.; Pp.,) should be some-
how “analytically continued” for any m, and mg,. If HomGOw(mﬂ, ®
o, C) # {0}, then the continuation v, (¢1,4, 9] ,; Yo, Po,) is unique
and gives an element of

HomGo’vaom ((ﬂ-l,v X 7~1-1,1)) 0%y (ﬁO,v X %O,U)7 C)
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Now we consider the global situation. Let m; be an square-integrable
automorphic representation of G;(A), which may not be almost locally
generic. We assume that Homg, , (71,, ® 7o, C) # {0} for any v. For
v ¢ S, we may assume (1.4, o) = 1 by Theorem 1.2, as long as it
is meaningful.

Conjecture 3.2. Let m; be as above. Then

(1) The integral {¢1]g,, o) should be convergent for any ¢; € m
and ¢ € .
(2) There should be an integer 3 such that

‘<§01|007900>|2 3 051)(901 1;79001))
— 2% A g, CoPryn(1/2) L
(1, 1) {0, ¥o) ' o vl; le10ll? - 0,012

for any non-zero decomposable vectors ¢; = ®,p;1, € m and
o = Quow € To-

Remark 3.3. Contrary to the almost locally generic case, the factor 27
is not necessarily equal to 1/(|Sy,| - |Sy,|), and depends not only on
global data, but also on local data. See the examples in §9, §10, and
§11.

Part II. Local theory

Until §5, we consider only local objects and drop subscript v.

4. CONVERGENCE OF THE INTEGRAL: PROOF OF PROPOSITION 1.1

In this section, we assume that k is a local field with char(k) # 2.
Let (V, @) be a non-degenerate quadratic space over k. We denote the
anisotropic kernel of (V, Q) by (V2" Q*"). Then there is a decomposi-
tion V =X @ V* @Y, where X and Y are totally isotropic subspaces.
The Witt rank r of (V, Q) is, by definition, equal to the dimension of X
or Y. We put d = dim VV*". Choosing a basis of X, we get a minimal
parabolic subgroup Puin = MuinNmin of G. The Levi factor M, is
isomorphic to (k*)" x SOgan. The split component A, of Myin is
isomorphic to (k*)", and the Weyl group W (G, Apm) is of type B or D
according as d # 0 or d = 0. We will denote an element of A, =~ (K*)"
by x = (x1,...,2,). The simple roots of (Pyin, Amin) are given by

() = mmy e (1) = 2zt

aww:{% if d % 0

Tz, ifd=0.
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These roots are also regarded as a character of M. Let dp_. (x) be
the modulus character of P,;,. Then

T
5Pmin (x) = H ’xz‘d+27‘722
=1

Fix a special maximal compact subgroup K of G. Then we have a
Cartan decomposition G = KM, K, where

M, = {m € My ||as(m)| <1(=1,...,7)}.

Fix a suitable embedding n : G — GL,,. Then the height function
o(g) (with respect to the embedding 7) is given by

o(g) = max (logn(g)i], log In(g™")s1)-

1<j<m

When £k is non-archimedean, the following integral formula holds

/ flg)dg = / p(m) f(kymbky) dky dky dm,  f € LY(G)
G Mt KxK
where p(m) = Vol(KmK)/Vol(K). Moreover, there exists a positive
constant A such that A™65! (m) < p(m) < Adp! (m) for any m €
M7, (See Silberger [42] p. 149.)

When £ is archimedean, similar integral formula holds. (See e.g.,
Helgason, [21], Theorem 5.8.) In particular, there exists a non-negative
function p(m) on M}, such that

min

/ f(g)dg = / wm) [ Flkumbs) diy diydm, | € L'(G).
G Mt KxK

Moreover, there exists a constant A > 0 such that pu(m) < Adp' (m)
for m e M7, .

Harish-Chandra’s spherical function Z(g) of G is given by
E@Z/%Wﬂk
K

where hy € Indgmin 1 is a function whose restriction to K is identically
equal to 1. Note that = is a matrix coefficient of a tempered represen-
tation Indgmin 1. It is known that there exists positive constants A, B
such that

ALY (m) < B(m) < A6y (m)(1+ o (m))?

for any m € M., . (See Silberger [42], p. 154, Theorem 4.2.1 and

Harish-Chandra [14], p. 129, Lemma 1 in Section 10.)
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Recall that a function f(g) on G satisfies the weak inequality if
f(9)] < AZ(9)(1 + 0(9))”

for some positive constant A, B. A matrix coefficient of a tempered
representation satisfies the weak inequality.

Applying these results for G; = SO(n + 1) and Gy = SO(n), we can
now prove Proposition 1.1. As before, we define P; 1in, Aimin, 73, €tc.,
for the group Gj.

Proof of Proposition 1.1. Let m and my be irreducible tempered repre-
sentations of G; and Gy, respectively. We may assume Ag min C A1 min-
Then we have estimates

(@, (m)] < ASE2 (m)(1+a(m)?, (m e M),
@y (M) < AGH2 (M) +0(m)?,  (m € M)

for some positive constants A, B. When W (G, A min) is of type B, it
is enough to show the following integral

/A TR O (m) (L o (m))?” dm

0,min

is convergent. This is reduced to the convergence of

70
/| <<l ey g [P (1) log ) day d¥ay - .
z1|<|z2| < <wr |[<1

j=1
One can easily prove the convergence of this integral. Note that when
W (Go, Ao min) is of type D, Af . is not contained in A} In this

0,min 1,min"
case, one need to consider the integral

70
/l |<|@a| <<z | <1 s '$r0|1/2(1 N Zlog ’ijQB d*xyd*xg - d
r1|S|T2|<--< -TTO <

Jj=1
—11/2
+ / | T122 - Ty 1T, | /
‘ml‘S‘xZ‘S“'S‘mrofl‘S‘xr0|_1§1
ro—1
2B
x (1— E log |z;| +log |z,,|)*" d*x1 d* 29 - - - d*xy.

i=1

One can show the convergence of this integral similarly.

To prove the latter part of the proposition, we make use of the result
of He [20]. Let Ey and = be Harish-Chandra’s spherical function for G4
and Gy, respectively. Then the function go — E1(g0)Z0(go) belongs to
L'(Gy) by the first part of the proposition. Note that Harish-Chandra’s
spherical function is a matrix coefficient of a tempered representation.
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Then the latter part of the proposition follows from Theorem 2.1 of
He’s paper [20]. Note that He [20] used the estimates of almost L2
matrix coefficients [6], which is valid for p-adic groups as well. t

5. CALCULATION OF THE UNRAMIFIED INTEGRAL: PROOF OF
THEOREM 1.2

In this section, we prove Theorem 1.2. We assume the conditions
(U1)-(U6) in §1 holds. In particular, both G; and G are quasi-split.
We should consider the following two cases:

(Case A) G1=S0(214+1) and Gy =S0O(2l),
(Case B) G1=S50(214+2) and Gy=SO(2l+1).

Let K be the discriminant field. Note that K is equal to either k or the
unramified quadratic extension of k. Let ¢ be the number of elements
of the residue field of k. The local zeta function ((s) is defined by
(1—¢)™"

Let B; = T;N; be a Borel subgroup of GG;, where T; and N; are a
maximal torus of GG; and the unipotent radical of B;, respectively. Let
A; C T; be the maximal split subtorus. Without loss of generality, we
may assume Ny C Ny and Ay C A;.

Let m = I(E) = Indgi(E) and my = I(§) = Indgg (&) be unramified
principal series of G; and Gy, respectively. Here, = and £ are unramified
quasi-characters of 17 and Tj, respectively. Let ®= and @, be the class-
one matrix coefficients of I(Z) and I(§) such that ®=(1) = O¢(1) = 1,
respectively. We consider the integral

I(g1; Pz, Pe) = /G ®=(g1 " 90) P(90) dgo-
0
We assume that both = and ¢ are sufficiently close to the unitary axis.
As shown in §4, this condition implies that the integral I(g;; =, ®¢)
is absolutely convergent. In this section, we calculate the value of
I(gl;q)g,q)§> at g1 = 1.
Let f= € I(Z) and f; € I(§) be the class-one vectors such that
f=(1) = fe(1) = 1. Then we have

P=(g1) = fz(kig1) dky, g1 € Gy,
K1

DPe(g0) = fe(kogo) dko, g0 € Go.
Ko

We recall the theory of Shintani functions [29]. We denote the Hecke
algebra H(IC;\G;/K;) by H;. By the Satake isomorphism, there are
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algebra homomorphisms
wi:H; — C and wo:He— C

corresponding to the unramified principal series 7; and 7, respectively.
Recall that a smooth function S on G; is called a Shintani function for
m and m, if the following conditions are satisfied:

o L(ko)R(k1)S =S for any ky € Ky and kg € Ky.
® L(po)R(1)S = wo(po)wi(p1)S for any po € Ho and @1 € Hy.

Here, £ and R are the left regular representation and the right regular
representation, respectively. Note that /(g; Pz, ®¢) is a Shintani func-
tion for 7r; and 7. Kato, Murase, and Sugano [29] have proved that if
both GGy and Gy are split, then a Shintani function exists and is unique
up to scalar. In this paper, we do not use the uniqueness of Shintani
functions.

Recall that the double coset B;\G1/Bj has a unique open orbit and
the open orbit has a representative n € K; (cf. [9], §7). Note that
n~'BinN By = {1}. Let Yz¢ be the function on G; determined by the
following conditions.

(1) Ye(brgibo) = (E7161)(b1) (€8, /%) (bo) Yze(g1) for any by € B,
and by € By.
(2) Yze(n) = 1.
(3) Yz¢(g1) = 0if g1 & BinDBo.
Here, ¢; is the modulus character of B;. Note that a function satisfying

(1) and (3) is unique up to scalar. We define Iz € Homg, (71, 7o) =
HomGo(I(E)7 1(5_1)) by

eri(F)g0) = | Flor190)Yze(91)dgr, 5o € Go.

Here, pr; : C*(G,) — m = I(E) is given by

c

pry(F)(g1) = / (5716Y/2)(b1) £ (bugy) dbn.

By

Let (, ) be the natural pairing on my X T defined by

(@m%) :/IC %Ufo)‘ﬂf)(ko) dkyg

for ¢y € mp and ¢f, € 7. Put

Sze(g1) = (fe, lz¢(m(g91) f=)).
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Then Sz ¢ is a Shintani function, and we have

Seelgr) = / fe(ko) / L, (9 kg1 ) Y=elg)) g dkg

= / Yz ¢ (kigy ko) dky dko.
lCl X’Co

Here, 1y, is the characteristic function of ;. Put

f=(9190) fe(90) dgo  if g1 € BinBy
Tze(g1) =  Jao
0 otherwise.

