ON THE LIFTING OF AUTOMORPHIC
REPRESENTATIONS OF PGLy(A) TO Sp,,(A) OR

Spy,.1(A) OVER A TOTALLY REAL FIELD
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ABSTRACT. We construct a lifting of automorphic representations
on PGLy to symplectic or metaplectic groups over a totally real
field.

Introduction

In this paper, we construct a lifting of automorphic representations
on PGLy to symplectic or metaplectic groups over a totally real field.
The main result of this paper can be considered as a generalization of
[6] to an arbitrary totally real field under some mild local assumptions.

Let k£ be a totally real field. Fix a non-trivial additive character
¥ of A/k. We denote the set of all archimedean places of k by .
Let 7 ~ ®,7, be an irreducible cuspidal automorphic representation of
PGLy(A). We assume that 7 ~ ®,7, satisfies the following conditions:

(A1) For v ¢ S, T, is a principal series B(fi,, i, ')
(A2) For v € G, 7, is a discrete series representation with lowest
weight +2k,,.

(A3) The root number £(1/2,7) is equal to 1.

Here, the (global) root number is defined as follows. The local root
number £(1/2,7,) is given by

. po(=1) v ¢ B,
5(1/2,7},) - {(_1),% v E 600

Then the global root number €(1/2,7) is defined by

e(1/2,7) = []=(1/2.7).

—_——

For each place v of k, let Sp, (k) = {(9,¢) | g € Sp,(ky), ¢ € {£1}}
be the metaplectic covering of the symplectic group Sp,,(k,). The mul-

tiplication law of Sp,, (k) is given by (g1, (1) (g2, (2) = (9192, ¢(91, 92)1(2),
where ¢(g1, g2) is Rao’s 2-cocycle (cf. Rao [11]).
1
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We denote the space of symmetric matrices of size n by S, (k). For
A € GL, (k) and z € S,,(k), we define m(A),n(z) € Sp,,(k) by

m(A) = (6‘ t Aol), n(z) = (10” fn).

P, = M,N, C Sp,
be a Siegel parabolic subgroup of Sp,,, where
M, (k) ={m(A)| A € GL,(k)}, Nu(k)={n(z)|z € S.(k)}.

Let v be a place of k. For each t € k,, we denote by ay, (t) the Weil
constant. Recall that the Weil constant ay, () satisfies the equation

$(x)ip(t®) dx = vy, ()12t [ Sy (" a? /4) da
ko ky

Let

for any Schwartz function ¢ € 8(k,), where
o(x) = [ oy)u(zy) dy
kv

is the Fourier transform of ¢. Let (, ), be the Hilbert symbol for k,.
We set xi(z) = (t,x), for t,z € k.
For v ¢ &, we set
M., = (n, 7,) = Ind™®) ().
Po (ko)

Here,

u(m(A),¢)) = " (%)nu(da ).

Note that 1I,, ,, is a degenerate principal series induced from a character
of the Siegel parabolic subgroup. Note that when n is even, we have

py? (m(A), Q) = x(-1)(det )"/ p(det A).
When v € &, we let I1,,,, = II(n, 7,) be the lowest weight representa-
tion of Sp,(R) with lowest U(n)-type (det)®+"/?. Note that II,,, is
genuine if and only if n is odd.

Let Sp,,(A) be the metaplectic double covering of the adele group
Sp,(A). We denote the space of cusp forms on Sp, (k)\Sp, (A) by
Acusp (S, (k)\Sp,,(A)). Then we have

P

Acusp(SD, (1)\Sp, (A)) ® AE (Sp,, (k)\Sp,.(A)),
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where A2 (Sp,,(k)\Sp,,(A)) is the space of genuine cusp forms on

cusp
—_ —

Sp,,(k)\Sp,,(A).

We consider the restricted tensor product

I, =1(n,7) = ®/H(N,Tu)7

(2

P

which we consider as a representation of Sp,(A). The multiplicity
Mauto(I1,) is defined by

—_——

Mauto (Hn) = dlm(C Homsm) (Hna ACuSp(Spn(k)\Spn (A)))

Then the main result of this paper is as follows.

Theorem 7.1. Let 7 be an irreducible cuspidal automorphic represen-
tation of PGLy(A) which satisfies the conditions (A1), (A2), and (A3).
Then we have

mauto(Hn>

=1.

It is easy to show that if 7 satisfies (A1), (A2), and if e(1/2,7) = —1,
then mauio(IL,) = 0.

Note that II,, can be considered as a cuspidal automorphic repre-
sentation of Sp,,(A). The standard L-function of Ily, is given by

2n
L(Sa H2na St) = Ck(s) H L(S +n—1+ (1/2)7 T X(*U")?
i=1
up to bad Euler factors. Here, (j(s) is the Dedekind zeta function of
k.

Assume that & = Q and that kK = n mod 2. Let f € Sy.(SLy(Z))
be a normalized Hecke eigenform, and 7 be the irreducible cuspidal
automorphic representation of GLa(Ag) generated by f. Then we have

6(1/2,7’ X X(_l)n) = (—1)K+n =1.
Let F € Sein(Sps,(Z)) be the cusp form constructed in [6]. Then
the automorphic representation generated by F' is equal to I1(2n, 7 ®
X(-1y»). Therefore Theorem 7.1 can be considered as a generalization
of [6].

In fact, the method of the proof of this theorem is different from that
of [6]. In [6], we used the Fourier coefficient formula of the Siegel Eisen-
stein series. In this paper, we use the theory of degenerate Whittaker
models, and do not use the Eisenstein series.

In, [3], Ginzburg, Rallis and Soudry have constructed some CAP rep-
resentations by means of the descent method. Our method is different
from their method, and we can determine the multiplicity.



4 TAMOTSU IKEDA

For the multiplicity of the Saito-Kurokawa lifting, Piatetski-Shapiro
[10] proved that the Saito-Kurokawa lifting has multiplicity one as a
representation of PSp,(A). But it seems his result does not imply the
multiplicity one as a representation of Sp,(A). Recently, Heim proved
the multiplicity one of the Saito-Kurokawa lifting as a representation
of Spy(Ag) for the Saito-Kurokawa lifting for Sy, (SLa(Z)).

We explain the idea of the construction. Let S,(k)* be the set of
elements B € S, (k) whose image in S,,(k,) is positive definite for any
real place v of k. Assume that II(n,7) is cuspidal automorphic. For
f € Il(n,7), the corresponding automorphic form F(g) has a Fourier
expansion

- 3 Wl

Sn(k)+

Wi(g) = / vy, FEEOTE =

Note that Wg(g) # 0 unless B € S,,(k)™ by the Kocher principle. The
map f — Wpg(1y,) can be considered as a Whittaker vector wp €

Whg(Il,) = Hompys)(I1,,¥p). By standard local argument, one can
show that Whp(II,) is one dimensional for any B € S, (k)". Thus

an embedding 7 € Hom —~— ) (Hn,Acusp(Spn( )\Sp,,(A))) gives rise to
a family of Whittaker Vectors

{wp}ses.m+ € H Whg(Il(n, 7)).

BeSu(k)t

Conversely, we consider a family {wp} pes, )+, and investigate when
such a family gives rise to an automorphic form. Clearly, it is necessary
that wpa) = wp o II,,(m(A)) for any B € S,(k)" and A € GL,(k).
Here, B[A] = 'ABA, as usual. We call such a family a GL, (k)-family
for 11,,.

We shall make use of the theory of Fourier-Jacobi expansion [2] and
Jacobi forms [5]. Note that the normalization of the Weil representation
n [5] is different from that of this paper. Let 0 < m < n be an integer
and set n’ =n —m. Put

1, x z oy
0 1, %% 0

v(z,y,z) = 0 0 1 0 € Sp, (k)
0 0 ‘ — tx ]_n/
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for x,y € Mat(m,n’;k) and z —z -ty € S,,(k). We set
V=Vom={v(z,y,2) |2,y € Mat(m,n;k),z —x -y € S, (k) },
X = Xym = {v(2,0,0) | x € Mat(m,n’; k)},
Z ="Zyp=4v(0,0,2) |z € Sn(k)}.

We regard these groups as algebraic subgroups of Sp,,. Note that the

quotient group
V/{v(0,0,z) € Z|tr(Sz) = 0}

P —_—~—

is a Heisenberg group. We regard Sp,,,(A) as a subgroup of Sp,,(A) by
the embedding

1, 0]0 0
ABC OAOBC
.
C D) 0O o1, 0 [’
0O C|0 D

Fix S € S, (k)". Let vg be the character of Z(A) defined by
v(0,0,z) — (tr(Sz)). By Stone-von Neumann theorem, there is a
unique irreducible admissible representation wg of V (A) on which Z(A)
acts by 1g. The representation wg extends to the Weil representation

of the group J(A) = V(A) x Sp,,(A), which we also denote by wg.
The representation wg can be realized on the Schwartz space 8§(X (A))

on X(A). Recall that for ¢ € §(X(A)), the theta function ©%(vg’) is
defined by

0% (v(z,y,2)g) = Z Ys(z+y v+ 20 Yy)ws(g)o(l+ )
leX (k)
for v = v(z,y,2) € V(A) and ¢’ € Sp,,(A).
For a vector f € Il(n, T) and an GL, (k)—family {ws}Bes, (k)+, set

- Y

BeS,(k)t
W(g) = wp(,(9)f).

We assume the Fourier series F'(g) is absolutely convergent. Then we
have (Lemma 11.6)

/ F(vg')©%(vg') dv
VRV (A)

-y / Wees (v(2,0,0)g") s(g) (@) da

B'eST, (k
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for any ¢ € 8(X(A)). Note that if F'(g) is automorphic, then so is this
integral.

Let II(n, 7)™* and §(X (A))™ be the spaces of lowest weight vectors
of II(n,7) and 8(X(A)), respectively. We shall show that there exists
a V(A)-invariant surjective map

Bs : (n, T)IWt ® S(X(A))th — [(n', 7 ® XS)IWt
and a map
fjg = ‘7:\75’3/ : WhS@B/(H(n, 7’)) — WhB/(H(n’, T XS))

such that the Whittaker function associated with Ss(f®¢) and FJTs g (wsep)
is equal to

Wsan (V(Iv 0, 0)9/) ws(g’)¢(x)dx.
X(A)

Thus it is natural to define as follows. Let

{wB} Bes, )+ € H Whp(IL,)
BeS, (k)t

be a GL,(k)-family of Whittaker vectors for II,. We shall say that
{ws}Bes, )+ is a compatible family, if the following conditions are
satisfied.

(1) When n = 1, a family {wp}pes, )+ is compatible if it comes
from the Shimura correspondence of 7, i.e., for each f € Ilj,
the Fourier series

Flg)= > Walg)

BeS1(k)+

belongs to the space of the Shimura correspondence of 7.
(2) When n > 2, a family {wp}pes, x)+ is a compatible family, if
the family

{FTe(weyop )t Bres, 1 (k)+
is a compatible family for II(n — 1,7 ® x¢) for each £ € k.

For precise definition, see Definition 11.7.

We shall show that the dimension of the space of compatible family
of Whittaker vectors for II(n, 7) is 1 (Proposition 11.15). To prove the
main theorem, we also need to show that the Fourier series associated
to a compatible family of Whittaker vector is absolutely convergent.
We shall prove the absolute convergence in §12. The proof of the main
theorem will be completed in §13. In §14, we discuss the relation to
the Arthur conjecture. In §15, we discuss the case k = Q.
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Notation

Given a ring R, we denote by Mat,,,(R) or Mat(m,n; R) the set of
matrices of size m x n with entries in K. When m = n, this is just
denoted by Mat,,(R) or Mat(n; R). We denote by GL,(R) the general
linear group over R, and by SL,(R) the special linear group over R.
When there is no fear of confusion, GL,(R) etc. are simply denoted
by GL,, etc.

Let k& be a local or global field of characteristic 0. When £ is a global
filed, we assume that k is totally real. For global field k, we denote the
adele ring of £ by Ay or A. We denote the set of archimedean places
of k by Go. We set ko, = Hveew k,. The subgroup of totally positive
elements of k* is denoted by k3. The set of symmetric matrices of
size n over k is denoted by S, (k). An element B € S, (k) is said to be
totally positive definite, if the image of B in S, (k,) is totally positive for
any v € S.. The subset of totally positive definite elements of S, (k)
is denoted by S, (k)*. When B € S,(k) is considered as a quadratic
form, we set B[z] = 'zBx and B(z,y) = 'zBy for x,y € k™. Thus
Blzx + y] — Blz] — Bly] = 2B(z,y) for z,y € k™. When = € Mat,,,(k),
we also set Blx] = 'aBx. For By € S,,(k) and By € S, (k), we say
that B; is represented by Bs if there exists x € Mat,,,(k) such that
By = Bs[x]. We write By — By, if By is represented by Bs.

1. Metaplectic groups
Recall that the symplectic group Sp,, is defined by

A B A-'B=B.'A, C-'D=D-'C,
Spn(k’):{(c D) GMat%(k)‘ A-D-B-'C=1, }

For A € GL,, and z € S,,, we define m(A),n(z) € Sp,, by
A 0 1, =z
m = (o ). e (5 7).

P, = M,N, C Sp,

Let

be a Siegel parabolic subgroup of Sp,,, where
M,={m(A)|AeGL,}, N,={n(2)|z€S8,}.

