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Abstract. We construct a lifting of automorphic representations
on PGL2 to symplectic or metaplectic groups over a totally real
field.

Introduction

In this paper, we construct a lifting of automorphic representations
on PGL2 to symplectic or metaplectic groups over a totally real field.
The main result of this paper can be considered as a generalization of
[6] to an arbitrary totally real field under some mild local assumptions.

Let k be a totally real field. Fix a non-trivial additive character
ψ of A/k. We denote the set of all archimedean places of k by S∞.
Let τ � ⊗vτv be an irreducible cuspidal automorphic representation of
PGL2(A). We assume that τ � ⊗vτv satisfies the following conditions:

(A1) For v /∈ S∞, τv is a principal series B(μv, μ
−1
v ).

(A2) For v ∈ S∞, τv is a discrete series representation with lowest
weight ±2κv.

(A3) The root number ε(1/2, τ) is equal to 1.

Here, the (global) root number is defined as follows. The local root
number ε(1/2, τv) is given by

ε(1/2, τv) =

{
μv(−1) v /∈ S∞,
(−1)κv v ∈ S∞.

Then the global root number ε(1/2, τ) is defined by

ε(1/2, τ) =
∏
v

ε(1/2, τv).

For each place v of k, let S̃pn(kv) = {(g, ζ) | g ∈ Spn(kv), ζ ∈ {±1}}
be the metaplectic covering of the symplectic group Spn(kv). The mul-

tiplication law of S̃pn(kv) is given by (g1, ζ1)·(g2, ζ2) = (g1g2, c(g1, g2)ζ1ζ2),
where c(g1, g2) is Rao’s 2-cocycle (cf. Rao [11]).
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We denote the space of symmetric matrices of size n by Sn(k). For
A ∈ GLn(k) and z ∈ Sn(k), we define m(A),n(z) ∈ Spn(k) by

m(A) =

(
A 0
0 tA−1

)
, n(z) =

(
1n z
0 1n

)
.

Let
Pn = MnNn ⊂ Spn

be a Siegel parabolic subgroup of Spn, where

Mn(k) = {m(A) A ∈ GLn(k)} , Nn(k) = {n(z) z ∈ Sn(k)} .
Let v be a place of k. For each t ∈ kv, we denote by αψv(t) the Weil

constant. Recall that the Weil constant αψv(t) satisfies the equation∫
kv

φ(x)ψ(tx2) dx = αψv(t)|2t|−1/2

∫
kv

φ̂(x)ψv(−t−1x2/4) dx

for any Schwartz function φ ∈ S(kv), where

φ̂(x) =

∫
kv

φ(y)ψv(xy) dy

is the Fourier transform of φ. Let 〈 , 〉v be the Hilbert symbol for kv.
We set χt(x) = 〈t, x〉v for t, x ∈ k×v .

For v /∈ S∞, we set

Πn,v = Π(n, τv) = Ind
^Spn(kv)

P̂n(kv)
(μ(n)

v ).

Here,

μ(n)
v ((m(A), ζ)) = ζn

(
αψv(1)

αψv(detA)

)n
μ(detA).

Note that Πn,v is a degenerate principal series induced from a character
of the Siegel parabolic subgroup. Note that when n is even, we have

μ(n)
v ((m(A), ζ)) = χ(−1)(detA)n/2μ(detA).

When v ∈ S∞, we let Πn,v = Π(n, τv) be the lowest weight representa-

tion of S̃pn(R) with lowest Ũ(n)-type (det)κv+(n/2). Note that Πn,v is
genuine if and only if n is odd.