Then we have T=¢(g91) = Tze(n) - Ya—14-1(g1), since Tz, satisfies the
conditions (1) and (3) for =~! and ¢~!. Therefore we have

I(g1; Pz, Pe) = / f=(k197" 90) fe(kogo) dko dky dgo
Go 1 Jico

= / / fa(krgr kogo) fe(go) dko dki dgo
Go J K1 J Ko

= / TE7£(klg;1k0) dkl d]i]o
’Cl ><ICO

= TE’g(?]) / YE—1,£—1 (klgflko) dkl dko
/Cl ><IC()

= Tz¢(n)Sz-16-1(q1)-

In particular, T=¢(n) and Sz-1¢-1(g1) are convergent if = and & are
sufficiently close to the unitary axis. Indeed, since the first part of
Proposition 1.1 holds for I(|=Z]) and I(|¢|) if = and £ are sufficiently close
to the unitary axis, 1(g1; @z, Pj¢) is convergent, and hence the above
integral is absolutely convergent. It follows that, for each g; € Gy,
T=e(kigy ko) is convergent for almost all k; € K; and ko € K such that
k197 'ko € BinBy. By definition, T=¢(g1) is convergent for some gy €
BynBy if and only if Tz ¢(g1) is convergent for all g; € BynBy. Therefore
T=¢(n) is convergent, and the convergence of the above integral also
implies that Sz-1¢-1(g1) is convergent.

We first assume that the residual characteristic of k£ is not 2. We
consider the case when K = k. In this case, both Tz ¢() and Sz-1 ¢-1(1)
are already calculated. Note that

o JEO G =801+ 1),
PO T (e i Gy = SO(21 + 2),

TO = AO >~ (kx)l if GO = SO(QZ) or GO = SO<2Z + 1)
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We write

(Z1,...,5)  if Gy =S0(2l + 1),
(Eh [ 7El+1) lf G1 == SO(QZ + 2),

There exists a quadratic space ~(f/l, Q1) € (Vi, Qo) such that V; is iso-
morphic to the direct sum of Vi and the hyperbolic plane. Without
loss of generality, we may assume that (V, V}) satisfies the conditions

(U1)-(U6). Put

EQ,...,El) lf Gl :SO(2l+1),
(2y,...,841) if Gy =S0(20+2).

Since Tz ¢(n) is independent of the choice of 1), we set ((Z, ) = T=¢(n).
By Ginzburg, Piatetski-Shapiro, and Rallis, [9], p. 22, Corollary to
Lemma 1.1 and p. 179, Corollary 1 to Lemma 7.2, we have

((E,8) = (& 2)

L(1/2,1(8),=) y L(1,Z3)7! (Case A)
L(1,1(2),5) 1 (Case B).

Here, L(s,I(§),=;) is the standard L-factor of I(§) twisted by the
character =;. By induction, we have

l

C(E;S) = HL(LEZ?)—I H L(l,EiEj)_1L<1,EiEj_l)_l

i=1 1<i<j<l

< ] Laeg)Liash)™

1<i<j<l

X H L(1/2,Z:&) L(1/2,2:6;)

1<i<j<l

X H L(1/2,2:&)L(1/2,2;7'¢))

1<<i<l

[1
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in Case A, and
(9= J] LOEE)LOLEEH

1<Z<j<l+1

XHLN L Lies) Leg

1<i<y<l

[T L/2.56)L(1/2,56"

1<i<j<l

< TI ro/226L0/257%)

1<j<i<i+1

in Case B. On the other hand, Theorem 10.8 of [29] implies
Sz-1¢-1(1)

= Ag, C( 2’HL (L [ L ETE) L ET'E

1<i<j<l
x ] L&) TR )
1<i<j<l
< [ L0/2,27¢hL1/2,57)
1<i<5<l
[T ra/2.sghna 2,z
1<j<i<l
in Case A, and
55717671(1)
=Ac, () I LLET'E) LA ETE) T
1<i<j<l+1
l
<[> I Laggh g™
i=1 1<i<j<li
< ] L/2,57'¢ ) L(1/2,57'¢)
1<i<5<1
x ] /2,570 L(1/2,5¢)
1<j<i<i+1

in Case B. Combining these results, we have

I(l; Pz, (I)S) = AG1P7T1JFO<1/2)7
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when both G and Gy are split. Thus we have proved Theorem 1.2 in
the case 2 1 ¢ and both G; and Gy are split.

Now we consider the case when the discriminant field K is equal to
the unramified quadratic extension of k. Note that the character x of
k> associated to K/k by the class field theory is equal to the unique
unramified quasi-character of order 2. As in the split case, we should
consider the following two cases:

(Case A) G, =850(2l4+1) and Gy =S0(2l),
(Case B) G1=950(21+2) and Go=S0(2l+1).
Note that

Ay~ (K*) Ag ~ (K*)71 (Case A),
Ay~ Ay ~ (k*)! (Case B).

The unramified characters = and £ are determined by their restriction
to Ay and Ay, respectively. We write

== (5,...,5)

¢ — (&1,...,&-1) (Case A),
(&,....&) (Case B).

Put = = (Z,,...,5;). We set ((Z,€) = T=¢(n). As before, we have

L(1/2,1(§),51) {L(Laf)l (Case A)
L(1,1(2),5) 1 (Case B)

by [9], p. 22, Corollary to Lemma 1.1 and p. 179, Corollary 1 to Lemma
7.2. By induction, we have

((E,8) =((&2)

I]

!
((E,6) = H L(1 L1, EE)

1<i<5<l

-1
Jlreoaaxe)™ [ L0667 L0665

1<i<j<i—1

< [ L1/2,2:&)L(1/2,5¢" HL 1/2,2)L(1/2, xZ;)

1<i<j<i—1

« I t/2z6)L0/2=7)

1<j<i<l
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in Case A, and

l

¢z =[]ra=)'Lx=)" [ La L1, EE) T
i=1 1<i<j<I
l
< [[rae)™ I Laae) 'na,agh) ™
i=1 1<i<j<l

< [] L/2,E&)L1/2.567) H L(1/2,&)L(1/2,x&)

1<i<j<l

« I t/2z6)L0/2=7)

1<j<i<l
in Case B. As for Sz¢(1), we can prove the following lemma.

Lemma 5.1. We have
Sze(1) = Ag, (1)~ dmArmdm A (1, ) 71(¢(Z, ).

The proof of this lemma will be given in the appendix to this section.
Note that

Pryan(1/2) = ((1)7 A A L1, ) TIC(E,€)¢(ET €7,

We would like to emphasise that this relation has been already noted by
Ginzburg, Piatetski-Shapiro, and Rallis [9]. Combining these results,
we have I(1; @z, @¢) = Ag, Pry.xo(1/2). Thus we have proved Theorem
1.2 in the case 21 q.

Now we consider the case 2 | ¢. It is enough to prove that 1(1; @z, ®¢)
is an element of Q(¢'/2,Z,€). More precisely, we will show that there
exists a rational function Z(¢, Xy,...,21,...) € Q(t, Xq,...,21,...),
where ¢, X1,...,21,... are indeterminants, such that if the order of
residue field of k is ¢, then

[(17(I)an)£) = I(q1/27517 cee 7517 s )

To prove this, we make use of Macdonald’s formula for the spherical
function. Recall that Macdonald’s formula ([5], p. 403, Theorem 4.2)
says that the spherical functions ®= and ®, are of the form

O=(m1) = Q" > m(wiD) - (wiZ)s; *)(my), my € A},

w1 EWq

Be(mo) = Q5" Y Yo(we) - (wos)dy /) (mo), mo € AF.

wo €W
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Here, Q1, Qo, 71(Z), 10(€) € Q(¢"/?,Z, €) and 6, is the modulus function
of the Borel subgroup B;. The integral I(1; ®z, ®¢) is equal to

/+ (I)E<m0)q)€(mg)v01(ICOm0’Co) dmo.
Ag

Note that Vol(KomoKo) = [Ko : Ko N moKemg']. One can show easily
this integral gives an element of Q(¢'/?,Z,&). Therefore the proof of

Theorem 1.2 is complete.

Appendix to §5: Proof of Lemma 5.1.
In this appendix, we prove Lemma 5.1. The proof of Lemma 5.1
consists of three steps.

Step 1. The Weyl invariance.
The Weyl group W; x W, acts on the character group of A; x Ag by

(Ea 5) = (wlza wog)

Lemma 5.2. The quantity Sz¢(91)C(Z,&)™" is Wi x Woy-invariant as
a function of = and &. (cf. [29] Theorem 10.8.)

Proof. Note that both ((Z,£)((271,¢71) and
I(g1; @2, P¢) = ((E,£)S=-16-1(g1)
are W, x Wy-invariant. It follows that
I(g1;®=,®¢)  Sz1e1(q1)

CEOCETET)  ((ELET

is also Wi x Wy-invariant. Hence the lemma. ]

Step 2. An explicit formula for Sz¢(g1).

Now we closely follow the argument of [29]. Fix a hyperspecial max-
imal compact subgroup K; C G; and a maximal split torus A; C G;.
Then the centralizer T; of A; is a maximally split maximal torus of G;.
We assume g C K; and Ag C A;. Note that T need not be a sub-
group of T7. Choose a Borel subgroup B; = T; N; C G;. We also assume
Ny C N;. The opposite Borel subgroup of B; = T;N; is denoted by
Choose a longest element w;jone Of the Weyl group W; = W(G;, 4,).
We assume w; jong € K;. There exists an Iwahori subgroup B; C K; such

that Ni(o) C B;. We put Ni(l) = N; N B; and Ni(l) = Wi N(l)wi,long.

i,long” "7
Then we have an Iwahori decomposition B; = Ni(l)ﬂ(o) Ni(o).
Recall that the element n € G is a representative of the unique

open orbit of Bi\G1/By such that n € KC;. Let 0 and o be the ring of
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integers of k and K, respectively. The maximal ideal of 0 and ox are
denoted by p and py, respectively.

Lemma 5.3. One can choose the representative n of the open orbit of
B1\G1/By such that the following conditions hold.

(1) nNo(l) - 8177;
(1 0 0 0 0
2) Ny € TONDTOND.

Proof. We first consider Case B. Note that in this case Ny is a nor-
mal subgroup of N;. By [9], p. 171, Lemma 7.1, N;/Njy is isomorphic
to k71 x (K/k) as a left module of Ay = A; ~ (k*)!. We fix an
isomorphism N; /Ny ~ k'~! x (K/k), which induces an isomorphism
NN ~ o171 x (0 /o). Since K/k is unramified, ox /o is isomor-
phic to o, and so Nl(o)/Néo) ~ o!. There exists a cross section (i.e.,
“épinglage”) ¢ of the map Nl(o) — Nl(o)/Néo) ~ o', Let 7' be the im-
age of the cross section of (1,1,...,1) € o'. We put n = wyiong7-
Then 7 is a representative of the open orbit of B;\Gi/By. Let U,
be the group generated by Nl(l) and Nl(l). Then U; is a normal sub-
group of ;. It follows that T]Nél) C ny = Uin C Bin. As for (2),
]\71(1)7] = leongNl(l)n’ C wl,longe(p‘)n’]\fél). It suffices to prove that
L(phn' C Tfo)n'TéO). This is easily seen by the facts 1 +p C o0*.