We sometimes identify S, and N,, by B +— n(B), if there is no fear of
confusion.
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Let k be a local field. We assume k 22 C. For each Schwartz function
¢ € 8(k), the Fourier transform ¢ is defined by

- / o) (zy) dy

Here, the Haar measure dy is the self-dual Haar measure for the Fourier
transform. Let ( , ) be the Hilbert symbol. For each a € k*, we define
a character y, : k* — C* by x.(t) = (a,t). For each a € k*, there
exists a constant a,(a) such that

/¢ (az®) dx = ay(a)|2al” 1/2/¢ (—a'2?/4) dx

for any ¢ € 8(k). The constant ay(a) is called the Weil constant. The
following properties of the Weil constants are well-known.

%(—@) = ma

ay(a)® =1,
M = (a a X
o (Dag(ap) ~ B0 @bERT

In particular, au(a)/ay(1) is a 4-th root of unity for any a € k*. For
each quadratic form @ ~ diag(q, ..., qm), we put

ag(a) = aygla) = ay(qa) - - ay(gma).
Set
dQ :detQ, XQ(t) = <dQ,t>.

ag(l) o (1)\™
ooty ~ X (am)

P

The metaplectic group Sp,,(k) is the unique topological double cov-
ering of Sp, (k). It is defined by a Rao’s 2-cocycle ¢(g1, g2) of Sp,, (k)

with values in {£1} (cf. Rao [11]). The group law of Sp,,(k) is given
by

Then we have

(91: Cl)(g% CQ) = (9192a 0(91792)C1C2)

for g1,92 € Sp,,(k) and (1,(> € {£1}. The double covering Sp,,(k) —
Sp,,(k) splits over the subgroup N, (k) by n(B) — (n(B),1). If k is a
non-archimedean local field whose residual characteristic is not 2, there
is a unique splitting

P

Sp,.(0) — Sp,,(k)
g (9,s(9)).
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We identify N, (k) and Sp,,(0) with the images of the splitting, if there
is no fear of confusion.

Let k be a global field. For non-archimedean place v of k, we put
K, = Sp,(0). Let & be a finite set of places of k, which contains all
places above 2 and oco. Put

Spa(A)s = [ [ Spalk) x [ ] Spalon).

veS vg S

Then the double covering Sp,,(A)s — Sp,(A)s is defined by the 2-
cocycle [[,ce Co(G1v: gop). For &1 C Gy, we define the embedding

Spn(A)s, — Sp,(A)s, by
((9)w, €) = ((90)w: € H Su(Gv))-

vES?2
vESy

Here, s, : Sp,(0,) — {£1} is the map which gives the splitting

Sp,,(0,) — Sp,,(ky). The global metaplectic group Sp,,(A) is defined by
the inductive limit

P e

Sp,(A) = lim Sp,, (A)e;,
(S

where G extends over all finite subsets of places of k. It is well-known

that the covering Sp,,(A) — Sp,(A) splits over Sp,, (k) uniquely. We
identify Sp,,(k) with the image of the splitting. Note that the image of
v € Sp,,(k) is given by (v,1) € Sp,,(A)g for sufficiently large &.

—_——

Any representation of Sp,,(A) considered in this paper is a restricted
tensor product @ = ®] m,, where m, is an irreducible admissible rep-

—_——

resentation of Sp,,(k,) for each v. For almost all v, 7, is a class one
representation of Sp,,(k,) with a distinguished class one vector ¢, € .

In other words,
™= hgr)n ® Ty

To describe the action of g € Sp,(A), it is enough to write down the

P

action of Sp, (A)g on ®,cem,. We write various formulae without ex-
plicitly mentioning &. This convention makes the formulae on the Weil

P

representation simple. Note that in the expression (g,() € Sp,,(A),
¢ € {£1} depends on the choice of &.



10 TAMOTSU IKEDA

2. Fourier-Jacobi modules

In this section, k is a non-archimedean local field. The symbols
Sp,,(k), GL, (k) etc. will be simply denoted by Sp,,, GL,, etc. in this
section. We fix a non-trivial additive character ¢ of k. For £ € kX, we
put xe(t) = (£, t), where (, ) is the Hilbert symbol.

The set S,, of symmetric matrices of degree n over k is identified with
the set of quadratic forms over k. We denote the set of non-degenerate
quadratic forms by Snd.

If H is a subgroup of Sp,,, the inverse image of H by the covering

évpn — Sp,, is denoted by H. For A € GL,, and ¢ € {£1}, we put

(.0 = (5 41) ¢) € B

For B € 8™, we define a character ¢p of S, by

¥p(2) = p(tr(Bz2)).
We also regard ¢p as a character of N, by the isomorphism S, ~ N,,.
For a smooth representation 7 of Sp,,, we put

Whi(r) = Homy, (, ) ~ Homg;~ (m, Ind3¥" ).

Whp(7) is called the space of degenerate Whittaker vectors of m with
respect to ¥p. For wg € Whg(m) and f € 7, the function

g—wp(r(g9)f),  g€Sp,

is called a degenerate Whittaker function associated to wp and f. The
space of degenerate Whittaker functions is denoted by Wg(7).

We assume 0 < m <nandn=m-+n'. Let S € S;}@d be a non-
degenerate symmetric matrix of size m. Put

1, = z oy
0 1, ' O
V(ZE,y,Z) = 0 0 1 0 c Spn

0 0 ‘ —b 1,

for x,y € Mat(m,n;k) and z —z -y € S,,,. We define
V=Vym= {V(x,y,z) |2,y € Mat(m,n;k),z —z -y € Sm} ,
X = Xpm={v(z,0,0) |z € Mat(m,n'; k)},

Y =Y,m={v(0,y,0) |y € Mat(m,n’; k)},

Z=Zp=4v(0,0,2) |z € S;n}.
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Note that the quotient group

V/{v(0,0,z) € Z|tr(Sz) = 0}
is a Heisenberg group. On the group X, we give the Haar measure
dx = [, ; dxij, where dz;; is the self-dual Haar measure of the (4, j)-th

cordinate of X ~ Mat(m,n’; k). We regard Sf;n, as a subgroup of §vpn
by the embedding

1, 0/0 0
ABC OAOBQ
—
¢ D)’ 0O o1, 0 |’
0O C|0 D

Let 1g be the character of Z defined by v(0,0, z) — ¥ (tr(Sz)). By
Stone-von Neumann theorem, there is a unique irreducible admissible
representation wg of V' on which Z acts by ¢s. The representation wg

extends to the Weil representation of the group V' x Sp,,,, which we also
denote by wg. The representation wg can be realized on the Schwartz

space 8(X). Set J = J,,, = V x Sp,, The action of J =V x Sf;n, is
given by

ws(v(@,y, 2))(t) =¢(t + 2)ib(tr(S(z + 2t 'y + 2 -'y)))

s ((m(4), ) 6(0) ¢ (5500 ) xstden A) de A1)

¢
ws ((n(2),¢)) p(t) =C"s(tz - t)op(t)
ws (W, Q) d(t) =C™ag(1)™" | det 25|72 /X d(u) Y (tr(2St - tu)) du.

Here
0 -1,
Wy = (1n/ 0 ) € Spn/

The Weil representation wg is unitary with respect to the inner product
(¢1,p2) = / G1(t)@2(1) dt, b1, P2 € §(X).
X

Definition 2.1. For a smooth representation 7 of .J, we put
Flg(m) = (7 @ Wg)y, -

Here, ( )y means the maximal quotient on which V' acts in trivial way.
We call FJg(n) the Fourier-Jacobi module of 7 with index S.

Note that the functor 7 — FJg(m) is an exact functor from the
category of smooth representations of Sp,, to the category of smooth
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representations of J, since V is unipotent. The image of f® ¢ € T®wg
on FJg(7) is denoted by [f ® ¢].

For a smooth representation 7 of Sp,,, we put Flg(m) = FJs((7|;)),
where 7| ; is the restriction of 7 to .J. The isomorphism class of FJg()

depends only on the equivalence class of S € 8. In fact, the map
such that

[f ® ¢(x)] = [r(m(A) & ¥w) f ® 6(Az))
gives an isomorphism FJg(m) ~ FJga(7).
Note that for m = n, we have
Whpg(r) = Hom(FJg(7), C)

for any B € Snd.
When m =1 and S = (§), we write ¢g, wg, and FJg(m) for ¢, we,
and FJ¢(7), respectively.

Lemma 2.2. Assume thatn = mq+mqo+n’, S; € Sﬁﬂ,
Then there exists a canonical isomorphism

PS1,82 + FJSz (FJsl (ﬂ-)) - FJ51@52 (ﬂ-)

Proof. Put X, = Mat(my, mo; k), X1 = Mat(my,n;k), and Xy =
Mat(mg,n’;k). Then )(mm1 = X() D X1 and Xn,m1+m2 = X1 D X2.
Consider the multilinear map

T x 8(Xp) x 8(X1) x 8(X3) — Flg,as,(7),
defined by

and S, € 8PS

(f, 0, 61, d2) = [1(0) f ® (¢1 @ b2)],
where f € m, ¢o € §(Xp), ¢1 € 8(X;), and ¢y € §(X3). Since the
induced map

T ® 8(Xo) ® 8(X1) ® 8(Xz) — Flg,as, (1),

is V,, m,-invariant, we have a map

FJSl (77-) ® S(XQ) - FJ51@52 (77-)

One can easily show that this map is V,_,;, m,-invariant. Hence we
have a canonical map

PS1,82 + FJSz (FJsl (ﬂ-)) - FJ51@52 (ﬂ-)

Conversely, consider the map

TR 8(Xp) ®8(X1) ® 8(Xy) — Flg, (Flg, (7))

induced by o ) ) )
(f, 60, 01, ¢2) = [[f ® (¢0 ® ¢1)] @ @]
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since this map is invariant under the action of Xy, it factors through
the map

TR 8(Xo) ®8(X1) ®8(Xy) — m® 8(X1) ® 8§(X>)

such that B B B B B B
[ ®do® p1 @ po = m(do)f ® 1 @ o
The induced map

TR 8(X1) ®8(Xz) — Flg,(Flg, (7))
is Vi, my+m,-invariant. Therefore we have a map

Psr,ss * Flsies, (1) — Flg,(Fls, (7).

Clearly pf, s, is the inverse map of pg, s,. Hence the lemma. 0

Proposition 2.3. Let m be a smooth representation of SB; Assume
SeSd B eS8, B=Sa® B and wg € Whg(r). Then

(i) The bilinear map m x $(X) — C defined by
(f, @) = wp(n(0) f).
15 V-invariant.

(i) Let FJIsp(wp) : FJg(m) — C be the map induced from the bi-
linear form given in (i). Then we have FJs p(wp) € Whp (FJg(m)).

Proof. We prove (i). Note that

/ S@)ws(r(v(x,0,0)f)) dr.

It is easy to show that this map is X & Z-invariant. It is enough to
show the map is Y-invariant. Since

v(2,0,0)-v(0,y,0) =v(0,y,2-y+y-'z)-v(x,0,0),
we have

(m(ws(v(0,y,0)9)7(v(0,y,0)f)
/ o(z)Y(tr(2Sy - ))wp(m(v(x,0,0)v(0,y,0)f)) dx

= [ Sy Eun(r(v 0.2 -y y ) - v(@.0.0,) dr
Since v(0,y,z -y +y-'x) € N,, we have

wp(r(v(0,y, z-%Y+y-2)v(z,0,0) f)) = »(tr(2Sy-2))wp(r(v(z,0,0)f)).
Hence the desired V-invariance follows. Now we prove (ii). Note that

ws(n(2)g")d(x) = vs(rz - w)ws(g) ()
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for z € S,y C Sp,,. On the other hand, we have

vte0.0m (5 2 =m (5 1)n (6 9)
—n ("ft;‘” ‘f) v(z,0,0)
It follows that
wn (x (vn0.0m (3 2)) 1) = stz e)im(@uatr(vie.0.0)1)

Hence we have (ii). O

By Proposition 2.3, there exists a map
FJTsp : Whp(r) — Whp (FJs(rm))

such that
FIs,p(we)([f ® QZ;]) = wB(W(Q_S)f)'

If B’ is clear from the context, FJs p is simply denoted by FJs. The
following proposition is a restatement of Proposition 2.3 in terms of
Whittaker functions.

Proposition 2.4. Let B =S @& B’ be as in Proposition 2.3. If Wg is
the Whittaker function associated to f € m and wg € Whp(m), then
the Whittaker function associated to [f @ ¢] € Flg(m) and FTs(wp) is
given by

/ Wav(@,0,0)9\as()o@ dr, g € S

Lemma 2.5. Suppose that Sy € S (k), So € Sf(k), B = 51 @
Sy ® B' € 8*(k), and wp € Whp(w). Let ps, s, : Fls,(FJs (7)) —
Fls,as,(m) be the canonical isomorphism defined in Lemma 2.2. Then
we have

]:\75273’ (‘7:\75175’2@3’ (wB)) - ‘FJSI@S%B/ (wB) © PS1,S5-

Proof. Let f, ¢o € 8(Xo), ¢1 € 8(X1), and ¢ € 8(X3) as in the
proof of Lemma 2.2. We calculate the Whittaker function associated to
FTs, (FTs (wp)) and [[f ® pg @ ¢1] ® ¢o]. For ¢’ € Sp,,,, the Whittaker
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function is equal to

1 z9 21 100
/ / WB< (01 0>m<01x2>g’>
ro€EXg Jr1€X1 Jar2€Xo 1 001

X wg, (M (%) g')(Po @ d1) (w0, 71)ws, (g da(x2) dg dy day

1 aco r1+ToT2 ’
x0€Xo Jr1€X1 Ja2€X2 1

X wg, (9") (o @ ¢1)(x0, 21 + 330$2)w52 (9") P (x2) dxg davy dy

1 zg 21
ro€Xo Jr1€X1 J120€X02 1

X wg, (9')(do @ ¢1) (o, II)WSQ (9")2(2) dxo dvy davy

102 1290\ ———
:/ / Wpg <m<01xg)g’m<o | 0))¢0(x0)
ro€Xg Jr1€X1 Jar2€Xo 001 001

X ws,@5,(9') (91 ® ¢2) ( ) dxg dry day,

which is the Whittaker function associated to F7s,as, (wp) and [7(do) f®
(91 ® ¢2)]. Hence the lemma. 0

Lemma 2.6. The homomorphism FJs : Whegp (1) — Whp (FJg())
18 an isomorphism.