Let S̃pn(A) be the metaplectic double covering of the adele group

Spn(A). We denote the space of cusp forms on Spn(k)\S̃pn(A) by

Acusp(Spn(k)\S̃pn(A)). Then we have

Acusp(Spn(k)\S̃pn(A)) =

Acusp(Spn(k)\Spn(A)) ⊕Agen
cusp(Spn(k)\S̃pn(A)),
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where Agen
cusp(Spn(k)\S̃pn(A)) is the space of genuine cusp forms on

Spn(k)\S̃pn(A).
We consider the restricted tensor product

Πn = Π(n, τ) =
⊗
v

′
Π(n, τv),

which we consider as a representation of S̃pn(A). The multiplicity
mauto(Πn) is defined by

mauto(Πn) = dimC Hom
Ŝpn(A)

(Πn,Acusp(Spn(k)\S̃pn(A))).

Then the main result of this paper is as follows.

Theorem 7.1. Let τ be an irreducible cuspidal automorphic represen-
tation of PGL2(A) which satisfies the conditions (A1), (A2), and (A3).
Then we have

mauto(Πn) = 1.

It is easy to show that if τ satisfies (A1), (A2), and if ε(1/2, τ) = −1,
then mauto(Πn) = 0.

Note that Π2n can be considered as a cuspidal automorphic repre-
sentation of Sp2n(A). The standard L-function of Π2n is given by

L(s,Π2n, st) = ζk(s)

2n∏
i=1

L(s+ n− i+ (1/2), τ ⊗ χ(−1)n),

up to bad Euler factors. Here, ζk(s) is the Dedekind zeta function of
k.

Assume that k = Q and that κ ≡ n mod 2. Let f ∈ S2κ(SL2(Z))
be a normalized Hecke eigenform, and τ be the irreducible cuspidal
automorphic representation of GL2(AQ) generated by f . Then we have

ε(1/2, τ ⊗ χ(−1)n) = (−1)κ+n = 1.

Let F ∈ Sκ+n(Sp2n(Z)) be the cusp form constructed in [6]. Then
the automorphic representation generated by F is equal to Π(2n, τ ⊗
χ(−1)n). Therefore Theorem 7.1 can be considered as a generalization
of [6].

In fact, the method of the proof of this theorem is different from that
of [6]. In [6], we used the Fourier coefficient formula of the Siegel Eisen-
stein series. In this paper, we use the theory of degenerate Whittaker
models, and do not use the Eisenstein series.

In, [3], Ginzburg, Rallis and Soudry have constructed some CAP rep-
resentations by means of the descent method. Our method is different
from their method, and we can determine the multiplicity.
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For the multiplicity of the Saito-Kurokawa lifting, Piatetski-Shapiro
[10] proved that the Saito-Kurokawa lifting has multiplicity one as a
representation of PSp2(A). But it seems his result does not imply the
multiplicity one as a representation of Sp2(A). Recently, Heim proved
the multiplicity one of the Saito-Kurokawa lifting as a representation
of Sp2(AQ) for the Saito-Kurokawa lifting for S2κ(SL2(Z)).

We explain the idea of the construction. Let Sn(k)+ be the set of
elements B ∈ Sn(k) whose image in Sn(kv) is positive definite for any
real place v of k. Assume that Π(n, τ) is cuspidal automorphic. For
f ∈ Π(n, τ), the corresponding automorphic form F (g) has a Fourier
expansion

F (g) =
∑

Sn(k)+

WB(g)

WB(g) =

∫
z∈N(k)\N(A)

F (n(z)g)ψB(z) dz.

Note that WB(g) 
= 0 unless B ∈ Sn(k)+ by the Köcher principle. The
map f �→ WB(12n) can be considered as a Whittaker vector wB ∈
WhB(Πn) = HomN(A)(Πn, ψB). By standard local argument, one can
show that WhB(Πn) is one dimensional for any B ∈ Sn(k)+. Thus

an embedding η ∈ Hom
Ŝpn(A)

(Πn,Acusp(Spn(k)\S̃pn(A))) gives rise to

a family of Whittaker vectors

{wB}B∈Sn(k)+ ∈
∏

B∈Sn(k)+

WhB(Π(n, τ)).