Now we consider Case A. Let P; be the standard parabolic subgroup
of G with Levi factor (k*)"=! x SO(3) ~ (k*)!=! x PGL,. Let Np, be
the unipotent radical of P;. Then as in Case B, Np, /N is isomorphic to
k'L as aleft module of Ay ~ (k*)'~1. We fix an isomorphism Np, /Ny ~
k=1, which induces an isomorphism (Np, N N”)/N{” ~ o!~1. Take a
cross section ¢ of the map (Np, N Nl(o)) — (Np, N Nl(o))/NéO) ~ ol 1.
Put 7 = wyongt((1,1,...,1)). Then 7 is a representative of the open
orbit of Bl\Gl/BQ, since PGL2 = (PGL2 N Nl) : (PGLQ N To) (Cf [9],
Appendix 1 to §7). One can prove (1) in the same way as in Case B.
As for (2), observe that Nl(l) = (Nl(l) N Np,) - (]\71(1) N PGLy), where
Np, is the unipotent radical of the opposite parabolic subgroup of P
with respect to the Levi subgroup (k*)'=! x PGL,. One can prove that

(Nl(l) N Np)n C TI(O)nTéO)N(EO) in the same way as in Case B. Now (2)
follows from the fact (T'” N\ NPGLy)-(T,” NPGL,y) = K;NPGL,. O

Lemma 5.4. We have

Bon By ¢ TNy T ON©.
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Proof. By Lemma 5.3, we have
Bon'By = TN NIy B,
 TO Ny 1B,
- TN RO TOND
c TONO O N©O,

Put

A ={t € A||a(t)] <1 for any positive root o of (G, A1)},
Af ={t € Ag||a(t)] <1 for any positive root a of (Gy, Ag)}.

Then we have Cartan decompositions Gy = K1 AT K1, Go = Ko A$ Ko.
For each positive root a of G; (resp. Gy), we denote Harish-Chandra’s
c-function (cf. e.g., Casselman [5]) by ¢, (Z2) (resp. co(§)). We put

@ =T @@ (v cu© = I] )

a>0
wia>0 woa>0

When w; (resp. wp) is the identity element, we set

0@ =T[aE (o a©=[a©).

a>0 a>0

Lemma 5.5. There exists a basis {g1.u, fwewy, of 1(Z)5 with the fol-
lowing properties.

(11) R(1g,1-15,)91.w, = Vol(BitBy) - (le)_ldi/Z(t) - g1, for any
te Af.
(21) The restriction of g11 to Ky is the characteristic function of B;.
0 1 I
(31) fo =M NI e, Cun(E) - -
Similarly, there exists a basis {gowo bwoewsy 0f 1(€)P0 with the following
properties.
(10) R(1gyr-18,) 900 = VOl(BotBo) - (wo€) ™85> (t) - Gow, for any
te Af.
(20) The restriction of go1 to Ky is the characteristic function of By.

0 1 _
(30) fe = NG = N3] Copermy Cun(€) - Gouun-
Proof. See [29] p. 8, Proposition 1.10. d
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Lemma 5.6. We have

5575(150?77175171) = VOl(Botal;Bo)71V01(Blt17181)71
X (E(lsotngo)R(lzsltl—lsl)5575)(7771)

forty € Ay, t1 € AT
Proof. 1t suffices to show that
(BotoBo)n™ ' (Bity'B1) C Koton™ 't7' Ky
for to € AJ, t; € Af. By Lemma 5.4, we have
BotoBon ' Bit; By € Boto T, N ' TN 13,
Since tiﬂ(O)Ni(O)t; 'c Ti(O)Ni(O), the lemma follows. O
Recall that

Sze(g1) = (fe, lz¢(m(g91) f=)).

By (11), (31), (1p), and (3¢) of Lemma 5.5, we have

Sze(ton 1t = [N - NIING” - N§Y]
3w (E)2un () D)8 (11) - (wo) 6y (ho)

w1 €W,
woEeWp

x / 00 a0 (ko) g1.00 (1) Yo (korphs) dko ey
/C()X/Cl

By (21) and (2¢) of Lemma 5.5, we have

/ 901 (ko) g1.1(k1)Yz ¢ (konky) dko dky

KoxK1

= V01(81>V01(B()>

= AGlAGOC<1)fdimA1fdimA0L(17 X)fl/([Nl(O) : Nl(l)][Néo) : No(l)])
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Put ews(2,€) = c1(5)co(§)¢(E,§) ™ = b(E,£)d1(E)"'do(§) ™, where

b(E &)= [ L/2,E4)L(1/2,5¢! HL 1/2,2,)L(1/2, XE;)

1<i<j<l-1
< [ L(/2,2:¢)L(1/2,57'¢)
1<j<i<l
l

d;(E)" =[]LO.E) [ LO.EE)L0,2E")
i=1 1<i<j<I

do<s>-1=f[L<o,@>L<o,x&> I L0.66)L0.667)

1<i<j<l—1
in Case A, and

l

b(E &) = [ L(1/2,2)L(1/2,2: ") [ [ L(1/2,6) L(1/2, X&)

1<i<j<l i=1
< ] £(/2,2:8)0(1/2,57')
1<j<i<l
l

di(2)" =[] L0,E)L0.xZ) [] L )L(0,5:=; ")
i=1 1<i<j<l

!
do(§) ' =[] L00,¢) J] L00,68)L(0, 8¢
i=1 1<i<j<l
in Case B. By the Weyl-invariance, we have
Szt it —dim A;—dim -
S = A () A, )

x> ews(wiZ, wef) - (i) 7102 (1) - (wed) oy (o).
wieW;
wo€EWo

(cf. [29], Theorem 10.7.) Note that
b(Z,€), di(E), do(¢) € Z[¢g*"* By, By, .., 61,6, ).

Here and from now on, we identify an unramified quasi-character of £*
with its value at a prime element.

Step 3. Calculation of Sz(1)/¢(E,¢).

Our next task is to prove the following lemma.
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Lemma 5.7. The sum

Sz¢(1)

dim A1 —dim Ag -1
C(:, S) AGlAGOC( ) L(17 X)

X Z cws(w1Z, wef)

w1 EWs
wo Wy

1s independent of = and &.

Proof. We shall prove the lemma only in Case B. One can handle Case
A in a similar way. Put

Aze= Y cws(wiE, wp).

We are going to prove that Az, is independent of = and . Put

D(Z) = =7d,(E Z sgn(w) - (w1 =)~
w1EWL

D(§) = &7do(€) = Y sen(w) - (wef) ™
wo Wy

where

pr=po=(L1—1,...,1).
Then we have D(w;=) = sgn(w;)D(Z) and D(wo) = sgn(wy)D(E) for
wy; € Wy and wg € Wy. Note that p; and py are half the sum of the
positive roots of type C. It follows that Az, is equal to

(DEDE)™ Y sgn(wi)sgn(wo) - (wiE) ™ (wof) b(wi E, wo€)-

w1 EWL
woeWy

Put Bz = Z77¢ ™b(Z, ). Observe that Bz is equal to

[H& —a's) I E'-a'2h

1<y 1<i<y<i

< I &' —a2= [T a—a =),

1<j<i<l 1<i<l
1<5<1

We express Bz as a sum of monomials
Bze =Y o, 2N, N\ pell ey, €ZgH).
Al

We say that a monomial ZA# is regular if Z¥iAwor = ZAH implies
w; = wy = 1. We also say that a monomial is singular if it is not
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wiA

regular. Here the action of the Weyl group on Z! is given by (w;Z)
=2, (wo€)Wor = €1, as usual.

We would like to show that if a regular monomial Z*é# appears in
Bz, then it is of the form Z**1{"00 with wy € Wi, wy € Wy. It is
enough to show |\;|, |i;] <, since such a monomial is either singular
or Weyl-equivalent to Z°1£#0. Choose ig, jo € {1,2,...,l}. The positive
contribution of Z;, comes from

—1/2—
H (1_q /:‘io j)a
1<y<
and the negative contribution of Z;, comes from
=1 _ —1/24-1 -1 _ ~1/2=-1
H (E — 4 /fj ) H (fj —q /:ig)'
i0<j<l 1<j<io

Therefore |\;,| < {. Similarly, the positive contribution of §;, comes

from
( j_ol - q_lgjo) H (1 - q_l/in jo)
1<i<l
and the negative contribution of {;, comes from

-1 _ -1 =1 —1/24—1 1 _ —1/20-1
(&' —ae) [T G —a 26 I &, —a7 %=,
1<i<jo Jo<i<l
Therefore |p;,] < I+ 1. It follows that if a regular monomial ZA¢H
occurs in Bz, then [ < |uj,| < 141 for some jo. We will show that
no regular monomial ZA# such that |uj,| > [ occurs in Bz¢. Assume
that the monomial Z*¢* occurs in Bz¢ and |uj,| > [. We must show
that such a monomial Z¢# is singular. Note that the monomial ZA¢H
occurs in
-1 ——1 —1/2¢+-1
q &o - H (5 — 4 /gj )
io<j<lI
X H &= a2 PR, H (1—q'72,&)
1<j<io 1<j<l
J#jo
X (terms not containing =;, or &;,).
In particular, we have \;, # —[. If \;; = [, then the factor 5]-’01 must
occur in the factor
=1 —1/24-1 1 _ —1/20-1
H (:‘io —q /fj ) H (fj —q /:7;0 ),
10 <j<I 1<y <io
which would contradicts to the condition pj, > [. It follows that the
condition g, > [ implies |\;,| < . Therefore no regular monomial such
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that pj;, > [ occurs in Bz¢. Assume now g, < —l. Then the monomial
ZAEF occurs in

& @ g 1T G- a7

10<j<l
J#Jo
—Il+jo -1 —1/2—=-1 —1/2—~
X S H(fj —dq /“io)H(l_q Ein&i)
1<j<ig 1<j<1

X (terms not containing =;, or &;,)

if io S jo, and

Gl @ g T G —a 2
i0<j<I
5 j—ol—Ho H (gj—l o q—l/QEi—Ol) H (1 i q_1/25i0 j)
1<j<io 1<j<
J#Jo
X (terms not containing =;, or &;,)
if ig > jo. In particular, \;; # —[. If \;; = [, then the factor &, occurs,
and so the condition pj, < —I[ fails. It follows that the condition
o < —l implies |\;,| < I. Therefore no regular monomial Z*¢# such
that p1;, < —l occurs in Bz¢.
We have proved that the regular monomials Z*¢#* which occur in
Bz ¢ are of the form (wqZ) " (we) ~*°, for some wy € Wy and wy € W.
Therefore, up to a constant, Az is equal to

(DEDE)™ Y sgn(wi)sgn(wo) - (wiE) ™ (wef) ™ = 1.

Hence the lemma. O

Recall that
Aze= Y cws(wiE, wp).

w1 €W,
wo€Wo
Lemma 5.8. The constant Az is equal to Ag..

Proof. We shall prove the lemma only in Case B. One can handle Case
A in a similar way. We put

(q_l7 q_l+17 AR 7q_1)’
U N i §

My (IR
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As in the proof of [29], Lemma 11.9, we shall prove that b(w;Z, wog) =+
0 implies w; = wy = 1. Note that b(Z, ) is equal to

I a-a?zgh I a-a=") [ 0-a724)

1<i<j<l 1<j<i<l 1<i<l
125<1
—142
X H (1—q§).
1<5<i

Note that W) ~ Wy ~ {£1}! x &;, where &; is the symmetric group.
Therefore, for every wy, € Wy, wg € Wy, one can find o,7 € G; and
&, €5 € {£1} such that

wE = (Zy), -, E0y),

U)()é- = (576—%1)7 s 75?(1))
Puti,=0"'(1+1—-5), j; =7l +1—1t). Then we have

':*Eis —€4g°8

(wla)is = S41-s — 4 )

(wod)j, = &7y, = g =012,
Assume b(w1§,w0§) 7% 0. FiliStlYa 1— q—l(w0§)§1 + ONiHlplies %1 1
Secondly, 1—q—1/2(w15)i5 (wo€);, # 0 and 1_q_1/2<w15)it+1(w05>]’t 40
imply
7
Now, if j, < s, then the second factor would contain the factor
1—q V2w, 2); H(we);, = 0, therefore we have j, > i,. Similarly, if i, <

is

/ /
€ :5i1:5j2:5i2:"‘:5jl:5iz:1-

Jst1, the first factor would contain the factor 1—¢~'/2(w,Z);, (wOé)j_sL
0, therefore we have iy > j 1. It follows that

120> g2 20> > g 2y,
and so w; = wy = 1. Tt follows that Az = b(Z,€)d;(Z)"'do(£)~". By

direct calculation, one can easily show that it is Aa(l). U

Now Lemma 5.1 follows from Lemma 5.7 and Lemma 5.8.