Proof. By definition, Whg(m) = Hom(FJg(7), C). It follows that
Whp (Fls(m)) = Hom(FJp (FJs(7)), C) ~ Hom(FJp(7), C) = Whg(r).
U

3. DEGENERATE PRINCIPAL SERIES

Let p : kX — C* be a (quasi-) character, and 7 = B(u, u™!) be a
principal series of PGL,. We assume 7 is unitary. Note that ¢~ /% <
()| < ¢'/2.

For each integer n, define a character u(™ of M by

) ((m(4),) = ¢ (S e ),

We sometimes regard p(™ as a character of 1?7; We define an irreducible
admissible representation II,, = II(n, 7) of G,, = Sp,, by

I(n,7) = Indg;‘ (™).
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The representation II(n, 7) is simply denoted by II,,, if there is no fear
of confusion.
Assume n =m +n' and S € 8?4, Put J =V - Sp,, and

0 0 |-1, 0
o 1. 0 o
=TT 0 0 0
0 0] 0 1,

n

Then P,ny.J is an open subset of Sp,,. Let Xj be the subspace of H~(n, 7'~)
which consists of all element f € 1l(n, 7) such that Supp(f) C Puno.
For f € Xy, ¢ € 8(X), and ¢’ € Spn , we define an integral

R(g' .0) / | $v(a.0,2)9 VoS I3@ T2 d d
It is proved in [5] that R(¢'; f, ¢) € II(n', 7 ® xg)-

Lemma 3.1. The map
Ao ®ws — TI(n', 7 @ xs)
f® =R f,0)
can be extended to a V -invariant surjective map l(n, 7)@wg — I(n/, 7®
Xs)-

Proof. We regard Sfﬁ; as a subgroup of S—f); by the embedding

A0 |B O
ABC 0 1,10 0 ¢
—
¢ D)’ C 0 |D 0 ’
00 [0 1,

Then the pullback of f € II(n,7) can be considered as an element of
the induced representation

Ind%imu(”)\ det |*'/2.

The integral

f(nOV(Ov 0, Z)gl)qu)s(z) dz
z
is can be considered as a Whittaker integral for the element of
SPm , (n n’
Indﬁ%mu( )| det [7'/2.

It is well-known that the Whittaker integral is absolutely convergent
for the induced representation

S:-Tn n n'
Indﬁp; p™ | det 772,
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for Re(s) > 0 and can be analytically continued to whole s € C.
Therefore the integral

R .00 = [ | [ v, 0.209)055) | s do

is well-defined. Tt is easy to see that the extended integral R(x; f, ¢)
belongs to II(n', 7 ® xg), whenever the integral is well-defined. O

Proposition 3.2. Assume that n =m +n' and S € 8. Then there
exists an isomorphism

Fls(Il(n, 7)) ~ (0,7 ® x5s)
In particular, we have an isomorphism
FJe(Il(n,7)) ~II(n — 1,7 ® x¢)
for & e k*.

Proof. Tt is enough to consider the case m = 1 and S = (£). Put
J =V -Sp,_;. The double coset P,\Sp,/J has a complete set of
representatives {1s,, 70}, where

Put
Xy = {f € (n,7) ‘ Supp(f) C f’;noj} ,
Xy =II(n, 7).
Then we have .
X1/ Xy ~ Indj”m’i (™)

as J-module. Since Z acts on X;/X, trivially, we have ((X1/X;) ®
we)v = (0). By the exactness of the functor FlJyy, it is enough to prove
(Xo®@we)y =1I(n — 1,7 ® x¢). Note that f € A} is determined by the
restriction of f to J. For f € Xj, we put

fue(vg') = /Zf(zvg')qbg(z)_l dz (weV,q e §1\);)

Then for each ¢’ € é;a;, the function v — fy, (vg') belongs to Indy 0.
Since fy, (vg') is right invariant by some open compact subgroup of J,

fye(ugv)p(v™") dv = fy, (ug')
Z\V
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for some ¢ € C(V;1)). For ¢, ¢y € $(X), set
Dy, 00 (V) = (we(v) 1, P2).

Then for u € V', we have

fi/)g (ug,v)q)% P2 (U_l) dv
Z\V

= Fue(0g) 04, 4,(g' 0 ug) dv
AV

= | fu(vg) - (welg ™ v ug)gr, 6o) dv
2V

= [ fo(vg) - (we(v™ ug )1, we(g')2) dv
Z\V

- Fie (VG P gy e (V) dv
Z\V

- /X Fue(v(,0,0)g" )we(g") b2 () da - we(ug')¢1(0)

=R(g’; [, ) - we(ug')d1(0).

By Lemma 3.1, we have R(x; f, ¢) € II(n — 1,7 ® x¢). Therefore, as a
representation of J, we have

(Xo)dJE C H(n — 1,7’ & Xg) & w§.

It is easy to see R(x; f,¢) # 0 for some f € Xy, ¢ € §(X). It follows
that FJ¢(Il(n,7)) is a non-zero subspace of II(n — 1,7 ® x¢). Since
II(n—1,7®xe) is irreducible, we have FJ¢(II(n, 7)) ~ II(n—1,7® x¢).
Hence the lemma. U

Proposition 3.3. For each B € 8™, we have

n

Proof. We apply Proposition 3.2 to the case n = m. Then we have
Whg(Il,) = Hom(FJz(11,),C) ~ C. O

Proposition 3.3 was proved by Karel [7] for degenerate principal series
of Sp,,. It is also easy to generalise the proof of [7] for metaplectic
groups.

We fix an isomorphism FJg(II(n, 7)) ~ II(n/, 7 ® xs). The we get a
V-invariant surjective map

Bs:U(n,7) @ 8(X) — I(n', 7 ® xs).
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If B=S®B', B €8 and wg € Whp(Il(n, 7)), then one can regard

n

FJIs(wpg) as a Whittaker vector for II(n', 7 ® xg). Then we have

FIs(wg)(Bs(f ® ¢)) = wp(IL,(9) ).

for f € II, = I(n,7) and ¢ € §(X). If S = S; & Sy, the surjective
map pg,.s, : Flg, (FJg (IL,)) — FJg(IL,) can be considered as an au-
tomorphism of II(n’, 7 ® xg). Since II(n/, 7) is irreducible, pg, g, is a
non-zero scalar. Therefore we have

FTsy. 8 © FIs, ss0B" = PS1.9 - FIs,B5

where pg, 5, € C* is a constant which does not depend on B’ € S

Lemma 3.4. Suppose that S € St4(k), B = S@& B € 8*(k), and
wp € Whp(IL,). Set I1,, = II(n,7) and I1,, = TI(n',7 ® xs). Then we
have

FIs(wp o (1, ©@ m(4),()))

_ m ay(1) " m/2
—¢ (m) xs(det A)| det A2 FTs(wp) o I, ((m(A), ).

Proof. Note that wgoll,((m(1,,®A),()) € Whap,,ea)(I1,) = Whggpa(I1,).
Let Wg(g9) = Wg(g;ws, f) be the Whittaker function associated to
wp and f € II,,. Then the Whittaker function associated to FJs(wp o

IL,,((m(A),¢))) and Bs(f ® ) is equal to

/ Wa((m(Ln & A), Ov(z,0,0)¢ )05 (9)0(@) dz
B /eX We(v(zA™,0,0) - (m(A),()g )ws(g)d(x) dx

=|det A" W (v(z,0,0) - (m(A), ()9 )ws(g")p(xA) dx

zeX

=C (70% detA)) xs(det A)| det A|™/?

/ Wis(v(x,0,0) - (m(A), €)g')os (m(A), O)g)d(a) dz.

Hence the lemma. O

Lemma 3.5. Assume that A € GL,, B € 8" and B[A] = B. Then
we have

wp o I,((m(4),¢)) = p™((m(4), () - wp.
for any wp € Whp(1L,,).
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Proof. By Proposition 3.3, wp o II,((m(A4),()) = a - wp for some a.
Let P,wP, C Sp,, be the unique open coset. If Supp(f) C P,wP,, we
may assume

ws(f) = (w-n(x))p(r)dr.

Np
Then we have a = u™((m(A),()) by change of variables. O

Proposition 3.6. Let C C S—IS; be a compact set. Then there exists
W e Wg(11,,) such that W(g) # 0 for any g € C.

Proof. Since Whp(II,,) # (0), there exists a Whittaker function W,

such that Wy (1) # 0. Let U be an open subgroup of Sp,, such that W,
is invariant under right translation by gUg~! for any g € C. Choose a
finite subset g1, . . ., g such that C C J", ¢;U. Put Wi(g) = Wo(gg; ")
fori =1,...m. Then W; is invariant under right translation by U and
Wi(g) # 0 for g € g;U. Put X = (W;|i = 1,...m). Then X is a
finite dimensional vector space over C and {W € X |W|,u # 0} C X.
Hence the proposition. U

Put v(z) = [z0" 40" : 0"] for z € S,,. If z has elementary divisors zy,
<.y Zn, then v(z) = [[\_, max(1, |z]|). The following lemma is obvious
from the definition of v(z).

Lemma 3.7. For each open subgroup U of S,,, there exists a positive
constant L such that ¥p|ly # 1 for any B € 8™ with v(B) > L.

For each g € S—vpn with Iwasawa decomposition

P

g = (m(A), O)n(z)u,  u € Sp,(0),
we put Hg(g) = v(B[A]).

Proposition 3.8. Let W € Wg(11,,) be a Whittaker function. Then

there exists a constant L > 0 such that W (g) = 0 for any g € Sp,, such
that Hp(g) > L.

Proof. Since W is right-finite by the action of the maximal compact
subgroup of Sp,,, it is enough to prove the case g € M,,.

Note that W is invariant under the right translation by some open
compact subgroup of N,. On the other hand, we have

W (m(A),()n(z)) =p(Az - "A)W((m(A),())
=4 (2)W ((m(A), ()).

The Proposition follows from Lemma 3.7. U
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Proposition 3.9. Let W € Wg(11,,) be a Whittaker function. Then
there exists a constant C > 0 such that

W (g)| < C| det A|="1—¢.

for any g € SYD; with Twasawa decomposition

—_———

9= (m(A),()n(z)u,  ueSp,(o).
Proof. As in the last proposition, it is enough to prove the estimate
(W ((m(A), ()| < C|det A|7"7.
We may assume p(x) = po(x)|x|* for some unitary character o and

—1/2 < 59 < 1/2. Let HS(IndIiB" é”)| det |*) be the space of functions

f®)(g) on Sp,, x C which satisfy the following conditions (1), (2), and
(3). B
(1) For each s € C, f©) ¢ Ind?’ﬁz"uéﬂ” det |°.
(2) For each g € Sp,,, the function s — f()(g) belongs to C[q®, ¢~*].
(3) There exists an open compact subgroup U C é?); such that
@) (gu) = f¥(g) for any s € C, g € S})Jn, ueU.

For f©)(g) € HS(Ind " ud | det |*), put

wp(f®) = [ f (wan(2)) ¥p(2) dz.

Nn

Then wp(f®)) is absolutely convergent for Re(s) > (n 4 1)/2, and
can be analytically continued to whole s-plane. In particular, the map
fG0 1 wp(f0)) gives an element of Wh(II,,). For Re(s) > (n+1)/2,
we have

a7, O] < [ 179 () (), ) |z

n

- / £ (A7), wan(Az - A7) | dz

n

—| det A|7s~((n+1)/2) / £ (wpn(2)) | dz.

n

Since the integral

159 () 1z

n

is bounded on the vertical line Re(s) = ((n + 1)/2) + ¢, there exists a
constant C' > 0 such that

’wB(f(S)((m(A),C)))‘ < C’ det A‘—n—l—e
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for Re(s) = ((n+1)/2) +¢
Put
My, (fNg) = | 9 (wun(2)) dz.

Nn
Then Mwn(f(s))ﬂisJ absolutely convergent for Re(s) > (n + 1)/2 and

M,, (f®)) € Ind?_ﬁ" yé")] det |~* for some character vy. It is well-known
that there exists a polynomial v(s) whose zeros lie on the points of
reducibility of IndSp" (| det |~* such that

v(8)M,, (f©) e HS(IndSNP"VO | det |®).

Note that the points of reducibility of Inde” o' |det |* lie on the ver-

tical strip 1/2 < |Re(s)| < (n+1)/2. It is also well-known that there
exists a function d(s) € C(g”) whose poles lie on the points of reducibil-

ity of Ind?_ﬁ" ,u(()")] det |® such that
ws(My, (F)) = 8(s)ws(f).

It follows that there exists a constant C’ > 0 such that
lwg(f((m(A), ()| < C'|det A|7"'*
for Re(s) = —((n 4+ 1)/2) — . Hence the proposition.

4. Siegel series and its functional equation

As before, let k be a non-archimedean local field. We assume that
the additive character ¢ is of order 0.
For B € 8™(k), put

D =(—4)"? det(B),
(Dp,w) if k(\/XD,)/k is unramified,
{p = )
0 otherwise.
Let 95 be the conductor of the extension k(v/Dpg)/k. We set
dp = (ordDp — orddg)/2,

where ord is the valuation of k.
We recall the theory of Siegel series (cf. Shimura [15], [16]). For
B € 8*(k), we define a polynomial (B, X) € Z[X] by

(1—-X)(1—q"%pX)" 1H"/2( —¢*X?) if nis even,
(1— XTI V21 - g2 x?) if n is odd.