Conversely, we consider a family {wB}B∈Sn(k)+ , and investigate when
such a family gives rise to an automorphic form. Clearly, it is necessary
that wB[A] = wB ◦ Πn(m(A)) for any B ∈ Sn(k)+ and A ∈ GLn(k).
Here, B[A] = tABA, as usual. We call such a family a GLn(k)-family
for Πn.

We shall make use of the theory of Fourier-Jacobi expansion [2] and
Jacobi forms [5]. Note that the normalization of the Weil representation
in [5] is different from that of this paper. Let 0 < m < n be an integer
and set n′ = n−m. Put

v(x, y, z) =

⎛⎜⎜⎝
1m x
0 1n′

z y
ty 0

0 0
0 0

1m 0
− tx 1n′

⎞⎟⎟⎠ ∈ Spn(k)
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for x, y ∈ Mat(m,n′; k) and z − x · ty ∈ Sm(k). We set

V = Vn,m =
{
v(x, y, z) | x, y ∈ Mat(m,n′; k), z − x · ty ∈ Sm(k)

}
,

X = Xn,m = {v(x, 0, 0) | x ∈ Mat(m,n′; k)} ,
Z = Zm = {v(0, 0, z) | z ∈ Sm(k)} .

We regard these groups as algebraic subgroups of Spn. Note that the
quotient group

V/{v(0, 0, z) ∈ Z | tr(Sz) = 0}
is a Heisenberg group. We regard S̃pn′(A) as a subgroup of S̃pn(A) by
the embedding

((
A B
C D

)
, ζ

)
�→

⎛⎜⎜⎝
⎛⎜⎜⎝

1m 0
0 A

0 0
0 B

0 0
0 C

1m 0
0 D

⎞⎟⎟⎠ , ζ

⎞⎟⎟⎠ .

Fix S ∈ Sm(k)+. Let ψS be the character of Z(A) defined by
v(0, 0, z) �→ ψ(tr(Sz)). By Stone-von Neumann theorem, there is a
unique irreducible admissible representation ωS of V (A) on which Z(A)
acts by ψS. The representation ωS extends to the Weil representation

of the group J̃(A) = V (A) � ˜Spn′(A), which we also denote by ωS.
The representation ωS can be realized on the Schwartz space S(X(A))

on X(A). Recall that for φ ∈ S(X(A)), the theta function Θφ
S(vg

′) is
defined by

Θφ(v(x, y, z)g′) =
∑
l∈X(k)

ψS(z + y · tx+ 2l · ty)ωS(g′)φ(l + x)

for v = v(x, y, z) ∈ V (A) and g′ ∈ S̃pn′(A).
For a vector f ∈ Π(n, τ) and an GLn(k)-family {wB}B∈Sn(k)+ , set

F (g) =
∑

B∈Sn(k)+

WB(g),

W (g) = wB(Πn(g)f).

We assume the Fourier series F (g) is absolutely convergent. Then we
have (Lemma 11.6)∫

V (k)\V (A)

F (vg′)Θφ(vg′) dv

=
∑

B′∈S+
n′ (k)

∫
X(A)

WS⊕B′ (v(x, 0, 0)g′)ωS(g′)φ(x)dx
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for any φ ∈ S(X(A)). Note that if F (g) is automorphic, then so is this
integral.

Let Π(n, τ)lwt and S(X(A))lwt be the spaces of lowest weight vectors
of Π(n, τ) and S(X(A)), respectively. We shall show that there exists
a V (A)-invariant surjective map

βS : Π(n, τ)lwt ⊗ S(X(A))lwt −→ Π(n′, τ ⊗ χS)
lwt

and a map

FJS = FJS,B′ : WhS⊕B′(Π(n, τ)) −→ WhB′(Π(n′, τ ⊗ χS))

such that the Whittaker function associated with βS(f⊗φ) and FJS,B′(wS⊕B′)
is equal to ∫

X(A)

WS⊕B′ (v(x, 0, 0)g′)ωS(g′)φ(x)dx.