Part III. Examples

In §86-12, k is an algebraic number field. The Dedekind zeta func-
tion of k is denoted by (i (s). The I'-factors of L-functions are normal-
ized as in Tate [45]. In particular, [g(s) = 7~%/2T'(s/2) and T'c(s) =
2(2m)7*T'(s). The completed Dedekind zeta function of k is denoted by
&k(s). When k = Q, the subscript k is dropped. The symbol L(s, 7, r)
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is the Euler product [],_ . L(s,m,,r) and the completed L-function for
L(s,m,r) is denoted by A(s,m,r).

6. WALDSPURGER’S THEOREM

The following example is due to Waldspurger [46]. Let D be a quater-
nion algebra over an algebraic number field k. Then Gy = D*/k*
can be considered as a special orthogonal group associated to a 3-
dimensional quadratic space over k. Note that Ag, = & (2). Let
Gy =T be an anisotropic torus of G;. Then T' can be considered as a
special orthogonal group associated to a 2-dimensional quadratic space
over k. Let K be a splitting field of T" over k. Then there exists an
exact sequence

1l — kK — K —T —1.

By means of this exact sequence, a character w of T'(A)/T(k) can be
regarded as a character of A /K™ whose restriction to A} /k* is trivial.
As in [46], we choose a Haar measure of T'(k,) as follows Fix a non-
trivial additive character ¢ of A/k. Then we give the Haar measure
G (1)t dt, on kX, where dt, is the self-dual Haar measure of k,

with respect to ¢,. We give a Haar measure on K in a similar way:.
Then the Haar measure on T'(k,) is defined by the exact sequence

11—k — K —T(k,) — 1.

Let Cy be the Haar measure constant. It is easily seen that Cy =
A(1, xk/k)~" for this choice of measure. Note that in [46], Wald-
spurger considered the measure on 7'(A) such that Vol(T'(A)/T(k)) =
2A(1, Xkc/e)-

An irreducible cuspidal automorphic representation 7 of G1(A) can
be considered as a representation of D*(A) with trivial central char-
acter. We assume 7 is almost locally generic. The base change of 7 to
GL2(Ak) is denoted by II. Choose a non-zero cusp form ¢ = ®,p, €
T QyTy-

Then among other things, Waldspurger ([46], Proposition 7) proved
that the integral I(¢,,w,) is convergent and that

ol )l Ly g AURTELY) o)
(erolww) ~ 17T m ADA L) g [P

4
1 Qy (;Dvawv)
IRl | T g

where m = m, mp = w. Thus Conjecture 1.5 is true for n = 2. Note
that we have |Sy,| = |Sy,| = 2, if we admit the Arthur conjecture.
Thus Waldspurger’s result is compatible with Conjecture 2.1.
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7. THE CASE n =3

In this section, we prove Conjecture 1.5 for n = 3. Let D be an
quaternion algebra over an algebraic number field k. Let k' be either
k x k or a quadratic extension of k. We put

Gy = (D @y k') k™,
Gi={g9e(Dak) |v(g) € K*}/E™,
Go = D*/k*.

Here v is the reduced norm of D. Then G (resp. Gy) can be considered
as a special orthogonal group associated to a 4-dimensional (resp. 3-
dimensional) quadratic space over k. We regard Gy as a subgroup of
(1. Note that

1

&(2)? ifk =kxk,
Ag, = )
& (2)  otherwise.

Let Zg, be the identity component of the center of Gi.

Let 7; be an irreducible cuspidal automorphic representation of G;(A)
on the space V,,. We assume 7; is almost locally generic. By the re-
sult of Hiraga and Saito [22], Theorem 4.13, there exists an irreducible
unitary cuspidal automorphic representation 7 of G4 (A) on the space
V; such that V;, C V} g, (a). Here, V} is the subspace of V; on which
the group

X, = {w € Homeont (Zg, (A)G1(A)G1(k)\G1(A),C) |7 @ w ~ 7}

acts trivially, and V}|g, (a) is the restriction of V! to G1(A) as functions.
Note that X, is an elementary 2-abelian group.

Let (, ) be the canonical inner product on V; and ( , ), an inner
product on 7, for any place v of k. Then Ichino’s result ([25] Theorem
1.1) says

|<95|G0(A)7900>|2 3 ON‘U(QZDU @01})
716 = 2N, CoPr, o (1/2 v rw e
(G2 2 (20, 20) Prno(1/2) ] 2o S

vES

for any non-zero vectors ¢ = ®,p, € T and py = R, € m. Here,

d”(@’lh SOD/U) = Aa},vpﬂl,vyﬂo,v(]‘/?)_l

X / (Tv (go,v)@;, 951))@ <7TO,U (90,1))900,@7 900,v>v dgo v
GO,U

and

0=

~ -3 ik =kxk,
—2 otherwise.
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Choose a non-zero cusp form ¢; = ®,¢1, € V5. We choose ¢ =
RuPy € Vi such that @lg,a) = ¢1. We may assume @ belongs to the
®, 71 »-isotypic subspace of V. Then we have

Gy (Po, Poo) _ (P10, 0,0)
{Pus Bo),y ol
By Remark 4.20 of [22], we have

) — ooy x {2 TH =R,
ks | X, | PLe 1 otherwise.

Therefore we obtain the following theorem.

Theorem 7.1. We have

|<901|G0(A)7S00>| Oy Qplv7§00v)
- Ac, CoPrr o (1/2)
{1, 1) {0, ¥o) 4|3€ | w211 1,017 - [lp0,0]?

vES

for any non-zero vectors g1 = Rup1, € T and Yo = QyPo,p € .

Thus Conjecture 1.5 is true for n = 3. Note that we have |Sy,| =
2|X;| and |Sy,| = 2, if we admit the Arthur conjecture.

We show that Theorem 7.1 is compatible with the result of Watson
[47] in some cases. Put G; = SO(2,2) and Gy = SO(2,1) = PGLy,
defined over k = Q. By definition, we have Ag, = £(2)2. When v is
non-archimedean, the local measure dgo, of Gy, is the standard mea-
sure. In particular, the volume of the hyperspecial maximal compact
subgroup K, = Ko, = PGL2(Z,) is 1. For the real place, we choose a
Haar measure as follows. The topological identity component of G(R)
is denoted by Go(R)?. Let Koo = Koo = S(O(2) x O(1)) be a maxi-
mal compact subgroup of Go(R). We put K2 = Go(R)° N K. Then
Go(R)?/KY, can be identified with the upper-half plane $);. Let dk be
the Haar measure on K2 with total volume 1. Then the Haar measure
dgo.oo 0n Go(R)Y is such that dgo/dk induces the measure y=2 dx dy
on Go(R)"/KY ~ $;. The Haar measure dgy can be naturally ex-
tended to Go(R). Let Go(R)? = ANKY, be an Iwasawa decomposition,
which induces a bijection $; ~ AN. Let X C AN be an image of a
fundamental domain for SLy(Z)\$;. Then there is a bijection

X x K% x J] Ko = Go(@)\Go(A).

It follows that
/ TT doo. = Vol(SLo(Z)\ 1) = 2¢(2).
(Q\Go(A)

v<00
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Therefore we have Cy = £(2)~! = 67!, where Cj is the Haar measure
constant.

Let f; € Sk;(SL2(Z)) (j = 1,2,3) be normalized Hecke eigenforms.
We assume k1 + kg = k3. We denote the automorphic form on GLg(A)
corresponding to f; by f;. Let 7; be the irreducible automorphic repre-
sentation of PGLy(A) generated by f;. Note that ¢ = f; x f; induces
a cusp form on SO(2,2)(A) and its restriction to SO(2,1) is fifs. Put
m =11 X7, myp = 13 and ¢y = f3. By the result of Watson [47], (see
also Harris-Kudla [18]), we have

A(1/2,m X 73 x 73) = 22F2(f1 fi, f3)*.

It is well-known that A(1,7;, Ad) = 2% (f;, f;). Here (, ) is the usual
Petersson inner product.

As both the Tamagawa numbers of SO(2,2) and SO(2,1) are equal
to 2, we have

|<901|Go7 900>
(b1, ¢1) {0, o)

2 [(f1f2, f3)]?
— 9¢(9) M2, S8/
VRIS
1 A(]./2,T1 XTQXTg)

=3¢@ L, AL 7, Ad)

By easy calculation,

Prymo(8)

B A(s, T X Ty X T3)
[T_, A(s + (1/2),7;,Ad)’

. Pc(l)rc(lil)Fc<I€2>Fc(ﬁ3 - 1) . 27’(’3
7)771,00777'0,90(1/2) - 3 - _1°
FR(Q) Fc(ﬁl)rc(ﬁg)rc(lﬁlg) K3 1
Proposition 7.2. Let 7j (j = 1,2,3) be the holomorphic discrete
series of SO(2,1) >~ PGLy(R) with lowest weight £k;. Put T o =
Tloo M 200 AN T0 00 = T300- Lel Y100 € T1 00 be the vector with weight
(K1,K2). Let ppo0 € Moo be the vector with weight k3. We assume
l1.00]l = ll0,00ll = 1. Then we have

11,001 P0,00) = 4T (K3 — 1),
Oéoo(spl,ooa SOO,OO) =2.

The proof of this proposition will be given in §12. Putting together,
we recover Theorem 7.1 in this case. Note that we have |X,| = 1.

In fact, Watson [47] obtained a more general result. Let B be an
indefinite quaternion algebra over Q. The reduced discriminant dg of
B is, by definition, the product of primes which ramify in B. Let N be a
square-free integer such that (N,dp) = 1. Put S¢ be the set of primes
which divide dgN. Let 7, = ®,7;, (j = 1,2,3) be an irreducible
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cuspidal automorphic representation of A*\B*(A) with new vector
f; = @, fj» which satisfies the following conditions:

(1) When v < oo and v ¢ S, the local components 7;, (j = 1,2,3)
are unramified representations and f;, are unramified vectors.

(2) When v | dp, the local component 7;, (j = 1,2,3) are one-
dimensional representations of the form x; o vg,, where x; are
unramified quadratic characters and vp, is the reduced norm.
We also assume x1x2x3 = 1.

(3) When v | N, the local component 7;, (j = 1,2, 3) are represen-
tations of the form y; ® (Steinberg), where y; are unramified
quadratic characters. We assume that yix2xs is the unique
unramified character of order 2 and that f;, are Iwahori fixed
vectors.