=1

V(BvX) = {
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Let fés) be the function on Sp,, (k) defined by
157 (g) = | det AP0/,

for

Then f\* is a class one vector for Ind?}i"] det |*. Set
(0 -1,
wn={y ")
Consider the integral

b(B, s) = / ® o) (w,n(2)) p(2) de.

This integral is absolutely convergent for Re(s) > 0. Moreover, there
exists a polynomial F'(B, X) € Z[X] such that
b(B,s) =~(B,q °)F(B;q).

For a proof of this fact, see [16]. Let S,(0)* be the dual lattice of
S,(0). It is known that F(B,X) = 0 unless B € S,(0)*. Moreover, if
B € S,(0)¢, then F(B,0) = 1.
Proposition 4.1. The following functional equations hold.

(1) If n is even, then

F(B,q "' X™1) = (¢ VX)) F(B, X).
(2) If n is odd, then
F(B, qfnlefl) _ CB(q(nJrl)/QX)ford(DB)F(B’ X)

Here, the sign (g € {£1} of the functional equation is equal to
1 if and only if the quadratic form B has split rank [n/2]. In
other words,

) 1\
1 f B~ (Dg)® ,
(p= if B =~ (Ds) (1 0)

—1  otherwise.

Katsurada [8] proved this proposition for k = Q,. Watanabe pointed
out that the functional equation can be proved by using representation
theory (see Remark after Proposition 3.1 of [8]). Here, we give a proof
along this line.

We prove only (1), since we do not need (2). It is possible to prove
(2) in a similar way. For the rest of this section, we assume n is even.
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To prove Proposition 4.1, we need several lemmas. For each Schwartz
function ® € 8§(S,(k)), we define the Fourier transform ® of ® by

@@waéﬁwéwwm@wmy

Note that the product measure dr = [[,;dz;; is not the self-dual
measure for this Fourier transform. In fact, we have

B(x) = [2] "0 (—).
It is well-known that there exists some functional equation for the lo-
cal zeta integrals for a prehomogeneous vector space. Sweet [17] the
“gamma matrix” for the prehomogeneous vector space &, for a non-
archimedean local field. Note that Sweet treated the case when n is
odd as well, although we treat only the case n is even.
For n € k*, we set

0, ={z € S, (k)| D, = (—=1)"*n mod (k*)?}.

(The set O, is not a single orbit under the action of GL,, for n > 1.)
If w is a quasi-character of k>, then we set

L(1—s,w™)
L(s,w) '

Lemma 4.2 (Sweet). Assume that n is even. We have a functional
equation

/ ®(z)| det >~ (D2 g = Z c(s;n)/ & (z)| det z|~* da
Sn(k) z€0y,

nek* /(kx)?

g'(s,w,v) =e(s,w, )

where the function c(s;n) is defined by

c(sin) =[2]" ay(n)ay (1) (s + (1/2), X, ¥)
n/2

xe'(s—((n—1)/2),1,9)" H€ (25 —n+2r,1,¢)7"
Proof. See Sweet [17]. O
We set I(s) = Ind%:l”| det |°. For f(g) € I(s) and B € S™(k), put

AWM@ZL@NMMMM.

Whp(s)f(g) = - f(wan(z)g)y (trBz) d.
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The integrals M(s) and Whg(s) are absolutely convergent for Re(s) >
0 and can be meromorphically continued to the whole complex plane.
If s is not a pole of M(s), then M(s)f(g) € I(—s). Moreover, it is
known that Whp(s) is entire. It is also well-known that

(s — ((n—1)/2),1) [ﬁ] L2s—n+2i,1) .y
(s+((n+1)/2), 1)L LO2s+n+1-2i,1)"°

M(s)f =7

i=1
Lemma 4.3. The following functional equation holds:
Whpg(—s) o M(s) = |det B|*c(s;m0)Whpg(s).
Here, ng = (—1)"/% det B.
Proof. Let m be a sufficiently large integer. We assume
B+p"S,(0) C{z € O, ||det x| = | det B|}.
Let ® € §(S,(k)) be the characteristic function of B + p™S, (o). We
define fg € I(s) such that
* Supp(fe) C Fy(k)wNn (k).
o f(w,n(z)) = ®(z) for z € S, (k).
Then, we have Wh(s) fs = ®(—B) # 0. On the other hand, M (s) fo(wn(z))
is equal to

/ fo(wn(y)w,n(z)) dz :/ | det y[’s’((”“)/m(/ﬁ(z —y N dy
yESn (k) y€Sn (k)

:/ | det y|5_((”+1)/2)<1>(x —y) dy.
yESn (k)

By Lemma 4.2, this is equal to

S s / By dety " dy

nek> /(kx)

(s det Bl [ bly)ulta(ey))dy
YyESn (k)
=c(s;mp)| det B\_S&\J(:z:).
It follows that

Wh(—s)M(s) fe :/es " M(s) fo(w,n(x))Yp(z) dx
=c(s;m0)| det B["%(—B).

Hence the lemma. O
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Proof of Proposition 4.1 (1). Note that c(s;n) is equal to

L(—=s+(1/2),xps) L(s—((n—1)/2),1)
L(s+(1/2),xp,) L(=s+ ((n+1)/2),1)

217" o5[*

n/2

bt L(=2s+n+1-2i1)

By Lemma 4.3, we have

&~

(s = ((n—=1)/2),1)

B, s—((n+1)/2) F B, s—((n+1)/2)
(B, JF(Big )L(5+((n+1)/2),1)

ﬁ L(2s —n+2i,1)
W T@stnt1-2i1)

=c(s;10)| det B|7y(B, ¢~ (V2 F(B; g~ (D),

Since

V(B¢ ") =L(—s + ((n+1)/2),1) ' L(—s + (1/2), xp,)
n/2
x []L(-2s+n+1—-2i,1)7",
=1
Y(B,q s R =L(s + ((n+1)/2), 1) L(s + (1/2), xp,)
n/2
x [[]L@s+n+1-2i1)7",

i=1

the functional equation of F(B; X) follows. O
Proposition 4.4. Assume n is even. Set
F(B,X)= X% F(B, ¢ "V/2X).
Then we have F(B, X ') = F(B, X).
Proof. This is a restatement of Proposition 4.1 (1). O

5. The unramified Whittaker functions
In this section, we assume 2 { ¢. Let 7 ~ B(u, p~') be an unramified
unitary principal series with Satake parameter « = pu(w). Set € =
(—1,). For B € 8™, we define the function W (g) on Sp,, as follows.
Consider the Iwasawa decomposition

g =n(2)(m(A),)u, n(z) € N,, A€ GL,, u € Sp,(o)
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of g € §vpn Then we set
Wi (9) =t ()] det(B[A])| "D/
F(B[A], e2a) if 2|n,
- {Ca¢(det A)ay(1)'F((1) @ BIA], e"D/20)  if 24 n,
Here, F(B, X) is as in Proposition 4.4.

Proposition 5.1. The function W§'(g) is a class one Whittaker func-
tion of Il(n, 7).

Proof. We first consider the case when n is even. For B € 8™ and
Re(s) > 0,

Y (2)] det(BIA])| "V (BIA], €2a) =y (B, ¢ > (D) g0

x / I 0un0) o)

is a class one Whittaker function for Indf{"] det |*. By analytic contin-

uation, Wh'(g) is a class one Whittaker function for Ind?’};” p™. This
proves the proposition ior the case n is even. R
When n is odd, put II = II(n+ 1, 7). Then FJ,(II) = II(n, 7). Then

one can easily show

Wi o) = [det B/ [ Wiiop(v(2,0,000)0 (@) 00(z) da

Here, Wijjgp is the normalized Whittaker function for I and ¢ €

8(X) = 8(k™) is the characteristic function of 0™. It follows that W3 (g)
is a class one Whittaker function for II(n,7) by Proposition 2.4. O

We call W' the normalized Whittaker function. Fix a class one
vector fO € TI(n, 7). The Whittaker vector w% € Whp(II,,) such that
Wa(g) = w%(I1,(g) f°) is called the normalized Whittaker vector. It
is easily seen that

wy o I, ((m(4),¢)) =

w%[ A if n is even,
Carg(det A)ay (1) wiyy  if nis odd
for A € GL, and ¢ € {£1}.

Recall that B € 8"¥(0) is called maximal, if for A € Mat,,(k), B[A] €
S, (0) implies A € Mat,,(0). Note that 0 < 05 < 1 if B is maximal.
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Lemma 5.2. Assume n is even and B € 8"4(o) is mazimal. Then

1 if 65 = 0,
1= &p(q"? +¢"X + ¢ X2 if op = 1.

F(B,X) = {

In other word, we have

Fpx)=2" A,
—Eplg P+ g+ X+ X7 ifep=1.
Proof. We denote the Minkowski-Hasse invariant of B by ng. It is
enough to prove F(B,&gq~™?) = 0 for 65 = 1, by the functional
equation of F(B,X). Assume B is maximal and g = 1. For an
integer m and a non-degenerate By € S,(0), we denote by N,,(By, B)
the number of x € Maty,(0)/p™Maty,(0) such that =Bz = B mod
p”. Let By € S,(0) N GL,(0) be an element such that det B; = det B
mod (k*)?. Then we have {g, = {p, and np, = —np. Then Lemma 14.
8 of Shimura [16] implies

V(Ba Squ)F(Ba ngm) = qimn(nil)/QNm(Bla B)

for sufficiently large m. Note that v(B,£pq¢™) # 0. For sufficiently
large m, we have N,,(B1,B) = 0, since B' = B mod p™, 'B' = B’
implies np = 1. 4

Lemma 5.3. Let m and n’ be even non-negative integers. Assume that
n=m+n', B=Sa®B,S eS8, NGL,(0), and B' € S*. Then we
have

F(B,X) =F(B',{sX),
F(B,X) =¢5"F(B',£sX).

Proof. We shall prove the second identity. Let W5(g) be the normal-
ized Whittaker function for II(n, 7). We calculate the integral

W(g) = |det B [ Wi (v(z,0,009)5(9) () da

zeX
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for g € Sp,,,. By Proposition 2.4, W' is a class one element of Wg, (II(n/, 7®
xs)). It follows that W’(g) = u - Wji(g) for some u € C*. We have

W'(m(A)) =|det B|~™/* /X W5 (v(z,0,00m(A))ws(m(A))p°(x) da

(1 "
—xs(det A) (%) | det B|~™/4| det A|™/2

/ W (m(A)v(zA,0,0))60(xA) dz

:ﬁ““MMHWMW/W%mMMmMm%@m

@m“mummmwwm»
D) det(B[A])| VRS @ B'A], Ese ).
It follows that there exists a constant v € C* such that
Egrd(detA (S@B[ ],§S€n//204) ZUF(B/[A],GH//QC()

for any A € GL,. Choosing A € GL, such that B'[A] is maximal,

we have u = gB by Lemma 5.2. Hence the second identity. The first
identity follows immediately from the second identity. O

Note that Kohnen [9] has proved a special case of Lemma 5.3 by
different method.

Proposition 5.4. Assume thatn =m+n', B=S& B, S € S, N
GL,,(0), and B' € 8. Let ¢° € §(X) be the characteristic function
of X(0) = Mat,,,»(0). Then we have

/ W (v(z,0,0)9)05(g)00(@) da — | det B[™A(e™q) =TV (g)

for g € Spn, Here, Wg5" and W§i are the normalized Whittaker func-
tions for I(n, ) and II(n', T ® xs), respectively.

Proof. Both sides are unramified Whittaker functions for II(n/, 7® x ).
Therefore the left hand side is equal to uWWg;(g) for some v € C*. By
Lemma 5.3, one can easily show that u = (¢™"{g)%5. O

Suppose that n = m +n', B = S® B, S € §, N GL,,(0), and
B' € 8. Let f° € lI(n, 7) and e II(n', 7®xs) be the distinguished
class one vectors. We normalize Gg : II(n,7) ® §(X) — II(n/, T ® xs)
by Bs(f'® @) = f°. For B=S @ B', B' € 8*!, we consider the map
FJs : Whp(Il(n, 7)) — Whp/(II(n/, 7 ® xs), which is given by

FIs(wp)(Bs(f ® ¢)) = wp(IL,($)f).
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Then we have
FTs(wh) = | det B[™*(em€g)°2wY, .
IfS=85 @S €S4NGL,,(0), B=S® B’ and B’ € 8%, then
FTs, 0 FTs, = FJs-

Lemma 5.5. There exists a positive constant M depending only on n
such that

W (1,)| < |det B|™.
Proof. As in [6], one can show that the coeffiicients of F/(B, X) is at

most ¢™ °*4(P5) for some constant M’ > 0 which depends only on n.
Since ¢~/ < a < ¢*/?, we have

W (124)] =] det B|" Y| F(B, )]
<| det B|_1/4(degF(B,X) + 1)qM/ord(detB) . q(1/4)degF(B,X)
<|det B|7M'~2,
U

6. Archimedean local theory

In this section, we consider the case £k = R. We assume the additive
character ¢ of R is of the form ¥ (z) = e(ar) = exp(2ray/—1z) for
a > 0. It is well-known that the Weil constant o, (t) is equal to e(1/4)
ift > 0, and e(—1/4), if t < 0. Recall that the symplectic group Sp,,(R)
acts on the Siegel upper half space $),, by

9(Z) = (AZ + B)(CZ + D)™, g:(é g).

The automorphy factor j(g, Z) is defined by j(g,Z) = det(CZ + D).
The stabilizer of i =+/—1-1,, € $,, can be identified with the unitary
group U(n) by the isomorphism Ci+ D — (_2 §).