Thus it is natural to define as follows. Let

{wB}B∈Sn(k)+ ∈
∏

B∈Sn(k)+

WhB(Πn)

be a GLn(k)-family of Whittaker vectors for Πn. We shall say that
{wB}B∈Sn(k)+ is a compatible family, if the following conditions are
satisfied.

(1) When n = 1, a family {wB}B∈Sn(k)+ is compatible if it comes
from the Shimura correspondence of τ , i.e., for each f ∈ Π1,
the Fourier series

F (g) =
∑

B∈S1(k)+

WB(g)

belongs to the space of the Shimura correspondence of τ .
(2) When n ≥ 2, a family {wB}B∈Sn(k)+ is a compatible family, if

the family

{FJξ(w(ξ)⊕B′)}B′∈Sn−1(k)+

is a compatible family for Π(n− 1, τ ⊗ χξ) for each ξ ∈ k×+.

For precise definition, see Definition 11.7.
We shall show that the dimension of the space of compatible family

of Whittaker vectors for Π(n, τ) is 1 (Proposition 11.15). To prove the
main theorem, we also need to show that the Fourier series associated
to a compatible family of Whittaker vector is absolutely convergent.
We shall prove the absolute convergence in §12. The proof of the main
theorem will be completed in §13. In §14, we discuss the relation to
the Arthur conjecture. In §15, we discuss the case k = Q.
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Notation

Given a ring R, we denote by Matmn(R) or Mat(m,n;R) the set of
matrices of size m × n with entries in R. When m = n, this is just
denoted by Matn(R) or Mat(n;R). We denote by GLn(R) the general
linear group over R, and by SLn(R) the special linear group over R.
When there is no fear of confusion, GLn(R) etc. are simply denoted
by GLn etc.

Let k be a local or global field of characteristic 0. When k is a global
filed, we assume that k is totally real. For global field k, we denote the
adele ring of k by Ak or A. We denote the set of archimedean places
of k by S∞. We set k∞ =

∏
v∈S∞ kv. The subgroup of totally positive

elements of k× is denoted by k×+. The set of symmetric matrices of
size n over k is denoted by Sn(k). An element B ∈ Sn(k) is said to be
totally positive definite, if the image ofB in Sn(kv) is totally positive for
any v ∈ S∞. The subset of totally positive definite elements of Sn(k)
is denoted by Sn(k)+. When B ∈ Sn(k) is considered as a quadratic
form, we set B[x] = txBx and B(x, y) = txBy for x, y ∈ kn. Thus
B[x+ y] −B[x] −B[y] = 2B(x, y) for x, y ∈ kn. When x ∈ Matmn(k),
we also set B[x] = txBx. For B1 ∈ Sm(k) and B2 ∈ Sn(k), we say
that B1 is represented by B2 if there exists x ∈ Matnm(k) such that
B1 = B2[x]. We write B1 ↪→ B2, if B1 is represented by B2.

1. Metaplectic groups

Recall that the symplectic group Spn is defined by

Spn(k) =

{(
A B
C D

)
∈ Mat2n(k)

A · tB = B · tA, C · tD = D · tC,
A · tD − B · tC = 1n

}
.

For A ∈ GLn and z ∈ Sn, we define m(A),n(z) ∈ Spn by

m(A) =

(
A 0
0 tA−1

)
, n(z) =

(
1n z
0 1n

)
.

Let

Pn = MnNn ⊂ Spn

be a Siegel parabolic subgroup of Spn, where

Mn = {m(A) A ∈ GLn} , Nn = {n(z) z ∈ Sn} .
We sometimes identify Sn and Nn by B �→ n(B), if there is no fear of
confusion.
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Let k be a local field. We assume k 
� C. For each Schwartz function
φ ∈ S(k), the Fourier transform φ̂ is defined by

φ̂(x) =

∫
k

φ(y)ψ(xy) dy.