(4) When v = oo, we assume that 7, (j = 1,2,3) are discrete
series representations with minimal weight +r;. We assume
K3 = K1 + ke and f;, have weight x; > 0.

Then Watson’s result ([47] Theorem 3) says

| [x [1(2) fa(2) fa(2)Im(2)"s 2 dz* 219172 A(1/2, 71 X 75 x 73)

[T, [ | fi(2)PIm(z)m—2 dz (dpN)* TT_, A(L,75,Ad)

Here, X = OW(dg, N)\$1, where OW(dp, N) is the arithmetic sub-
group defined in Watson [47], Ch. 1. Watson proved that

Vol(X) =2¢2) [ - D[]+ D).

pldp p|N

Watson also considered the cases when 7; o, are not discrete series, but
we do not discuss such cases.

Let Vi be the vector space B equipped with the reduced norm form
vp. The subspace Vy C V; is defined by the space of elements of reduced
trace 0. Then we have

G1={(g1,92) € B* x B* |vp(g1) = vB(g2)}/Q",
Go = B*/Q*.

As in the case of SO(2,2), we regard m; = 7 X 75 as a representation of
G1(A), and my = 73 as a representation of Go(A). We put p1 = f1 X fa,
and o = f3. We may assume ||¢1 .|| = ||¢o,0|| = 1 for any v. Note that
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Watson’s result implies

’ fX fl (Z)f2(2>f3(z)1m(z)53—2 d2‘2
[T, [y f5()]Pm(z)m 2 d2

— 271¢(2) Py o (1/2)
<« [T a-p ) [Ier 0+ ).

pldp p|N

‘<§01|G07 900>|2

(@1, 1) {Po, o)

= Vol(X)

We describe local calculations below. Since (G is an inner form
of PGL,, we can transfer the local measure of PGLy(Q,) to Gy, =
B*(Q,)/Qy. Note that Ag, , = (,(2)? and Cy = 67! are unchanged.
When p | dg, we have

VOI(GOW) = I(@Lp? 900710) = 2p_1(1 - p_l)_la
Prpiron(1/2) = G(1)2¢(2) 72

It follows that a,(¢1,,00,) = 20711 —p~ ') for p | dg. When p | N,
let £, be the unique unramified character of Q) of order 2. Then we
have

Pm,pﬂro,p(l/Q) = L(l,ep)2L(2, 5p)Cp(2)73
=(1+p ) PQA+p ) A —-p )
The integral I(y1,,¢0,) can be calculated as follows (cf. Godement
and Jacquet [10] §7). The image of (g Z) in PGL2(Q,) is denoted
a b
by [c d]' Let

I= { {Z Z} € PGLy(Q,)

be an Iwahori subgroup of Gg, = PGLy(Q,). Let W, be the affine Weyl
-1
group generated by w, = [(1) (1)] and wy = [2 p 0 } The extended

affine Weyl group W is defined by W = W, x Q, where Q is the

a, b, d € Z,, cEpr}

group of order 2 generated by w = [2 (1]] Then we have a Bruhat

decomposition Gy, = [],c fwl. The extended Weyl group W has
a length function [(w) such that I(w) = l(we) = 1, l(w) = 0. The
Poincaré series ., - t1®) is equal to (1 + t)(1 — t)~*. Then the
function

O (bywwhy) = (=1 (—p™H)' ™ by, by eI, j€{0,1}, we W,
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is a bi-I-invariant matrix coefficient of the Steinberg representation of
Gy. From this, we have

1

I(¢1p:00p) = Y (1) Y Vol(Iwwl)®(ww)?

7=0 weW,,
=2p+1)7" ) (—p )™
weWq,

=2 '(1—p (A +p )"
Note that
Vol(Iwl) = (1+p) p'™, weW.

It follows that a,(¢1,, o) =2p (1 +p~ ') for p | N.

Putting together, we recover Theorem 7.1 in this case. Note that we
have |X,| = 1, since the Steinberg representation does not come from
a quadratic field.

We remark that Theorem 7.1 is compatible with algebraicity results
for the triple product L-functions. For j = 1,2, 3, let f; be a primitive
cusp form with weight «;, level N;, and character ;. We assume that
c1e2e3 = 1 and k1 < kg < k3. We denote by 7; the automorphic
representation of GLy(A) generated by f;.

We use the symbol a ~ b for a, b € C, which means that b # 0 and
a/b € Q. Tt is well-known that A(1,7;, Ad) ~ (f;, f;). Then Harris-
Kudla [18] proved that

A(1/2, 71 X 12 X 73) ~ p(f1, fa, f3),

where

(fro ffa, f2)(fas f3) i ks < K1+ K2
(f3, f3)? if k3 > K1 + Ka.
We assume A(1/2,7 X 79 X 13) # 0. They also proved the Jacquet

conjecture which states that there exist a unique quaternion algebra D
and some automorphic forms FJ-D € 7 such that

p(f1,f2,f3) :{

/ FP(g)FP(g)FP(g) dg # 0.
AXD*(Q)\D*(A)

Here TjD is the Jacquet-Langlands-Shimizu correspondence of 7;. As-
sume that e16; = e3 = 1 and F” € 7,°. Then @y = Fy’ can be regarded
as an automorphic form on Gy = D*/Q* and ¢, = FP x F can be

regarded as an automorphic form on

Gy = {(dy,dy) € D* x D* | v(dy) = v(ds)}/Q*.
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Here v is the reduced norm of D. As before, we transfer the Haar
measure dg, on GLy(Q,) to Go(Q,). In particular, Cy = 6/.

For each finite prime p, the component 7, has a Q-structure. Note
that for Q-rational vectors ¢y, and ¢, the quantity a, (1, 0o,p) €
Q.

In the balanced case k3 < Ky + k2, the quaternion algebra D is
definite. We choose arithmetic automorphic forms F]-D € TjD . Then we

have
<<)017§01>7 <§007 300> € @XJ <901|G07 900> € Q

Note that in this case we have
Qoo (1,001 QOO,OO) ~ Ac_;ioopﬂ'l,ooﬂro,oo(l/Q)_l - Vol(Go(R)) ~ L
Note that Vol(Go(R)) = Vol(U(2)/(U(1) x U(1))) ~ w. Therefore in

this case Theorem 7.1 is compatible with the known result

A(1/27T1 X To9 X Tg) ~ <f1,f1><f27f2><f37f3>-

Now we consider the unbalanced case k3 > ki + k3. We choose arith-
metic holomorphic automorphic form FP € 7 of weight 3 and arith-
metic nearly anti-holomorphic forms F? € 7P and FP € 7P with some
weight. Then we have (see Shimura [38])

(w0, po) ~ E(2)7(fs, f3),
(p1,01) ~ EQ2)72(f1, [1)(fa, f2),
(L1l po) ~ E(2) (s, f3)-

Note that in this case, we have oo (¢1,00, P0.00) ~ 1. Therefore in this
case Theorem 7.1 is compatible with the known result

A(1/2, 71 X 79 X 73) ~ {f3, f3)*

Remark 7.3. More generally, Theorem 7.1 is compatible with Shimura’s
conjecture [39], [40] for Hilbert modular forms, which was proved by
Harris [15], [16], [17], and Yoshida [49] in most cases.

8. RESTRICTION OF THE YOSHIDA LIFT TO THE DIAGONAL
SUBGROUP

In this section, we recall the result of Gan and Ichino [8], in which a
formula for the restriction of the Yoshida lift [48] to the diagonal sub-
group by Bocherer, Furusawa, Schulze-Pillot [3] has been generalized.
They have proved Conjecture 1.5 for n = 4 in some cases and given
strong evidence for Conjecture 2.1.
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Let k be a totally real algebraic number field. Let &’ be either k x k
or a totally real quadratic extension of k. We put

G = PGSp,,
Go = GLy(K') /K,
Go ={g9 € GLy(K')| det g € K™} /K.

Then G (resp. Gp) can be considered as a special orthogonal group
associated to a 5-dimensional (resp. 4-dimensional) quadratic space
over k. We regard Gy as a subgroup of GG;. Note that Ag, = & (2)&(4).

Let (V,@Q) be another 4-dimensional quadratic space over k with
discriminant field Kg. We put H = GOg and

o VR ki Ko =k,
| Ko if [Kp: k] =2

Then there exists a quaternion algebra D over k such that
1—>/{”X —><D®kk”)>< ka —>H0—>1

(cf. e.g., Roberts [37] §2). Here, H® is the identity component of H.

Let o be an irreducible unitary cuspidal automorphic representa-
tion of H(A) with trivial central character. We assume the following
conditions:

e The Jacquet-Langlands lift of o|px4,,,) to GLy(Ay~) is cuspidal.

® 0, ®sgn ~ g, for some v.

o If 0, ®sgn % 0,, then g, # 0y, for any distinguished represen-
tation oq, of H? (cf. [8], Definition 5.4).

Let 7 be the theta lift of o to G1(A). Note that 7 is a non-zero
irreducible cuspidal automorphic representation of G1(A). This theta
lift was first considered by Yoshida [48] in a certain case. Later, it was
considered by Howe and Piatetski-Shapiro [23], Bocherer and Schulze-
Pillot [4], Harris, Soudry, and Taylor [19], Roberts [37] more generally.
For this reason, we call m; the Yoshida lift of o.
Let 7 be an irreducible cuspidal automorphic representation of Go(A).

As in §7, we choose an irreducible unitary cuspidal automorphic rep-
resentation 7 of Go(A) = GLy(Ap)/AX such that Ve, C V}gym). We

assume the following conditions:

e The base change BC(7) of 7 to Go(Agr) = GLa(Ape, ) /AL, is
cuspidal.
e The Jacquet-Langlands lift of BC(7) to D* (Agg, k) /Ay, exists.
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Then Theorem 1.1 of [8] says

’<901|G0(A)7900>|2 Ay (;01 U;SOOU)
= 26, CoPrymo (1/2) [
{1, 01) (@0, Yo) 2ﬁ|33| ' me leroll? - leo,wI?

veS

for any non-zero vectors ¢ = ®,¢1, € m and @y = @, € T. Here,

g 3 if Ko =k,
)2 if[Kg: k] =2,

and X, is the elementary 2-group as in §7. Thus Conjecture 1.5 is true
in this case. Note that we have

s {4 T Ka =k,
P2 i [Kg k] =2,

and |Sy,| = 2|X,|, if we admit the Arthur conjecture.