The real metaplectic group Sp,,(R) acts on the Siegel upper half space
9, through Sp,(R). The inverse image of U(n) in Sp,(R) is denoted
by U(n). There exists a unique automorphy factor j(§, Z)*/? such that
(j(g, Z)"/*)? = j(g, Z), where g is the image of § € Sp,,(R) in Sp,(R).
For u € U(n), put detu = eV~ —7r < < . Then we have

J((u, ), 1) 72 = GV,

P

We denote the irreducible lowest weight representation of Sp, (R)
with lowest K-type (det)* by DE\").
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Let 7 be a discrete series representation of PGLy(R) with minimal

weight £2k. We set II,, = [I(n,7) = ijr)(nm. For B € §,(R)*, it is

known that dimc Whp(II,,) = 1. (See Yamashita [20]). Note that II,

—_~—

is a genuine representation of Sp, (R) if and only if n is odd.
We define a function W5 on Sp,,(R) by
Wg(9)
= e(Bz) det(B[A]) "/ 4exp(—27a - tr(B[A]))j (@, i)~ @tm)/2)
for g = n(2)(m(A), )i, z = %, A € GL,(R)*, & € U(n). Tt is well-
known that W3 generates a representation isomorphic to IT,,.

Lemma 6.1. For B € §,(R)" and A € GL,(R), we have
Wm0 = ¢ (=20 W)
B ’ ay(det A) B

Proof. 1f det A > 0, then one can easily show the equality. Assume now
det A < 0. Choose U € O(n) such that detU = —1 and B[A][U] =
B[A]. Then we have

Wi((m(A),¢)g) =Wp((m(AU™"), 1)(m(U),¢)g)
=Way(m(U),)g).
Observe that (m(U),¢) € U(n) and

N O = I

Hence the lemma. g

We denote the space of lowest weight vectors of II(n, 7) by II(n, 7).
We fix a distinguished vector f € II(n,7)™". Then there exists a
Whittaker vector w% € Whpg(Il,,) such that the Whittaker function

associated to w% and f° € II,, is equal to Wg(g). Then by Lemma 6.1,
we have the following lemma.

Lemma 6.2. Let w% € Whg(I1,,) be as above. Then we have
2k+n
0 _ ay(1) 0
wp oL, ((m(A),¢)) =¢ (m) WpLA]
for any B € S,(R)* and A € GL,(R). In particular, if B[A] = B,

then we have

up o 1, (m(4).0)) = et 4)° (0L
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Assume n =m+n', S € S, (R)*, B € S (R)", and B =S @ B'.
Put X = Mat,,(R). We define ¢% € 8§(X) by ¢%(z) = e 2rat(Skl),
Note that ¢¢ is a lowest weight vector of §(X) as a representation of

Sp,,. We set 8§(X)™ = C - ¢%. The following lemma can be proved by
direct calculation.

Lemma 6.3. Assume n =m+n', S € S,p,(R)", B € S, (R)*, and
B=S® B'. Then we have

/ Wi(v(2,0,0)g")ws(g")¢%(x) dx = | det B[/ *e T W, (¢).
zeX

We also fix a distinguished vector f° € TI(n/,7)™* and obtain a
Whittaker vector w%, € Whp/(I1,/). We define a C-linear map

ﬁS . H(n, 7_)lwt ® S(X)lwt SN H(n', 7_)lvvt
by
Bs(f* @ 0g) = 1"
For B=S@® B, B' € §,,(R)*", we define the map
FJs : Whp(ll(n, 7)) — Whp/(II(n', 7 ® xs)
such that the Whittaker function Wp(g') associated to FJs(wp) and
Bs(f ® ¢) is given by
Wirle) = [ Wav(z.0,0)9'os(g o) do
b

for wg € Whp(Il(n, 7)), f € I(n, 7)™, and ¢ € §(X)™. Here, Wy is
the Whittaker function associated to f and wpg.

Lemma 6.4. Suppose that S € S,,(R)", B € Sy(R)*, and B =
S@& B € S,(R)".

(1) We have

FTs(w®) = | det B|™/*e=2mat(9)q,0,
(2) IfS=51®S5 € Sn(R)T, B=S®B', and B' € Sy (R)*, then
FTs, 0 FJs, = (det S1)™/* FTs.

(3) For A € GLy(R) and wg € Whp(Il,), we have

fJS(wB o Hn((m(lm ¥ A): C)))

o)\ m/2
_¢ (m) xs(det A)|det A2 FTs(wp) o Ty ((m(A), ).

Proof. (1) follows from the definition of F7s. (2) follows from (1). (3)
can be proved in the same way as Lemma 3.4. 0
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Remark 6.5. Yamashita’s theorem [20] is valid for lowest weight mod-

—_——

ules of Sp,,(R). It is also possible to avoid his theorem by replacing
Whp(I1,) by C - w.

7. Statement of the main theorem

From now on, k is a totally real number field with [k : Q] = d. The
subset of totally positive elements of k is denoted by k3. We fix an
additive character v of A/k. We assume 1, (z) = exp(2my/—1a,x) for
some a, > 0 for each v € &

Let 7 ~ ®,7, be an irreducible cuspidal automorphic representation
of PGLy(A). The local root number £(1/2,7,) is given by

. ,U/U(_l) v Q_ﬁ 600’
e(1/2,7,) = {(_1)m v € G

The global root number £(1/2,7) is defined by
e(1/2,7) He 1/2,7,).

We assume that 7 satisfies the following conditions (A1), (A2), and
(A3).
(A1) For each v ¢ &, 7, is a principal series B(j,, j;!).
(A2) For each v € &, T, is a discrete series representation with
lowest weight +2k,,.

(A3) £(1/2,7) = 1.

Recall that we set
HTL,U = H(n, T’U) = Indii" (/,L,Ejn))
for each v ¢ S. When v € S, we let I,,, = II(n, 7,) be the lowest
)-ty

weight representation of Sp,(R) with lowest U(n)-type (det)=*(/2),

We consider the restricted tensor product

I, =I(n,7) = ®/H(n, Ty)-

(2

We define the multiplicity mau0(I1,) by

—_——

Mauto (I1,,) = dlm@Hom (A)(Hn,Acusp(Spn(k)\Spn(A))).

Here, Acusp (Sp,, (K)\Sp,,(A)) is the space of cusp forms on Spn(k)\Sm).
Then the main result of this paper is as follows.
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Theorem 7.1. Let 7 be an irreducible cuspidal automorphic represen-
tation of PGLy(A) which satisfies the conditions (A1), (A2), and (A3).

Then we have
mauto(Hn> =1

Remark 7.2. Let 7 be an irreducible cuspidal automorphic representa-
tion of PGLy(A) which satisfies the conditions (A1) and (A2). It is
easy to show that mau(Il,) = 0 if £(1/2,7) = —1. See the remark
after Lemma 11.4.

8. The Shimura correspondence: the case n =1

The correspondence between modular forms of integral weight and
those of half-integral weight was first considered by Shimura [14]. Wald-
spurger ([18], [19]) treated the Shimura correspondence in terms of au-
tomorphic representations. In this section, we review Waldspurger’s
theory of the Shimura correspondence. o

Let Ag be the space of genuine cusp forms of SLy(k)\SLa(A). The
space of cusp forms orthogonal to the Weil representations associated
to one-dimensional quadratic forms is denoted by Agy. Then the mul-
tiplicity of an irreducible genuine cuspidal automorphic representation
in Ay is one ([19], Theorem 3).

Let o be an irreducible genuine cuspidal automorphic representation
in Agp. A non-trivial additive character ¢)¢ of A/k is called a missing
character of o, if

" (n(2)g)te(x) dz = 0

for any f € o and g € SLy(A). We denote by 6(c,1) the theta cor-
respondence of ¢ for the dual pair SLy, X PGL,. Then the theta cor-
respondence 0(c, v, ') = 0 if and only if ¢ is a missing character
([18], Proposition 26). Moreover, if )¢ is not a missing character, then
0 (o, @/)gl) ® x¢ does not depend on the choice of ¢ € k™ ([18], Proposi-
tion 28).

Put Wd(e,¢) = 6(o, wgl) ® Xe¢. Denote by L(s, 0;1) the L-function
L(s,Wd(c,v)). Then 9 is not a missing character for o if and only if
the following conditions (1) and (2) hold ([19], Proposition 21):

(1) Why, ,(0y) # (0) for any v.
(2) L(1/2,054) # 0.

We also need the following theorem.
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Theorem 8.1 (Waldspurger [19], Theorem 4). Let 7 be an irreducible
cuspidal automorphic representation of PGLy(A) such that £(1/2,7) =
1. Let ¥ be a finite set of places of k and 6 > 0 a positive number.
Then there exists an element € € k* such that the following conditions
(1) and (2) hold:

(1) |€ =1, < ¢ for each v € 3.

(2) L(1/2,7 ® x¢) #0.

Now let 7 be an irreducible cuspidal automorphic representation of
PGLy(A) which satisfies (A1), (A2), and (A3). By Theorem 8.1, there
exists an element ¢ € kI such that L(1/2,7 ® x¢) # 0. Put 0 =
O(T @ Xe, ). Then o is isomorphic to II(1,7). Thus we obtain the
following proposition.

Proposition 8.2. Let 7 be an irreducible cuspidal automorphic repre-
sentation of PGLy(A) which satisfies (A1) and (A2), and (A3). Then
we have Mayo(I11) = 1. Moreover, for £ € kX, ¢ is a missing charac-
ter of Iy if and only if L(1/2,7 ® x¢) # 0.

9. The Saito-Kurokawa lift: the case n =2

Recall that the simplectic similitude group GSp, is defined by

A B A-'B=B-'A, C-'D = D-'C,
GSpy (k) = {(C D) € Mats, (k) ‘ A-'D — B-'C = m1,,m € k* } '

For t € k*, we set
_(t-13 O
= (5 2)

The Siegel parabolic subgroup P,(k) is given by

Py(k) = My (k)No(E),

My(k) = {d(t)m(A) |t € k*, A € GLy(k)}.
There exists a exact sequence

1 — k* — GSpy(k) — SO(3,2)(k) — 1.
By this exact sequence, we identify PGSpy(k) = GSp,y(k)/k* with
SO(3,2)(k).
Now we consider the theta correspondence between SLy and SO(3, 2).

Let o be an irreducible genuine cuspidal automorphic representation in
Ago. We denote by O(a, 1) the theta correspondence of ¢ for the dual

pair SLy x SO(3, 2).
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The following theorem is due to Piatetski-Shapiro (cf. [10], Theorem
5.1, Theorem 5.2, Theorem 6.1, and Theorem 6.2)

Theorem 9.1 (Piatetski-Shapiro [10]). O(o, ) is always a non-zero
representation. ©(o, 1) is cuspidal if and only if =1 is a missing char-
acter of o. In this case, O(o,v) is an irreducible cuspidal automorphic
representation of PGSpy(A).

Let 7 be an irreducible cuspidal automorphic representation of PGLy(A)
which satisfies (A1), (A2), and (A3). By Proposition 8.2, there exists

P

an irreducible cuspidal automorphic representation o of SLy(A) such
that ¢ ~ II(1, 7). Then we have Wd(c,¢™!) ~ 7® y_;. Note that ¢)~*
is a missing character for o, since Wh,-1(0) = (0) for v € &u. Put
IT = ©(0,%). Then I is an irreducible cuspidal automorphic represen-
tation of GSpy(A) with trivial central character by Theorem 9.1.

If v < oo, then II, is isomorphic to the representation ¥ induced
from the character

d(t)m(A) — p{? (1)~ ul (det A)

of the Siegel parabolic subgroup Py(k,) (see [13], p.236). It is known
that the pullback of II, to Spy(k,) is isomorphic to II(2,7,) (see [12]
Proposition 5.4).

For v € S, the pullback of II, to Sps(ky,) is not irreducible. It

is isomorphic to the direct sum of fov) 41 and its contragredient 13,(3 1

(see [13] Lemma 4.1).
It follows that the restriction of II to Spy(A) is given by

sp,a) = <® H(QvT)v> ® <® <D:g2v)+1 ® ﬁngl)) .

v¢600 UISICINS

We claim each irreducible component II" is an automorphic represen-
tation of Sp,,(A). Put

T =|J Supp(f)

ferr
Then it is enough to prove Spy(A) C T. In fact, T is right-invariant
under J[,os  GSpa(ky) X [[es. GSP2(R)* and left-invariant under

GSpy(k). Therefore T'= GSp,(A) by weak approximation.
Thus we obtain the following proposition.

Proposition 9.2. Let 7 be an irreducible cuspidal automorphic rep-
resentation of PGLo(A), which satisfies (A1), (A2), and (AS3). Then
I1(2,7) is a cuspidal automorphic representation.
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The following lemma will be used later.

Lemma 9.3. (1) Let v be a finite place of k. If t- B[A] = B for
tekx, Be Sy (k,), and A € GLy(k,), then we have
wp o I, (d(t)m(A)) = @ (t det A)wg.

for any wp € Whg(IL,).
(2) Let v be an infinite place of k. If t- B[A] = B for t € R,
B € 8 (R)", and A € GLy(R), then we have
det A ™"
w
| det A b

wg o I, (d(t)m(A)) = (
for any wp € Whp(IL,).
(3) If v ¢ &, then we have

wy gy = w o I, (d(t)m(A))
for any B € S34(k,), t € k), and A € GLy(k,).

v

Proof. One can prove (1) and (2) as in the proof of Lemma 3.5 and
Lemma 6.2, respectively. Now we prove (3). Define a function W35 (g)
on GSpy(k,) by

Wgr(n(z)d(tl)m(Al)u) = ¢B(Z)| det(t1 . B[Al])|3/4ﬁ(t1 . B[Al], EOZ).
for
n(z) € Nao(ky), t1 € k), Ay € GLa(ky), u € GSpy(0,).

here, € and o are as in §5. Then as in the proof of Proposition 5.1, one
can show that Wj5'(g) is a Whittaker function for II,. Then (3) follows
from the equation

Wi (d(t)m(A)g) = W,'54(9)-

10. Some results on quadratic forms

Let B be a non-degenerate quadratic form defined over k. Recall
that the Minkowski-Hasse theorem says that B represents an element
& € k over k if and only if B represents & over k, for any place v of k.

It is well-known that an isotropic quadratic form represents any el-
ement. If B is an anisotropic quadratic form of rank 4 over a non-
archimedean local field k,, then any element & € k) is represented
by B. If B is an anisotropic quadratic form of rank 3 over a non-
archimedean local field k,, then £ € k is represented by B if and only
if £ ¢ —(det B) - (kX)2.
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Lemma 10.1. Assume that n > 3. Suppose that By, By, B3 € S, (k)*.
Then there exists an element § € k3 such that § — By, By, Bs.

Proof. Let S be the set of non-archimedean places v such that at least
one of By, By and Bj are anisotropic over k,. Then S is a finite set
of non-archimedean places. For each v € S, there exists an element
& € k) which is represented by Bj, Bs, and Bj over k,, since [k} :
(kX)?] > 4. By the independence of the valuations, we can choose a
totally positive element ¢ such that & — By, By, Bz over k,, v € S. O

Definition 10.2. The set of B € S,(k)* such that L(1/2,7® xp) # 0
is denoted by S, (k);.

Remark 10.3. Suppose that n = m+n', S € S,,,(k)", and B’ € S, (k)*.
Then S & B’ € S, (k)] if and only if B' € S, (k)

TRXS®
Lemma 10.4. Assume thatn > 3. Suppose that §1,& — B € S (k).
Then there exist n € kX, S1, So € Sa(k)™ and T € S, (k)T satisfying
the following conditions (K1), (K2), (K3), and (K4).

(Kl) £1,T] — Sl.

(K2) &,n = Ss.
(Kg) Sl, SQ — B.
(K4) Sl: 527 (51) D (52) —T.
Proof. We first consider the case n = 3. Choose vectors z,y € k% such
that Blz] = &, Bly] = &. If B(z,y) = 0, then B is equivalent to
(&) & (&2) @ (&3) for some &5 € k. In this case, we can put n = &s,

S1= (&) @ (&), S2 = (&) @ (&), and T = B.
Assume that B(z,y) # 0. For a vector z € k3, we set

n=DB(z,z),
B(z,z) B(z,z2)
S1= (B(x, z) Bz, z))
_ (B(z,2) Bl(y,z2)
5 = (B(Z,y) B(y,y)) ’
B(z,xz) B(z,z2) 0
T=|B(x,z) B(z,z) B(y,z)
0  B(zy) B(yy)

Then the condition (K1), (K2), (K3), and (K4) are satisfied. It remains
to prove that T' € S3(k)* for some 2 € k3. As a function of 2 € k3,

det T = B(z,7)B(y,y)B(z,2) — B(z,2)B(y, 2)* — B(y,y)B(z, 2)*

is a quadratic form of 3 variables, which we denote by (). Then we
have det 7' = Q|z]. By direct calculation, one can show that det @ =
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—det B - B(y,y)?B(z,z)*B(x,y)? # 0. Let &g be the set of places of
k such that @) is anisotropic. Then the quadratic form ) represents
any element ¢ € k3 such that ¢ ¢ (det B) - (k))? for v € &(. Note that
S does not contain real places, since —det @ € kX and &;,& — T
Therefore the lemma in the case n = 3 follows from Theorem 8.1.

For n > 3, take any 3-dimensional quadratic subspace By — B, such
that &,& < By. Then B ~ By @ B’ for some B’ € S,,_3(k)". We
apply the lemma in the case n = 3 for &, & and By € S3(k)fgy,, -

Then we obtain 7, Sy, Sy, and T € Sg(k)jf®XB, satisfying the condition
(K1), (K2), (K3), and (K4) for 7 ® xp. Set T'=Ty & B’. Then n, S,
Sy, and T € S, (k)1 satisfies the condition (K1), (K2), (K3), and (K4)

for 7. U
Definition 10.5. For By, By € S,(k)f, an admissible sequence be-

tween By and Bs is a sequence (T, T, .T. 156, ..., &) such that
(1) To, 11, ..., T, € Sp(k)+.

(2) 517"'757“ S ki

(3) Bl = TO and BQ = Tr-

(4) & — T, Ty fori=1,...,r.

Lemma 10.6. Assume n > 2. For By, By € S,,(k)I, there exists an
admissible sequence between By and Bs.

Proof. If n > 3, then there exists £ € kI which is represented by B,
and By by Lemma 10.1. Then (Bj, Bs;§) is an admissible sequence.
Now assume n = 2. Set B; = (1)@ By and B, = (1)@ B,. Choose an
element n € k7, which is represented by By and B,. We may assume
that n ¢ (k*)?. We apply Lemma 10.4 to 1, n and B;. Then there exist
Sy € Sy(k)™ and Ty € Ss(k)F satisfying the following (a), (b), and (c).
(a) 1 — 5.
(b) Sy — By.
(c) 51, (D) & (n) — Th.
By (a), Sy ~ (1) @ (&), where § = det S € k3. By (c), there exists
Ty € Sy(k)t such that T, ~ (1) ® Ty. Then we have & — By and
& < Ty by (b) and (c¢). Moreover, n < T by (c).
By a similar argument, we find 75 € Sy(k)f and & € k' such that
£2 — BQ and fg — TQ, and N — TQ. It follows that (Bl, Tl, TQ, Bg, £1, n, gg)
is an admissible sequence between By and Bs. O

11. Compatible family of Whittaker vectors

Let 7 be an irreducible cuspidal automorphic representation of PGLy(A)
satisfying (A1) and (A2). Assume n = m+n' and S € S,,(k)", and
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B = S @ B'. For each non-archimedean place v of k, we have homo-
morphisms

/BU,S . Hv(na Tv) & S(Xv) - Hv(nla Ty & Xv,ds)a
FTus : Whp(Il,(n, 7,)) — Whp (IL,(n', 7y ® Xu,ag))

such that the Whittaker function Wp/(g') associated to 7, s(wp) and
Bu,s(f ® @) is given by

We(d) = | Wp(v(z,0,0)q)ws.(q)o(x)dx

X
for wg € Whp(Il,(n, 7)), f € II,(n,7,), and ¢ € §(X,). Here, Wg(g)
is the Whittaker function associated to wg and f. If S} € S, (k)7
Sy € Sp, (k)T and S = S; @ S5, then we have
FTv.85 © FTp.81 = Pu,51.85 - FIu.s,

where p, 5,5, is a constant which does not depend on B’ € S,/(k)™.
If v is a good prime, the we have distinguiched vectors f0 € 11, (n, 7,),
w% € Whp(Il(n, 7,)), etc. Then we have

W) =1 Bus(fled)=1f" Fls(wh) = wpy.
Moreover, we have p, g, s, = 1.
Similarly, for real place v of k, we have homomorphisms
ﬂv,S . Hv(na Tv>1Wt ® S(Xv>1Wt - Hv(nla Ty & Xv,dg)IWta
Fu,s - Whp(Ily(n,7,)) = Whp (I,(n, 7y @ Xods))
such that the Whittaker function Wiy (g’) associated to FJ, s(wp) and
Bu.s(f ® ¢) is given by

We(d) = [ Wp(v(z,0,0)q)ws.(q)o(x)dx

X

for wg € Whp(Il,(n,7,)), f € I,(n,7,)", and ¢ € 8§(X,). Here,
Wg(g) is the Whittaker function associated to wg and f. If S; €
Sy ()T, Sy € S, (k)T and S = S; @ Sy, then we have

:'rjv,Sg o :'rjv,Sl = Pv,51,5 ° fjv,S:

where p, s,.s, is a constant which does not depend on B’ € S,v(k)™".

Put
I = II(n, )" = ® I, (n, 7) ® ® IT,(n, 7,)™,

PEAGTSS vEG o

SOX(A)™ = ®) 8(x) R &) SXM.

V€S0 VEG o0
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Then we have a homomorphism
Bs = @ufs : T(n, 7)™ @ S(X(A)™ — I(1', 7 @ xs)™"
and a homomorphism
FIsp = @uFTvsp - Whegp (II(n, 7)) — Whp/(II(n', 7 @ x3)).

for each B’ € S,/(k)T. By what we have explained as above, the
following two propositions hold.

Proposition 11.1. Let Wg(g) be the Whittaker function associated
to wg € Wheep (Il(n,7)) and f € I(n, 7)™, and Wg(g') be the
Whittaker function associated to FJs(wg) and Bs(f @ ¢), where ¢ €
S(X(A)™. Then we have

W () = / o, Wl 0.0 259 e

Proposition 11.2. The homomorphism
FTs.p : Wheep (II(n, 7)) — Whp (II(n', 7 ® x5s))

is an isomorphism. If n = mi;+ma+n', S1 € Sy, (K)T, S2 € Sy (k)T
and S = S1 @ Ss, then we have

FTs,. B 0 FIs,,550B = Ps1,5 - FIs.B

for any B" € S,y (k)". Here, ps, s, is a constant which does not depend
on B'.

When there is no fear of confusion, FJs g is simply denoted by F7s.

Definition 11.3. Let 7 be an irreducible cuspidal automorphic repre-
sentation of PGLy(A) which satisfies the conditions (A1) and (A2). A
family {wp}pes, )+ is called an GL,(k)-family of Whittaker vectors
for II,,, if

wpra = wp o 1, (m(A))

for any B € S,,(k)" and A € GL,, (k).

Lemma 11.4. Let 7 be an irreducible cuspidal automorphic representa-
tion of PGLo(A) which satisfies the conditions (A1) and (A2). Suppose
that B € S,(k)*, A € GL,(k), B[A] = B, and wg € Whp(Il,). Then
we have

wpg if det A =1,

wp o I, (m(A)) = {5(1/277)103 if det A = —1.
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Proof. By Lemma 3.5 and Lemma 6.2, we have

ay, (1) \"
IT,,( »(det A)
WB© U;;[ po(de (oz%(detA))
ay, (1) \"
X H (det A)" ( (detA)) - wpg.
vEG oo

By the property of the Weil constant, we have

Hawv(l) = Ha%(det A)=1.

Note that det A = +1. If det A = —1, then
[T #o(det A) T (det Ay~ =e(1/2,7).
’U¢Goo ISICISS
Hence the lemma. U
By Lemma 11.4, a non-trivial GL,,(k)-family of Whittaker vectors
exists if and only if £(1/2,7) = 1. In particular, II(n,7) is not auto-
morphic if €(1/2,7) = —1.
Hereafter, we assume 7 satisfies (A1), (A2), and (A3). Fix S €
Sn(k)T (0 <m < n) and set n' =n —m.

Lemma 11.5. Let {wp}pes, @)+ be a GLy(k)-family of Whittaker vec-
tors for Il(n, 7). Then the famzly

{FTsp(wsep) Y pres,, )+
is a GLy (k)-family of Whittaker vectors for II(n', 7®g).

Proof. The lemma follows from Lemma 3.4 and Lemma 6.4. 0

Let {wp} pes, (k)+ be a family of Whittaker vectors for II,,. Let Wg(g)
be the Whlttaker function associated to f € II,, and wg € Whp(Il,)
for each B € S,,(k). We consider the Fourier series

> Wslg)

BeSn (k)*

We do not discuss the convergence of F'(g) and assume the conver-
gence of F'(g) in this section. By definition, the Fourier series F'(g) is
left P,(k)-invariant if and only if {wg} is a GL,(k)-family.

Recall that for ¢ € §(X(A)), the theta function ©%(vg’) is defined
by

0% (v(z,y,2)g) = Z Ys(z+x -y + 20 y)ws(g)o(l + )

leX (k)
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for v = v(z,y,2) € Vom(A) and ¢’ € Sp,,/(A).

Lemma 11.6. We assume that the Fourier series F(g) is absolutely
convergent. Let {U’B}Besj{(k-) be a GL,(k)-family of Whittaker vectors
for 11,,. Then we have

/ F(vg))@%(ug) dv
VRNV (A)
= Z / Wsep (v(2,0,0)g") ws(g)p(z)dw

for any ¢ € 8(X(A)).
Proof. The contribution of B € S, (k)" in
/ F(vg")©%(vg') dv :/ Z Wg(vg)O?(vg)dv
VDV (4) VENV®) b T

vanishes unless the upper left m x m block of B is equal to S. In this

= (5 0[5 )]

for some A € X (k) and B’ € S,,(k)". Note that
v(z,y,2) =v(0,y,z+y- ") v(z,0,0),

: S 0 1 A
It follows that if B = (O B’) {(O 1)], then

Wa(v(z,y,2)g) =Wp(v(0,y,2+y-z) v(x,0,0)q")
=Us(z +y - ) (2N - 'y)Wp(v(x,0,0)g")
=s(z +y - 2)hs(2\ - 'y) Weap (V(A + ,0,0)g").
We have

/ F(vg")©%(vg') dv
V(K)\V(A)

_ / S Wylvg)87(vg)dv

:/ / / Z WS@B'(V(A—F‘T:O?O)QI)
zeX(E)\X(A) JyeY (k)\Y (A) JzeZ(k)\Z(A)

B'eS,  (k)*

< 30 ST w200 — 1)y)s(g )9 + 2)dz dy de.