9. RESTRICTION OF THE SAITO-KUROKAWA LIFT TO THE
DIAGONAL SUBSET $); X 1

Let k > 0 be an odd integer. Let f € S5.(SLy(Z)) and g €
Sp+1(SLa(Z)) be normalized Hecke eigenforms. We denote the Kohnen
plus subspace by SKJr /2(L'o(4)) C Sit1/2)(To(4)) (cf. Kohnen [30]).
Let h € ST 1/2) (Fo( )) be a Hecke eigenform associated to f by Shimura
correspondence Let F € Sk+1(Spy(Z)) be the Saito-Kurokawa lift of A.
Let 7 and o be the automorphic representations of GL2(Ag) generated
by f and g, respectively. Then it is shown in Ichino [24] that

2f€+1<f f> ‘(F‘fhxﬁng X g>‘2
(h, h) (9,9)? '

Here, (, ) is the usual Petersson inner product on £);. We interpret this
result in terms of automorphic representations. Let ¢ be the automor-
phic form on G1(Ag) = SO(3,2)(Ag) corresponding to F. Similarly,
let ¢o be the automorphic form on Go(Ag) = SO(2,2)(Ag) correspond-
ing to g x g. As in §7, let dgy, be the standard Haar measure of
Go(Q,) for v < co. Let Go(R)? be the topological identity component
of Gy(R). The maximal compact subgroup K2 of Gy(R)° is defined
by K% = SO(2) x SO(2). Let dgp~ be the Haar measure of Gp(R)°
such that dgg . /dk is equal to the measure (y1y2) ™2 dxy dxy dy; dys on
Go(R)°/KS. ~ $; x $,. Here, dk is the Haar measure on K2 with
total measure 1. The Haar measure dgp~, can be naturally extended
to Go(R). We calculate the Haar measure constant Cy. Let Go(R)" =
ANK? be an Iwasawa decomposition, and X C AN be a set bijec-
tive to a fundamental domain for (SLy(Z)\$1)?. Then each element of

A(1/2,Ad(0) B 7) =
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Go(Q)\Go(A) has exactly two representatives in X x K% x [
It follows that

1
/ [T don = 5 VoI(Sa(Z)\91)? = 26(2)"
Go(Q\Go(A)

<00

Kow-

v<o0

Therefore we have Cy = £(2)72 = 367 2. Note that Ag, = £(2)£(4).
Note also that the volume of Sp,(Z)\$s is 2£(2)&(4), where $)o is the
Siegel upper-half space of genus 2. It follows that

[{e1leo, po)?_ €(4) K Floixni g X 9)I
(p1.01) (0. o) 26(2)  (F,F)(g,9)*

As noticed in §7, it is well-known that (f, f) = 272*A(1, Ad(7)). By
Kohnen-Skoruppa [31], we have
(F,F)

- 2" 2 le(2)A(3/2, 7).

(Note that there is a minor error in the unfolding argument of [31],
p. 547. Since the action of the center of Sp,(Z) on £ is trivial, the
right hand side of the equation of [31] p. 547, line 23 must be multiplied
by 2.) It follows that

(prleo,po)®  _  €(4)  A(1/2,Ad(0) M 7)
{p1, 01) (%0, #0) £(2) €(2)AB/2,7)A(1, Ad(7))

It is easy to check that

From this, one can show that Py, ., (s) is equal to

A(s —(1/2),Ad(0))A(s, Ad(c) X 7)
E(s+ (3/2))A(s+ 1,7)A(s + (1/2),Ad(0))A(s + (1/2), Ad(7))
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It follows that

A0, Ad(0))A(1/2, Ad(0) R )
Prin(1/2) = 25y A@3/2 1AL, Ad(0))A(L, Ad(7)
A (1/2,Ad(0) X T)
—E(2)A(3/2,7)A(1, Ad(7))

Observe that
Ir(1)lc(k) - Te(k)le(26)Tc(1)
Pricomo e (1/2) = Te(2) Te(k + f) - FR(;;Fc(HZ 1) -?R@)Fc(%)

= 4r 27,

Proposition 9.1. Let 7 o be the irreducible holomorphic discrete se-
ries representation of SO(3,2) with lowest K -type (det)* "1 Let mo
be the irreducible discrete series representation of SO(2,2) with lowest
K-type £(k + 1,k + 1). Choose lowest weight vectors @1 o € T and
©0.00 € Moo SUch that ||p1.00]l = ||p0.coll = 1. Then we have

[(901,007 900,00) = 16’%7271-27
O‘oo(@l,ooa 900,00) =4m.

The proof of Proposition 9.1 will be given in §12. Using Proposition
9.1, we have

|<¢1‘G07900>|2 1 O‘oo(@l ooa()OOoo)
= —-Ag,CoPryx(1/2) - : —.
{1,010 o) 41 T 00l - ll00.00 1
Therefore in this case, it seems Conjecture 3.2 holds with 2° = 1/4.

Note that we have |Sy,| = 4 and |Sy,| = 2, and hence 27 #£ 1/(|Sy,| -
|Syol), if we admit the Arthur conjecture.

Remark 9.2. Now choose another normalized Hecke eigenform ¢ €
Sp+1(SLa(Z)) such that g # ¢’. Let o' be the irreducible cuspidal
automorphic representation of GLy(A) generated by ¢'. Let ¢ be as
before and ¢q the lifting of g X ¢’ to Go(A). Then we have (1|, o) =
0. Note that Homg, (71, ® 7., C) = {0} for some v (See e.g., [27]
Proposition 3.1). After a little calculation, one can show the numerator
of P, .z (s) is equal to
A(s, 7 x o x d")A(s+ (1/2),0 x ")A(s — (1/2),0 x o)

and the denominator is

A(s+ (1/2),Ad(7))A(s + 1,7)A(s, T)

x §(s+(3/2))6(s + (1/2))€(s — (1/2))

X A(s+ (1/2),Ad(0))A(s + (1/2),Ad(d")).
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Note that as far as we know, any relation between ord,—;/2A(s, 7 X o x
o') and ord,—y,2A(s, 7) are not known, and so P, ,(s) might have a
pole at s = 1/2. It seems this example suggests that there is no relation
between the period (¢1]g,, po) and the L-value Py, -, (1/2), when m or
Ty is non-tempered and the condition Homg, , (71, ® 7., C) # {0}
fails. Note that when both 7, and 7y are tempered, Conjecture 1.5
still makes sense even if the condition Homg, (71, ® 7o, C) # {0}
fails, since it is believed that Pr, ,(s) is holomorphic at s = 1/2.

10. RESTRICTION OF THE HERMITIAN MAASS LIFT TO $9

Now we discuss the case n =5 and k = Q. We put Gy = SO(3,2) ~
PGSp,. Let k > 0 be an odd integer and f € Ss.(SL2(Z)), h €
S:+(1/2)(F0(4)), F € Sut1(Spy(Z)), and 7 be as in §9. Let

M= Y e
n>0
—n=0,1(4)
be the Fourier expansion of h(7).

Let K be an imaginary quadratic field with discriminant —D. We
assume that ¢(D) # 0. We denote by x and wg the associated Dirichlet
character for K/Q and the number of units in K, respectively. We put
Gl = SO(4, 2)[(/@ ~ SU(Q, 2)K/Q/{:|:1}

Now let I'r = SU(2,2)(Q) NGL4(Ok) be the special hermitian mod-
ular group, where Ok is the integer ring of K.

By using the fact that the Tamagawa number of SU(2,2) is 1, one
can show that the volume of the fundamental domain for 'k is equal
to

Vol(Ti\Ha) = 273D (4, wr)E(2)A(3, x)E(4),
where H, is the hermitian upper-half space of degree 2. Here, we have
given an invariant measure on Hs as follows. Put X = (Z +7)/2,
Y = (Z—-12)/(2y/-1) for Z € Hy. The measure dX on the space of

hermitian matrices is defined by dX = [[,; dXZ-(;-") IL.; dXi(;), where
X =XM 4 /-1XO Xi(;),Xi(;) € R. Then the invariant measure is
given by (det Z)=*dX dY. This calculation will be carried out in the
appendix to this section.

Let g € Sk(T'o(D),x) be a primitive form and G € S,.1(I'x) the
hermitian Maass lift of ¢ (cf. Kojima [33], Krieg [34], Ikeda [28]). We
assume that G # 0. Let p be the irreducible cuspidal automorphic rep-
resentation of GLg(A) generated by g. By using Sugano [43], Corollary
8.3 and Ikeda [28] §15, we have

(G,G) = 277D 172 (4, wi )€(2)A(2, Sym® (p))A(1, Ad(p)).
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One can prove this formula using Raghavan-Sengupta [36]. The main
theorem of Ichino and Ikeda [26] says

2|<g|Y)27}—>|2  o—4r—2 on 1 AM(1/2,p X p x T)
- e G

Combining these result and the Kohnen-Zagier formula [32]

2<f7f>_l-€71 512
\C(D)\W—Q DW2IN(1/2, 7 @ x),

we have

|<g|5§27:'r>|2 _ -Vo -1
W =27 - Vol(T' \Ha) ™ €(2)A(3, x)&(4)
A(1/2, Sym?(p) ® 7)A(3/2,7)

A(2,Sym?(p))A(1, Ad(p))A(1, Ad(T))

We translate these results to adelic language. Let ¢ (resp. o)
be the automorphic form on G1(A) (resp. Go(A)) corresponding to G
(resp. F). We put S = S; U {oo}, where St is the set of primes which
divide D. When v < oo, let dgy, be the standard Haar measure of
Go(Q,). The topological identity component of Gy(R) is denoted by
Go(R)?. Let K% = SO(3) x SO(2) be a maximal compact subgroup
of Go(R)?. Let dk be the Haar measure of K% with the total mea-
sure 1, and dgo . the Haar measure of Go(R)? such that dgg «/dk is
equal to the measure (det Y)™2dX dY on $, ~ Go(R)?/K% . Then we
have Vol(PGSp,(Z)\Go(R)) = Vol(Spy(Z)\$H2) = 2£(2)€(4). Let Cy
be the Haar measure constant. It follows that Cy = £(2)71¢(4)7!
54073, since there is a bijection Go(Q)\Go(A) ~ (PGSpy(Z)\Go(R)) x
[1)<o0 Kop- Note also that Ag, = £(2)A(3, x)£(4).

Let m; (resp. mo) be the irreducible cuspidal automorphic represen-
tation of G1(Ag) (resp. Go(Ag)) generated by ¢y (resp. ¢p). Note that
both 7 and 7y are non-tempered. It is easy to check that

A(s,m1) = A(s,Sym®(p))&(s + 1)E(s)é(s — 1),
A(s,mo) = Als, 7)E(s + (1/2))&(s — (1/2)),
A(s,m, Ad) = A(s + 1, Sym*(p))A(s, Sym®(p)) A(s — 1, Sym?*(p))
x A(s, Ad(p))&(s + 1)E(s)E(s — 1),
A(s, 7o, Ad) = A(s, Ad(7))A(s + (1/2),7)A(s — (1/2),7)
x E(s+1)E(s)E(s — 1).
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It follows that Pr, »,(s) = R(s)/Q(s), where
R(s) = A(s,Sym®(p) K T)A(s — 1, 7)&(s — (3/2)),
Q(s) = A(s + (3/2), Sym®(p))A(s + (1/2), Ad(p))
X A(s+ (1/2), Ad(7))E(s + (3/2)).
Observe that
A(L/2, Sym?(p) K )A(—1/2, 7)(=1)
A(2, Sym*(p))A(L, Ad(p))A(L, Ad(7))€(2)
A(1/2,Sym?(p) X 7)A(3/2,7)
A(2, Sym*(p))A(L, Ad(p))A(L, Ad(T))
by the functional equations A(1 —s,7) = —A(s,7), (1 — s) = &(s).
We consider the local factor a,(¢1.4,p0.). For v ¢ S, we may con-

sider v, (¢1.4, @ow) = 1. For v € St, the conditions (Ul) and (U2) in §1
fail. Instead of (Ul) and (U2), we consider the following conditions:

(U1") G, is quasi-split.
(U2) K;, is a special maximal compact subgroup of G;,,.