X (k) l€X (k)




44 TAMOTSU IKEDA

In this integral, only [ = A contributes. It follows that

/ F(vg)©2(vg') dv
V(E)\V(A)

:/:EGX(k)\X( ) Z Z Wsep (v(A+2,0,0)9")ws(g")¢(A + z)dx

A B'eS, (k)T AeX(k)

- / S Weew (v(z,0,0)9ws(g) o) de.

Hence the lemma.
O

By Lemma 11.6, if F(g) is the Fourier series obtained from f €
II(n,7) and the family {wp}pes, )+, the the Fourier series obtained

from Bs(f ® @) € II(n', 7 ® xs) and the family {fjg(wS@B/)}B/esn,(k)Jr
is equal to

/ F(vg")©2(vg') dv.
V(k)\V(A)
Definition 11.7. Let

{wB}BeSn(k)+ S H WhB

BESH(
be a GL,(k)-family of Whittaker vectors for II(n,7). We shall say
that {wp}pes,k)+ is a compatible family, if the following conditions
are satisfied.

(1) When n = 1, a family {wp}pes, )+ is compatible if it comes
from the Shimura correspondence of 7, i.e., for each f € Ilj,
the Fourier series

Flg)= > Wslg)
BeS: (k)*+

belongs to the space of the Shimura correspondence of 7.
(2) When n > 2, a family {wp}pes, )+ is a compatible family, if
the family
{f\yf(w(f)@B’)}B’esn,I(k)Jr

is a compatible family for II(n — 1,7 ® x¢) for each £ € kJ.
The following lemma follows immediately from the definition.

Lemma 11.8. Let {wp}pes, )+ be a GLy(k)-family of Whittaker vec-
tors for Il(n, 7). Then {wp}pes, )+ is a compatible family of Whit-
taker wvectors for Il(n,7), if and only if {FJs(wsep)}pes, (ot @5



ON THE LIFTING OF AUTOMORPHIC REPRESENTATIONS 45

a compatible family for II(n — m, ™ ® xg) for any m < n and any
SeSnk)t.

Assume that II(n, 7) is isomorphic to an automorphic representation
of Sp,,(A). Then there exists an embedding

P

v (1, 7) = Acusp(Sp,, (K)\Sp,, (A)).
For each B € S, (k)T and f € II(n, 7)™, put

wp = 3 n(x))yYg(x)dr.
=/ e )T

Then we have

by Kocher principle. Put

or0ld) = / () (vg")O% (vg') dov,
V(K)\V(A)

P

for ¢’ € Sp,,(A) and ¢ € §(X(A))™. Then we have
/ o 15(0(2)g ) Bpr (@) dz = FTs(ws) (T (¢ Fs(f © B)))
N, (E)\N,,r (A)

by Lemma 11.6.

Lemma 11.9. The family {wp}pes, @)+ arising from an embedding v
1 a non-zero compatible family.

Proof. The automorphic representation generated by

/ {(F)(vg O (vg’) d
V(E)\V(A)

for f € TI(n,7)"" and ¢ € S(X(A))™® is isomorphic to II(n',7 ® xs).
Therefore {wpg} is a compatible family by induction. O

Recall that (see Definition 10.2)
S.(k)f ={B e S,(k)"|L(1/2,7 ® xB) # 0}.

Lemma 11.10. Assume that {wp}pes,k)+ is a compatible family. If
B¢ S,(k)f, then wg = 0.

Proof. If n =1, then the lemma follows from Proposition 8.2.
Assume n > 2 and wg # 0 for B € S,(k)*. By replacing B by
B[A] for some A € GL,(k), we may assume B = ({) ® B, { € k7,
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B € S,_1(k)". Then FJ¢(wg) # 0, since FJ¢ is injective. By the
induction hypothesis, we have
L(1/2,(T ® X¢) ® xp) = L(1/2,7 ® xB) # 0.
O

We denote the dimension of compatible family of Whittaker vectors
for II(n, 7) by Meomp(II(n, 7)). By definition, we have meomp (II(n, 7)) =
1 for n = 1. We are going to prove meomp(Il(n, 7)) = 1. By induction
hypothesis, we assume

(H1) For any n’ < n and any cuspidal automorphic representation
7" of PGLy(A) which satisfies (A1), (A2), and (A3), we have
Meomp(IL(n', 77)) = 1. Moreover, if {wp/} is a non-trivial com-
patible family for II(n/, 7’), then wp # 0 for any B' € S, (k)F.

From now on, and until the end of this section, we assume (H1).

Suppose By, By € S,(k)f. Let S € S,,(k)" be an element which is

represented by B; and B,. Then we define a linear map

U*,SI,BQ : Whp, (TII(n, 7)) — Whpg, (II(n, 7))

as follows. First assume that there exist B}, By € S (k) such that

S 0 S 0
&:Q)ﬂ)’ &:(OBQ'

In this case, we set U3, p,(wp,) = wp, if and only if there exists a com-
patible family {wip } g5+ i) Of IL(n', T®Xs) such that wp, = FTs(wp,)

and wjgé = FJs(ws,). Note that U, p, is an isomorphism by (HL).
In general, there exists A, Ay € GL, (k) and By, By € S, (k) such

that
S 0 S 0
Bl[Al] = (O Bi) ) B2[A2] = (O Bé) .

In this case, we put
Ugl,BQ = 1T, (m(4y)) " o Ugl [A1],Ba[Az] © IT, (m(A;)).

The right hand side does not depend on the choice of Ay, Ay € GL, (k)
by Lemma 3.5, Lemma 3.4, Lemma 6.1, and Lemma 6.4. Moreover
U3, 5, depends only on the equivalence class of S € S,,(k)". When
S = (&) € Si(k)T, we simply denote Ugl)’Bg by UghB? Note that if
S < By, By, Bs, then we have Ug, 5, o U3, 5, = Ug, p, by definition.

Lemma 11.11. Suppose that S € S,,,(k)*, T € S, (k)*, S — T,
T — By, By € Sy(k)f. When we have UG, 5, = UL, p,.
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Proof. Since S — T, we may assume T = S & S’ for some S’ €
Sing—m, (k)T. We may also assume By = T @ B} and By, = T & Bj,.
Then we have

FIr,B; =ps,s:FTs B, © FIs,s'aB;,
FIr.By, =ps,sFTs p, 0 FIssan,

by Proposition 11.2. By the definition of the compatible family, F7s(wp, )
and FJs(wp,) belongs to a compatible family if and only if FJr(wp,)
and FJr(wp,) belongs to a compatible family. Hence the lemma. O

Lemma 11.12. Suppose that &;,& € kI are represented by By, By €
S, (k)F. Assume that there exists S € S (k) such that

(1) S < By, Bs.
(2) 51752 — S.

Then we have UfglhB2 = UfBQl,Bz'

Proof. By Lemma 11.11, we have Uéll’Bg =Ug B, = U1€321,BQ- Hence the
lemma. O

Lemma 11.13. Assume n > 3. Suppose that &1,& € kI are repre-
sented by By, By € S;F(k);. Then we have Uéll’Bg = U1€321,BQ'

Proof. We first show that there exists 77 € S, (k)T such that (&) @
(&) — Ty and Uglth = Ug?th. In fact, by Lemma 10.4, there exist
n € kY, Si, So € S(k)T and 71 € S,(k); satistying the following

conditions (a), (b), (c), and (d). '
(a) &,m = S

(b) &,m = Se.
(C; Sl, SQ — Bl-

(d) S1, 2, (&) @ (&) — Th.
Then (a), (c), and (d) implies U]glth = Up, 7, by Lemma 11.12. Simi-
larly, (b), (c), and (d) implies Ug 5, = Up, 4. It follows that Ug. . =
Up = Ug 7,
B1,Th B2, Ty
By a similar argument, there exists Ty € S, (k)F such that (&) @

(§2) — Ty and U%,B2 = U%’BQ. Then we have U%TQ = U%TQ, since
(&) & (&) — T, Ty. Tt follows that

&1 _7&1 & &1 _ r7é2 & &2 _ 77&2
Ui, = Uy °Unm, U iy = Uy © U1, ©Up, iy = Up, B,

Hence the Lemma. O
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IR = (Ty,T1,...,T,; &,&,...,&) is an admissible sequence be-
tween B; and Bs, then we set

R _ 7780 3 &1
Ug,g, =Ur_ 0o UpnoUpm-

Then {wp} pes, )+ is a compatible family if and only if US, 5 (wg,) =
wp, for any By, By € S, (k) and admissible sequence R between B;
and Bg.

Lemma 11.14. Assume that n > 3. If R and R’ are admissible se-
quences between By € S, (k)} and By € S, (k)}, then we have UF, p, =
U§7B2 .
Proof. Tt is enough to prove that if R = (Ty, T3, ..., Tr,; &1,2, .-, &)
is an admissible sequence such that Ty = T, then we have U:?%,T,« =id.
There is nothing to prove for r = 1. The case r = 2 is Lemma 11.13.
For r > 3, there exists n € k such that n — Ty, 71, 7> by Lemma 10.1.
By Lemma 11.13, we have U$ 5, = UZ, 1, and Usl 7, = U3, 5. Then
by induction, we have

R _77é . €3 Ui n
UTO,Tr _UT'rfl,TO © © UT2,T3 © UT1,T2 © UT07T1

_77ér &3 U
T T1,To © © UT2,T3 © UT07T2

=id.
Hence the lemma. O

Proposition 11.15. We have meomp(Il(n, 7)) = 1. Moreover, if {wg}
is a non-trivial compatible family for M(n,T), then wg # 0 for any

B e S, (k).

Proof. We first prove that mcomp(II(n, 7)) < 1. We may assume n > 2.
If the family {wp}ges, )+ is non-zero, there exists B, € S,(k)* such
that wp, # 0. By Lemma 11.10, we have By € S,(k). By Lemma
10.6, there exists an admissible sequence R = (Tp,...,T; &1, -+, &)
for By and B. Then we have wp = UK p(wp). It follows that
Meomp(IL(n, 7)) < 1. Moreover, if {wp} is a non-trivial compatible
family, then we have wg # 0 for any B € S,(7),, since UEO,B is an
isomorphism.

Now we prove meomp(II(n, 7)) > 1. We may assume n > 3. Choose
any By € S,(k)f and wg, € Whg,(II(n, 7)), wg, # 0. For each B €
S, (k)7, there exists an admissible sequence R between By and B. set
wp = UE),B(@UBO)- By Lemma 11.4, wp does not depend on the choice
of R. Then {wp} is a non-trivial compatible family. Thus Proposition
11.15 is proved. O
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12. Convergence of the Fourier series

Let {wp}pest(r) be a compatible family of Whittaker vectors for
I1 =TI(n, 7). We fix a vector f € II(n, 7)™, Let W5 be the Whittaker
function associated to f and wg. By definition, we have

Ws(g) = wp(Il(g) f)
for each B € S, (k)*.
We consider the sum
F(g)= > Wslg).
BeS;t (k)

We are now going to prove that the sum is convergent absolutely and

uniformly on any compact subset of Sp,(A). By translating f from
the right, it is enough to consider the convergence of F(g) on some

neighbourhood of Sp,, (ks ). Since f is a smooth vector, it is enough to

consider the convergence of F(g) on Sp,,(koo)-

Note that F(g) satisfies the equation F(gu,) = j(u,, i)+ F(qg)
for any u, € U(n). It follows that one can define a function F*(Z) on
§%= by

FoZ)=F(g) T] (g )=+,

’Ueeoo

where g € Sp,, (k) satisfies ¢,(i) = Z, for any v € &.
We decompose the Whittaker function W as a product of the finite
part and the infinite part as

0
Ws=Wpa x [ Wi
UEGOO

Then we have

F{(Z)= ) (H \detB]§v+("/2>> W,gn(12n)ep(2).

BeS; (k) \v€6co
Since f € II(n,7) is a smooth vector, f is invariant from the right
by
{n(z)]z € L}
for some lattice £, C S,(k,) for any finite place v. We may assume
L, = S,(0,) for almost all v. Put

Yp is trivial on H EU} .

L= {B € S,(k)
V€S
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Then L is a lattice in S,,(k). Since Wg gn(12,) = 0 unless B ¢ L, we
have

Fi(z)= Y (H |detB|5v+<"/2>> W n(Lon)en(Z).

BeLNnS;F (k) \v€6oo

Let & be a finite set of places of k. We assume & contains all places
above 2 and oo. We also assume & contains all places where 7, is
ramified.

Definition 12.1. By, By € S, (k)" are G-equivalent if B; and B, are
equivalent over k, for any v € &.

Definition 12.2. Let B be an element of S™(k,). For wp, wl €
Whp(I1,), we denote wp =~ wj if wp = uw'y for some u € C*| |u| = 1.
Similarly, for B € S,,(k)", wp, w) € Whp(II), we denote wp ~ wl if
wp = uwy for some v € C*, |u| = 1.

For v ¢ &, there exists a distinguished vector wy, € Whp(Il,) for
each B € 8™(k,). For v € G, we have also chosen a distinguished
vector wy, € Whp(Il,) for each B € S,(k,)". These distinguished
vectors satisfy the condition

woB[A],v ~ woB,v © HU((m(A)7 1))
for any A € GL,,(k,).

For v € 6, v ¢ &, we choose any family of non-zero vectors
{w%,v}BES,r{d(ku)? U}OBW € WhB(Hv) such that

woB[A],'U ~ woB,U © HU((m(A)7 1))
for any A € GL,(k,). Such a family exists by Lemma 3.5.
For B € S,,(k)", we put

wlh = Hw%,v € Whp(II).

Note that
w%[A] ~ w% o II(m(A)).

for any B € S,,(k)*, A € GL,,(k).
Let {wp}pes, )+ be a compatible family. For each B € S,(k)*,
there exists a non-negative number cg > 0 such that

wBp =~ Cp ’LU%

Proposition 12.3. If B; and By are &-equivalent and det B; = det By
mod (k*)?, then we have cg, = cp,.
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Proof. Note that the proposition is valid for some choice of {w 5},
then it is valid for any choice of {w) 5}.

We may assume det By = det By. In particular, the proposition
holds for n = 1. If n = 2, then the representation Il = II(2,7) can
be extended to a cuspidal automorphic representation IT; of PGSp,(A)
with trivial central character. Since det By = det By, there exist ¢t € kZ
and A € GLy(k) such that By = tBy[A]. Then we have

wp, = wg, ol (d(t)m(A))

since Il is an automorphic representation on GSpy(A). It is enough to
prove

W, & W, , 0 Iz (d(t)m(A)).
In fact, for v ¢ &, we have

W,y = W, , © [z, (d(t)m(A))

by Lemma 9.3 (3). For v € Gu, we have wl, , ~ w}, oIl ,(d(t)m(A))
by Lemma 9.3 (2). For v € 6, v ¢ &, there exists A" € GLa(k,)
such that By = B [A’ *1], since B; and B, are G-equivalent. Then we
have By = tB1[AA’]. Therefore d(t)m(AA’) and n(B;) commute and
tdet AA" = £1. It follows that

w%w o flgvv(d(t)m(AA')) :,uq(f) (t det AA')w%w

~npy0
NwBl,v

by Lemma 9.3 (1). Therefore we have
wh, , 0 Mz (d(t)m(A)) =wh, , o Mz, (d(t)m(AAY) o Iy, (m(A™))

~w, , oy, (m(A))
~wh, o
Now assume n > 3. We may assume det B; = det B,. Let T be the
set of places v where By and Bj are not equivalent. Let £ € kX be an
element such that £ — By, By. We may assume £ € o) for v € T, since
either B; or By is isotropic over k,. Note that ¥ is a finite set and
TN(GUEG') =0, where & = {v|v ¢ &,o0rd,§ # 0}. By replacing B;

and By by equivalent forms, we may assume
Bi=(@eB, B=()aB,

where Bj, B} € S,—1(k)*. Consider FJ¢(wp,) and FJ:(wp,). Since
wp, and wp, belong to a compatible family, F7:(wp,) and FTe(wp,)
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also belong to a compatible family for II,,_; = II(n — 1,7 ® x¢). Note
that

FIe(ws) ~cp, | FIe(wy,,) [ FIetwh,,) [ 7T @h,.),

vESUG’ ve&! veES
~ 1/4. 0 0 0
~ep, [ D8l wl, [ 7w, [ Fe(wh,.)
vESUG’ ve&! vES

fori =1,2. Forv € GUG’, there exists A, € GL,_1(k,) such that B}, =
Bj[A,], since By and By are & U & -equivalent. Note that det A, = +1,
since det B; = det By. By Lemma 3.4 and Lemma 6.4 (3), we have

FIe(w, ,) = FIe(wp, ,) o Hy_1((m(A,), 1))

for v € G U G'. Note that B} and B) are & U &’-equivalent and
det B} = det B). By the induction hypothesis, we have cp, = cp,.
]

Lemma 12.4. Put
B <« 0<ord,z <1 forvé¢ &,
Q@—{xek‘ 0 <ord,x <2h, forveGg, [’

where hy is the class number of k. If © is sufficiently large, then we
have k™ = Qg - (k™).

Proof. We may assume {p, |v € &,v ¢ S} generate the ideal class
of k. Consider the map
kX — EBZ

v¢S
given by & + (ord,x),¢e. Then this map is surjective. For each z € k*,
there exists an element y € k* such that 0 < ord,(xy?) < 1 for any
v ¢ &. Moreover, we may assume 0 < ord,(zy?) < 2h;, for v € Gy,
since p* is a principal ideal for any v. Hence the lemma. U

Lemma 12.5. Let {wp}pesu)+ and cg be as in Proposition 12.5. Then
there exist constants A, M € R, A > 0 such that

cp < A‘DB’M
Here, 0p is the conductor of k(v/Dpg)/k, as in §4.

Proof. Let & be a set of bad places, which satisfies the condition of
Lemma 12.4. Since there are only finitely many G-equivalence classes,
it is enough to consider an G-equivalence class. Fix S € S ;. By
enlarging &, if necessary, we may assume S € S, 1(0,) for v ¢ &.
By Proposition 12.3, it is enough to prove that there exist A, M € R,
A > 0 such that

Ceas < Aldgas|™
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for any & € k. Put N(§) = [[,ce. [€]o- By Lemma 12.4, we may
assume £ € Qg. Note that there exists A’ > 0 such that

Pcas| < A" N(E),
for any £ € (Dg. As in the proof of Proposition 12.3, we have

FTs(wews) = ceos | [ 1615w [ [ FTs(w) gass)-
vgS veS

Therefore the problem is reduced to the case n = 1. Consider the
Fourier series

Fi(Z)=">" <H | det B

geki VEG 0

Since £ € Qg, we have 0 < ord,§ <1 for any v ¢ &. It follows that

F(Z) = ceue ( T | det B|gv+<1/2>> [T Wec(12)ec2).

EEki VESG o veES

gv+(1/2)> We gn(12)e(E2).

for some |u¢] = 1. By Proposition 3.6, for each v € Gg,, one can
choose a vector f, € II; , such that |[IW,¢(15)| > C for some constant
C > 0. Since the Fourier coefficients of a Hilbert modular form is
slowly increasing, we obtain the proposition. O

Proposition 12.6. Let {wp}pesk)+ be a compatible family. For each
f € Yt = TI(n, )V, the Fourier series

Flg)= > ws(ll(9)f)
BeSn (k)T

converges absolutely and uniformly on each compact subset of Sp,,(A).

Proof. The proposition follows from Proposition 3.9, Lemma 5.5, and
Lemma 12.5. O

13. End of the proof of Theorem 7.1.

Let {wp}pes, )+ be a compatible family of Whittaker vectors for
II,, = II(n, 7). For each B € S,(k)*, let W be a Whittaker function
associated to wp and f € ITI"*. To prove Theorem 7.1, it is enough to
show that the convergent Fourier series

Flg)= > Waly)
BeSn (k)T

is left Sp,,(k)-invariant. Since {wg} is an GL,(k)-family, F(g) is left
P, (k)-invariant. We are going to show that F(g) is left .J, ,,,(k)-invariant.
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Assume n = m+n’ and S € S,,(k)". Consider the “S-th Fourier-Jacobi
coeflicient”

Fsto) = | i PG = 3D Waly)

w=(32)

—_~—

Let C' be a compact open subgroup of Sp,, (Agy,) such that F'(g) is right
C-invariant. Put C" = C' N J,, ,,,(Agn) and set
V={peSXA)Y"" |ws(C)¢ = ¢}.

Then V is a finite-dimensional subspace of (X (A))™. Let ¢y, ..., ¢,
be an orthonormal basis of V. Then we have

Fs(vg'c) = Z 0% (vg) / F(vg)0% (vg') dv.
i=1 v

eV(K)\V(A)

P

for any ¢’ € Sp,,(A) and ¢ € C" by Proposition 1.3 of [5]. By Lemma
11.6, we have

/ F(vg)©?(vg') dv
VRV (A)

= Z Wsan (V(Iv 0, 0)9/) wg(g’)gzﬁ(x)dx,
B'eSH (k) X(A)
which is an automorphic form on Sp,,(A) by induction hypothesis.
Therefore Fg(g) is left J,, ,,(k)-invariant. Since Sp,, (k) is generated by
P, (k) and J, ,,,(k), the Fourier series F(g) is left Sp,(k)-invariant, as
desired.

14. RELATION TO THE ARTHUR CONJECTURE

In this section, we discuss the relation to the Arthur conjecture.
Since the Arthur conjecture is not formulated for metaplectic group,
we assume the degree is even in this section. We also assume that « is
sufficiently large so that the representation D,gf% of Sp,,(R) is a holo-
morphic discrete series representation. Let £ be the (hypothetical)
Langlands group over k. Hypothetically, there is a one-to-one corre-
spondence between the set of all equivalence classes of r-dimensional
irreducible representations of £; and set of all irreducible cuspidal au-
tomorphic representations of GL,(A). Let 7 be an irreducible cuspidal
representation of GLo(A) with trivial central character. We assume
the conditions (A1), (A2), and (A3) hold for 7. Let p, be the cor-

responding 2-dimensional irreducible representation of L;. Note that
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Im(p,) C SLy(C). Let x be a quadratic Hecke character of A /k*.
Then we have Im(p,g,) = Im(p, ® x) C SLy(C).

Set G = Sp,,,. The dual group G of G is SO411(C). Let sym,, ,
be the irreducible 2n-dimensional representation of SLy(C). There is
an non-degenerate SLy(C)-invariant alternating form on sym,,, ;. It
follows that the 4n-dimensional representation p,g, Xsymsa, 1 of Lj x
SLy(C) is orthogonal. It follows that there exists a non-degenerate £ X
SLy(C)-invariant symmetric bilinear form. Therefore p,g, X syms,_4
gives rise to a homomorphism £; x SLy(C) — SOy, (C). Embedding
SO4,(C) into G = SO4,+1(C), we get a homomorphism

(Prey Msymy, 1) B 1: Ly x SLy(C) — G.
If we admit the Arthur conjecture, then II(2n,7) belongs to the A-
packet for (pT®X(_l)n X symy, 1) B 1.
Let st : G = SO4n+1(C) — GLygyp11(C) be the standard representa-

tion of (. Then we have
2n

L(s,11(2n,7),st) = ((s) [ [ L(s +n — i + (1/2),7 @ x(-1yn),

i=1
up to bad Euler factors.
The Arthur conjecture suggest that mgu.(I1(2n, 7)) = 1 if and only
if
(/2,7 @ xpn) = [ (1" = (=)

’Ueeoo
We claim that

e(1/2,7® x(—1yn) = (1/2,7) - (—1)"FQ
under the assumptions (A1) and (A2). In fact,

e(1/2,7,) - (—1,—1)" ifv ¢ &,

6(1/2, (T®X(fl)”v)v) = {8(1/2 7-) ifve Gy

It follows that
e(1/2,7® x(1y) =e(1/2,7) [ (-1, -1)7
€S0

=<(1/2,7) ] (-1.-1);

VEG

—(1/2,7) - (—1)"*,

Therefore Theorem 7.1 is compatible with the Arthur conjecture.
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15. THE CASE k = Q.
Let

f=> aln, f)g" € Ss(To(N))

be a primitive form of level NV, and 7 be the irreducible cuspidal auto-
morphic representation of PGLy(Ag) generated by f. Then the condi-
tion (A2) is satisfied.

We shall explain the condition (Al) and (A3) in terms of classical
modular forms. The root number £(1/2,7) is equal to the sign of the
functional equation. It follows that the condition (A3) holds if and
only if the L-function L(s, f) = Y a(n, f)n™° of f has a functional
equation

L(s, f) = N* 2 L(2k — s, f).

Next, we explain the condition (A1). Recall that for each Dirichlet
character n» mod M, there exists a primitive form

(e 9]

fo=_aln. f,)d" € Sax(Lo(N'), (*)o)

n=1
with the following properties (1) and (2):

(1) N'|NM2.

(2) a(n, f,) =n(n)a(n, f) for (n, NM) = 1.
Here, (n?)o be the primitive Dirichlet character equivalent to n?. Then
exactly one of the following three conditions holds:

(a) The condition (A1) holds at v = p. In other words, 7, is a
principal series.

(b) 7, is a quadratic twist of the Steinberg representation.

(c) 7, is a supercuspidal representation.

If pt N, then the condition (A1) holds for v = p. The condition (b)
holds if and only if p || N’ for some quadratic Dirichlet character n. The
condition (c) holds if and only if a(p, f,,) = 0 for any Dirichlet character

7.
If f satisfy the condition (A1), (A2), and (A3), then Theorem 7.1

implies there exists a Siegel modular form
F € S,,H_(n/Q)(F)

for some congruence subgroup I' C Sp,,(Z), which is a common eigen-
form for Hecke operators for I'\Sp,,(Z[1/p])/T" for almost all p. The
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Hecke eigenvalue can be calculated by Satake isomorphism (in princi-
ple). If n = 2r is even, the standard L-function of F'is equal to

C(s)HL(s—H"jL/i—i,f), if r =0 mod 2,

L(s, F,st) = :1
C(S)HL(S +r4+K—1 [y ), ifr=1mod2,

i=1

up to bad Euler factors. Here, x(1) is the odd primitive Dirichlet
character mod 4.

Now let n be an integer such that £ = n mod 2. Let f € Sy.(SLa(Z))
be a normalized Hecke eigenform, and 7 be the irreducible cuspidal
automorphic representation of GLy(Ag) generated by f. Then, we
have

£(1/2,7® xioap) = (—1)" = 1,

By the result of [6], there exists a Hecke eigenform F' € S, 1, (Sp,,(Z)),
whose standard L-function is ((s)[[%, L(s +n + & — i, f). Then
one can easily show that the automorphic representation generated
by F' is isomorphic to II(2n,7 ® x(—1y»). By Theorem 7.1, we have
Mauto (I1(21, 7@ x(—1)»)) = 1. It follows that II(2n, 7 ® x(—1)») is gener-
ated by F. Therefore Theorem 7.1 can be considered as a generaliza-
tion of [6]. The half-integral weight analogue of [6] was considered by
Hayashida [4].
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