7)7r1,7ro(1/2) =

Lemma 10.1. Assume n = 5. Let v be a non-archimedean place such
that the conditions (U1"), (U2'), (U3), (U4), (U5), and (U6) hold. Then
we have 1(¢1,4, 0o0) = Agy, Py, (1/2), if it is convergent.

The authors have verified this lemma by using computer calcula-
tion. By this lemma we may consider a,(p1,,0,) = 1 by “analytic
continuation”.

For v = 0o, one can easily see that Pr, _ r, .. (1/2) is equal to

Fc(l)rc(ﬁ)r(c(Q/i — 1) : Fc(/i — 1) . FR(—l)
Tr(2)Tc(k + 1) Tr(2)Te(k) - Tr(2)Te(2k) - Tr(2)
1677
k(=125 —1)

Note that 7 o is a discrete series representation of SO(4,2), and the
K-type of ¢ « is the lowest K-type. Similarly, 7 o is a discrete series
representation of SO(3,2), and ¢y « is a lowest K-type vector. We may
assume |[p1 00l = [|o.00l = 1.

Proposition 10.2. We have

6473
k(k—1)(2k — 1)’
0400(801,007 900,00) = —4m.

1(901,007 900,00) -
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A proof of Proposition 10.2 will be given in §12.
By Proposition 10.2, we have

‘(901|G07()00>’2 1 O‘oo((pl 00y L0 oo)
= _AG COPW \T (1/2) . : :
(1,010 (00, p0) 4 TP [o1,00(1 - P00 12

1 (P10, Po)
= ~Ag,CoPry iz (1/2) o
4 H i1l - ol

under the assumption ¢(D) # 0. Therefore in this case, Conjecture
3.2 seems to hold with 2° = 1/4. Note that we have |Sy,| = 2 and
|Syo| = 4, and hence 2° # 1/(|Sy,| - |Sy,|), if we admit the Arthur
conjecture.

Appendix to §10: Calculation of the volume of the fundamen-
tal domain for T';\Ho,.

In this appendix, we calculate the volume of the fundamental domain
for the hermitian modular group. Let K = Q(v/—D) be an imaginary
quadratic field with discriminant —D. We put K, = K ® Q, and
O, = Ok ® Z,, where Oy is the integer ring of K.

Let F%) = SU(n,n)(Q)NGL2,(Ok) be the special hermitian modular
group. By using the fact that the Tamagawa number of SU(n,n) is 1,
we shall show that

2n
Vol(Di\H,,) = 27+ D@ =022 i) [T AG, X).
1=2

where H,, is the hermitian upper half space of degree n.
Put & = SU(n,n). Then

Lie(®) = {X € M, (K) | XJ 4+ JX =0, tr(X) = 0},
0 -1,

1, O
Let Eli, j] € M, (Z) be the (i, j)-elementary matrix of size n. Set

Sii. ] = {EM (i =),

where J = . We choose a basis of the Lie(®) as follows.

Eli,jl+ Elj,i] (i # ),
Ali, 4] = Eli, 5] — E[j, 1.
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Put
A&:(MW]J%%)
= (o %57,
= (st 0)
m]:m(g A[gﬂ),
V=V (4 1)

i

Elj, i]
, Bli,i] — E[i +1,i + 1] 0
WQ—VtE( 0 E%ﬂ—Eﬁ+Li+H)'

The following vectors make up a basis of Lie(®).

Yi; (1<i<j<n),
Y, (1<i<j<n),
/ . .

Vi (1<i<ji<n),

wW! (1<i<n).

Let £ C Lie(®) be the lattice generated by this basis. This basis
determines a Haar measure dg, on &(Q,) for each place v, and the
product measure [ [, dg, is the Tamagawa measure on &(A). For each
prime p, we define a maximal compact subgroup Ke, of &(Q,) by

Ke, = 6(Q,) N GLy,(0,). Since [0, : Zy, + V' —DZy] = (2,p), we have
[Lie(8)(Qp) N M2, (Op) : £ Zy| = (2’p)2n2—n—1.

It follows that the volume of K, is equal to (2, p)®* 1 T, L(4, ).
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For the real place, the vectors

Xij— X5 (1<i<j<n),

Vi =Y, (1<i<j<n),

Vi +V5 (1<i<j<n),

Wi+ Wy (1<i<j<n),
W! (1<i<n)

generate the Lie algebra of a maximal compact subgroup Kg_ of &(R).
The maximal compact subgroup Kg_ is isomorphic to

{(u1,u2) € U(n) x U(n) | detuy - det ug = 1}.
This isomorphism is explicitly given by Ad(A) : k — AxA™!, where

=gl VA,

Note that
Ad(A)(Xi; — Xji) = (A%j] A[?,j]) ’
Ad(A)(Y;; =Y = V-1 (S[gj] —S([)i,j]) ’
Ad(A)(Vi; + V) = VD (_A[i’j] ; ) ’

Ad(A) (Wi + W) = V=D (S f)’j] S[?, J’]) ’
Ad(A)(W!) =W,

)

Let dk be the Haar measure on Kg_ determined by these vectors. By
Macdonald [35], the volume of U(n) is equal to (27)""+D/2 [T T'(i) 7,
if the Haar measure is normalized by a Chevalley basis of Lie(U(n))®C.
Using this, we have

Vol(Ke..; dkoo) = D= +1)/29—n?+2n _n?+n—1 HF@»)Q.
i=1
We now consider the invariant measure on the hermitian upper half
space H,. We define an invariant measure on H, as follows. Let
Her, (C/R) be the space of hermitian matrices of size n. Then the
Haar measures dX and dY on Her,(C/R) are such that the covol-
ume of the lattice Her, (C/R) N M, (Z[y/—1]) is 1. Then the measure
(det Y) 2" dX dY is invariant under the action of &(R) = SU(n, n)(R).
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Note that &(R)/Ks., ~ H,. We claim that dg./dk. is equal to
2 "D~ =m/2(det V)2 dX dY. To prove this, we consider the Iwa-
sawa decomposition &(R) = Ag_ N, Ke. , where Ag, and Ng_ are
Lie subgroup of B(R) corresponding to the Lie algebras generated by
and

{Xij, Vi, Wi [1 < i< j <mpU{Y; |1 <0< j <},

respectively. Then it is easy to check the left invariant Haar measure
determined by these basis induces 27" D~"*="/2(det Y) 2" dX dY on
‘H,,, which implies the claim.

Now we consider the adele space &(A). Let X be a fundamental

domain for F([?)\Hn. We regard X as a subset of Ag _Ng__ by the
bijection Ag, N, ~ B(R)/Ke. ~ H,. Then each fibre of the map

([1Ke,) x % x Ke.. — B(@)\&(4)
p

has exactly |Z (Fg?))\ elements, where Z (F(z?)) is the center of F(I?). Note
that \Z(F%)H = (2n,wg). It follows that

2n n
(2n, wK)—1 . 22n2—n—1 H L(i, Xi)—l . D(—n2+1)/22—n2+2nﬂ_n2+n—1 H F(Z-)—Q

i=2 1=1
x 27" D=2yl (%) = 1.
It follows that

2n
Vol(DS\H,,) = 27+ D@ =n=012(2p i) TT AG, X).
1=2

as desired.

11. THE TRIVIAL REPRESENTATION

Let k£ be a totally real algebraic number field and S the set of
archimedean places of k. The discriminant of k is denoted by Dy.
Recall that the completed Dedekind zeta function &x(s) satisfies the
functional equation &(1 — s) = DI V2gu(s). Put d = [k : Q). We
assume the following conditions:

(a) Both Gy and G are unramified over k, for each v ¢ S.

(b) Gy, is compact for each v € S.
Note that such a pair Gy C G exists if and only if the following (i),
(i), and (iii) hold:

(i) The discriminant field K is unramified over k.
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(ii) K is totally real if n = 0 mod 4, and totally imaginary if n = 2
mod 4.

(iii) d is even if n = 3,4, 5,6 mod 8.
Let Ko = [], Ko, be a maximal compact subgroup of Go(A). We
assume /Ky, is a hyperspecial maximal compact subgroup for v ¢ S.
For v ¢ S, we give the standard Haar measure dgo, on Gg,. Forv € §,
we give the Haar measure dgo, with total volume 1 on Ky, = Gy ,.
The Haar measure constant Cy can be calculated directly, but here
we make use of the mass formula. There exists a finite subset B C
Go(A) such that Go(A) = [[,cq Go(k)xKy. For each x € B, the group
[ = 27 1Gy(k)x N Ky is a finite group. The left coset Go(k)\Go(A) is
decomposed into a disjoint union

Go(k)\Go(A) = ] = - (I"\Ky).

z€eB

Let e, be the order of the group I'*. The mass M is defined by M =
> sem €y - Then Shimura’s exact mass formula (Shimura [41], p. 27,
Theorem 5.8) says that

m—1
m2— m —m
M =2D, ( /2)[(27r) L'(m)]*L(m, x) H{ [(27)~%T 2;)]dgk(2])}
7=1

if n = 2m is even, and that

M =2 D TT {[(2m) 7 27T(29)]%6k(29) }
j=1
if n=2m+1 is odd.
Then we have

/ H ng v
Go(k)\Go(A

v

Since the Tamagawa number of GO is 2, we have Cy = 2M 1.
By definition, we have

A — [T5% &k (27) if n = 2m is even,
“TAm+1,y) [T72 &k(25) ifn=2m+11is odd.

We now put o1 = 1 and ¢y = 1. Then 7; is the trivial representation
of G;(A). Obviously, we have

[(01lcos o) I?

(o1, 1) (90 o) .
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The L-function of the trivial representation of G is given by

A(s ) A(SaX) H2m 1§k($—m+]) if n = 2m is even,
T =
o nglfk(s_m‘i“]—(lﬂ)) if n =2m + 1 is odd.

Similarly, we have

As.m) 127 &ls —m+j — (1/2)) if n = 2m is even,
v —=
! A(s, x) H2m+1£k(s—m+j —1) ifn=2m+1is odd.

When n = 2m is even, we have
2m
A(s,m Bmg) = [[Als —m+i—(1/2),x)

i=1
2m 2m—1

< [T ] &(s—2m+i+i—(1/2)
i=1 j=1

2m—1

A(s,mp, Ad) = H A(s—m+1,x)

< ]I als—2mtity)

1<i<j<2m—1
As,mAd) =[] &(s—2m+i+j—1).
1<i<j<2m

It follows that

Als —=m+ (1/2),x) T &ls —2j + 1/2))
’Pﬂ'lﬂ' )
mol(s) = &(s+2m—(1/2)) H &(s+25—(1/2)
m—1
27+ 1)
Pﬂ-l,ﬂ—o(l/2> H §k<§ J +
Jj=1 k
m?—(m A(m X)
— pmi=(m/2) )
g &r(2m)
if n =2m is even. A similar calculation shows that
&(s — 254 (1/2))
Prix A(s+m+(1/2), ,
m) = A (12) Hsksm— (1/2)
Primo(1/2) = +1,
N |

= D];" +(m/2)A(m + 1’X>71’
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if n =2m+11is odd. When v € S, the integral I(y1,,¢o.) is clearly
equal to 1. It follows that

av(@l,v: 900,11) = Aaivlpﬂ’l,vﬂfo,v(l/z)il
Pp(l—m) ' [I75 Tr(=2j + 1)~ if n=2m =0 mod 4,
= ¢TR(2—m) ' [ Tr(=2j + 1)7' if n=2m =2 mod 4,
[[Z Tr(=2j +1)7" if n =2m+ 1 is odd.
Therefore we have

[{©1]ays o)
<8017 901><3007 900>

= 2BAG100,P7F1,7F0(1/2> H O‘U(@va 900,v)7

veS
where

6=

—md  if n = 2m is even,
—2md if n=2m + 1 is odd.

Note that the integer § depends on the number of bad places.

12. CALCULATION FOR THE REAL PLACE

In this section, we carry out the calculation of the archimedean local
integrals which appeared in §7, §9, and §10. Every algebraic group is
defined over R in this section.

We first consider the case Gy = SO(2,1) ~ PGLy(R). The (topo-
logical) identity component of Gy is denoted by Go(R)?. Note that

Go(R)° ~ SLy(R)/{+£1}. The image of (Z Z) in PGLy(R) is denoted

by {CCL Z] . The maximal compact subgroup O(2)/{+1} C PGLy(R) is

denoted by K. Put K = SO(2)/{£1} C K. The Haar measure dk on
K° is such that the total measure is 1. By Iwasawa decomposition, an
element g € Go(R)® can be uniquely written as

_etOlnk
I=10 et|]o 1|™

t,n € R, k € K° We choose a Haar measure dg on Go(R)° such that
dg/dk induces the measure y~2dxrdy on the upper half plane $; ~
Go(R)/K. Note that dg = 2dtdndk. The Haar measure dg can be
naturally extended to Go(R). We put

r> o} |

(k2
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We consider the map

K x At x K¥ — Go(R)?

et 0 , et 0],
(l; )l e
By Cartan decomposition, this map is bijective outside the boundary
of A*. It is well-known (e.g., [21], Theorem 5.8) that

dg = C - sinh(2t) dk dt dk’'

for some constant C' > 0. Let A(T") be the area of the small disc with ra-
dius T and center /—1 € $;. Then we have A(T) ~ CfOT/2 sinh(2t) dt

when 7" — 0, and so we have C' = 4.

Let 7; be the (limit of) discrete series representation of PGLy(R)
with minimal weight +x;. Let ®; be the matrix coefficient of 7; o with
respect to the lowest weight vector with norm 1. Then the support of
®, is contained in Go(R)" and

B, ({%t eZD — cosh() "

Proof of Proposition 7.2. Let ¢1 o and ¢ be as in Proposition 7.2.
Then we have

11,00, P0,00) = 47r/ cosh(t) ™" sinh(2t) dt
0
=dn(kg — 1)1
For the latter part of the proposition,
0100(9017007 9007<>O> AG} ooPTH,ooJro,oo (1/2)_1](901,007 90000) = 2.

Next, we consider the case Gy = SO(2,2). Put
GLY? = {(h1, hs) € GLy x GL, | det hy = det hs}.
Then, we have SO(2,2) ~ G ( )/R*.  We denote the image of

(hi, hs) € GLY(R) in SO(2,2) by [h1, ho]. Put
[ &) ) |ees}
([ 3)-6 7))

K= {[kl,kg] ’ kl, kQ € O( ), det ]{1 = det kQ}
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For each (t;,t;) € R?, we put

=[5 ). (5 %)

The connected component SO(2,2)? is equal to the image of SLy(R) x
SLy(R). Put K% = £ N SO(2,2)°. Then we have an Iwasawa de-
composition SO(2,2)° = ANK°. Then SO(2,2)°/K° can be identi-
fied with 97 x ;. The Haar measure dk on K is the Haar measure
such that the total volume is 1. We choose a Haar measure dg on
SO(2,2)? such that the induced measure dg/dk on $; x $; is equal
to yf2y52 dxy dxo dy; dys. Then dg = 4dty dty dny dns dk. The Haar
measure dg can be naturally extended to Go(R) = SO(2,2). Put
AT ={mf(ty,t2) | t1, t2 > 0}. Consider the map

A KD x AT x KO — SO(2,2)°
(k, m(tl,tg), k'/> — k- m(tl,tg) . /{?I.

Let OA™ be the boundary of AT. If g € Go(R)? is not in the image of
JA™, then A™!(g) consists of two elements. In terms of the map A, we
have

| s

Go(R)O

== ]_67'('2 / f()\(k?, m(tl, tg), ]{fl)) smh(2t1) smh(2t2) dk dtl dtg dk’,
KOx A+t x KO

for any integrable function f on Go(R)°.

Proof of Proposition 9.1. We need to calculate the matrix coefficient
of Y100 € T . In fact, it is enough to consider the pullback of the
matrix coefficient by the map SLy(R) x SLy(R) — SO(2,2) € SO(3,2),
since AT is contained in the image of this map. Note that the image
of SLy(R) X SLy(R) is contained in the identity component SO(3,2)° =
Spo(R)/{£1}. The restriction of 7  is a direct sum of a holomorphic
discrete series and an anti-holomorphic discrete series. Since the holo-
morphic discrete series is a lowest weight representation, its pullback
to SLa(R) x SLy(R) is a direct sum of lowest weight representations.
We denote 7, the holomorphic discrete series of SLy(R) with lowest
weight A. Since the lowest weight (k + 1,k + 1) occurs with multi-
plicity one, the summand contains 7., X 7,1 exactly once, and the
other summands are of the form 7, X 7,,, where A\;, A\ > £+ 1 and
(A1, A2) # (kK + 1,6+ 1). (In fact, the precise decomposition of the
restriction is known in this case.) Therefore the value of the matrix
coefficient at m(t;,ty) € AT is equal to cosh(t;) ™" cosh(ty)# 1.
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It follow that

fe'e) 2
I(¢1.00, P0.00) = 167° (/ cosh(t) 2" sinh(2t) dt)
0
= 167% /K>,

O‘OO(QDI,oou 900700) = Aa},oopﬂ'l,ooyﬂ'o,oo (1/2)71](801,007 900,00)
=A4r.

O

Now, we consider the case Gy = SO(3,2) = GSp,(R)/R*. We denote

: A B : A B
the image of (C D> € GSp,(R) in Gy(R) by [C D]' Put

([etr 0
0 e 0
A — e_tl O tl, t2 e R 3
ul 0 0 e
([ 1 n)
, o 1] ! ,
0
ul —nj 1
([ ny, Ny
12 n// n//
N" = 22 i1, M, Ny € R 5
0 1,
K° = { {_AB jj ‘ A++V-1B € U(2)}.

Then the topological identity component Go(R)? = SO(3,2)° has an
Iwasawa decomposition Go(R)? = ANK®, where N = N'N”. Note
that Go(R)?/K® can be identified with $,. We take the Haar mea-
sures dk on K° with the total volume 1. We choose the Haar mea-
sure dg of Go(R)? such that the induced measure dg/dk is equal to
(det Y)™3dX dY. Then we have

dg = 4dt, dty dn} dny; dnf, dng, dk.
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The Haar measure dg can be naturally extended to Gy(R). Put a =
Lie(A). Then a can be identified with R? and we put

el 0
0 e

0

0

et
0 e

m(tl, tg) =

for each (t1,t;) € R? ~ a. The positive chamber AT is defined by
AT ={m(t1,tz) € A|t; >ty > 0}. Then the map

A KY x AT x KY — S0O(3,2)°
(l{f, m(tl,tg), k'/> [ — ]{? . m(tl, tg) . /{Z,

is a double covering outside the boundary of A™. In terms of this map,
we have (cf. [21], Theorem 5.8)

dg =C smh(2t1) smh(2t2) sinh(tl — tg) Sil’lh(tl + tz) dk dtl dtg dk/

for some positive constant C' > 0.

The constant C' can be calculated as follows. We recall the argument
of [21], Ch. I, Theorem 5.8. We shall calculate the Jacobian of the
induced map

A K2 x AT — Go(R)?/K® ~ AN
at (k,m(t1,ts)) € KY x AT. Let g = p + € be the Cartan decompo-
sition of g = Lie(SO(3,2)?). Then the tangent space of K° x A" at
(k,m(t1,t2)) can be identified with € + a by left translation. Let 3T
be the set of positive roots for (Go(R)", A). Then for each o € 3T, we
put

b, = {T € t|ad((w1,22)*T = a(z1, )T for all (x1,75) € a}.

Then dima, = 1 for any o € ¥. Choose a non-zero vector T, € &,
for each o € ¥*. For example, we can choose

Jo| 0 0 1o 0
T€1—€2: ) T2€1: — )
0 0 1 10 0
-1 0 0 O
o 11 B
TE1+€2: O _1 ) T2€2 0 O
1 0" o —1] Y

For each a € ¥,
Ua = a((t1,12)) " ad((t1, t2))(Tw)
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belongs to p, and does not depend on (t1,t,) € a. Note that

K o[
e e e R I
10 0 0
0 17 0 0 1o 3
Vara =51 | U=~ |T0
10| ? 01| !

Then

IL (a S §y+)7 (170)a(071) ca
make up a basis of £ + a, and

Ua (Oé S ZJr)u (17())7 (07 1) ca

make up a basis of p. By the proof of [21], Ch. I, Theorem 5.8,
| det(dA e mean)| = J] sinh(a(ti, t2))
aext

with respect to these basis.
Let w, (o € 1) be the basis of the space of left invariant 1-forms
on K° dual to T,, (a € ¥). Then it is easy to check that

/ | /\ wa| = 27°.
Ko aext

On the other hand, the dual basis of
(1,0), (0,1) €a, U, (x€X™)

induces

1
0 dty dty dny dny; dnfy dnl,

on AN ~ Gy(R)°/K°. Tt follows that C' = 647>

Proof of Proposition 10.2. As in the proof of Proposition 9.1, the value
of the matrix coefficient (71 00 (g0)¥1,00, 1,00) at go = m(ty,12) is equal
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to cosh(ty) ™" cosh(ty)™"1. Tt follows that

I(Wl,ooa (PO,oo) = 6471'3 / Cosh(tl)*%é*? COSh(t2)72ﬁf2

t1>t2>0

x sinh(2t;) sinh(2t) sinh(t; + t2) sinh(ty — t2) dt; dt,

= 6477 / / cosh(x + y) 2" % cosh(y) 22
o Jo
X sinh(2x + 2y) sinh(2y) sinh(z + 2y) sinh(z) dx dy.
By using the formulas
sinh(2a) = 2sinh(a) cosh(a),
sinh(a 4 b) sinh(a — b) = cosh?(a) — cosh?(b),

one can show that the integral I(¢1 o, ¢0.5) is equal to

2567 / cosh(y) 2! sinh(y)
0
X / cosh(z + )" sinh(x + y)[cosh?(x + y) — cosh®(y)] dx dy
0

= 2567r3/ cosh(y) ! sinh(y)
0

—2Kk+427 00 -2k O
X { {—g 2] — cosh?(y) [— u2 } } dy
K= u=cosh(y) K u=cosh(y)

12873 o
= /ﬂj(f@'—fl)/o cosh(y) ™! sinh(y) dy
643

k(k—1)(2k — 1)

Since Ag, 00 = I'r(2)Tr(4)? = 72, we have Qoo (P1,005 P0,00) = —4.
]
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