Here, the Haar measure dy is the self-dual Haar measure for the Fourier
transform. Let 〈 , 〉 be the Hilbert symbol. For each a ∈ k×, we define
a character χa : k× → C× by χa(t) = 〈a, t〉. For each a ∈ k×, there
exists a constant αψ(a) such that∫

k

φ(x)ψ(ax2) dx = αψ(a)|2a|−1/2

∫
k

φ̂(x)ψ(−a−1x2/4) dx

for any φ ∈ S(k). The constant αψ(a) is called the Weil constant. The
following properties of the Weil constants are well-known.

αψ(−a) = αψ(a),

αψ(a)8 = 1,

αψ(a)αψ(b)

αψ(1)αψ(ab)
= 〈a, b〉, a, b ∈ k×.

In particular, αψ(a)/αψ(1) is a 4-th root of unity for any a ∈ k×. For
each quadratic form Q � diag(q1, . . . , qm), we put

αQ(a) = αψ,Q(a) = αψ(q1a) · · ·αψ(qma).

Set
dQ = detQ, χQ(t) = 〈dQ, t〉.

Then we have
αQ(1)

αQ(t)
= χQ(t)

(
αψ(1)

αψ(t)

)m
.

The metaplectic group S̃pn(k) is the unique topological double cov-
ering of Spn(k). It is defined by a Rao’s 2-cocycle c(g1, g2) of Spn(k)

with values in {±1} (cf. Rao [11]). The group law of S̃pn(k) is given
by

(g1, ζ1)(g2, ζ2) = (g1g2, c(g1, g2)ζ1ζ2)

for g1, g2 ∈ Spn(k) and ζ1, ζ2 ∈ {±1}. The double covering S̃pn(k) →
Spn(k) splits over the subgroup Nn(k) by n(B) �→ (n(B), 1). If k is a
non-archimedean local field whose residual characteristic is not 2, there
is a unique splitting

Spn(o) → S̃pn(k)

g �→ (g, s(g)).
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We identify Nn(k) and Spn(o) with the images of the splitting, if there
is no fear of confusion.

Let k be a global field. For non-archimedean place v of k, we put
Kv = Spn(o). Let S be a finite set of places of k, which contains all
places above 2 and ∞. Put

Spn(A)S =
∏
v∈S

Spn(kv) ×
∏
v/∈S

Spn(ov).

Then the double covering ˜Spn(A)S → Spn(A)S is defined by the 2-
cocycle

∏
v∈S cv(g1,v, g2,v). For S1 ⊂ S2, we define the embedding

˜Spn(A)S1 → ˜Spn(A)S2 by

((gv)v, ζ) �→ ((gv)v, ζ
∏
v∈S2

v/∈S1

sv(gv)).

Here, sv : Spn(ov) → {±1} is the map which gives the splitting

Spn(ov) → S̃pn(kv). The global metaplectic group S̃pn(A) is defined by
the inductive limit

S̃pn(A) = lim−→
S

˜Spn(A)S,

where S extends over all finite subsets of places of k. It is well-known

that the covering S̃pn(A) → Spn(A) splits over Spn(k) uniquely. We
identify Spn(k) with the image of the splitting. Note that the image of
γ ∈ Spn(k) is given by (γ, 1) ∈ Spn(A)S for sufficiently large S.

Any representation of S̃pn(A) considered in this paper is a restricted
tensor product π = ⊗′

vπv, where πv is an irreducible admissible rep-

resentation of S̃pn(kv) for each v. For almost all v, πv is a class one
representation of Spn(kv) with a distinguished class one vector φv ∈ πv.
In other words,

π = lim−→
S

⊗
v∈S

πv.

To describe the action of g ∈ S̃pn(A), it is enough to write down the

action of ˜Spn(A)S on ⊗v∈Sπv. We write various formulae without ex-
plicitly mentioning S. This convention makes the formulae on the Weil

representation simple. Note that in the expression (g, ζ) ∈ S̃pn(A),
ζ ∈ {±1} depends on the choice of S.
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2. Fourier-Jacobi modules

In this section, k is a non-archimedean local field. The symbols
Spn(k), GLn(k) etc. will be simply denoted by Spn, GLn, etc. in this
section. We fix a non-trivial additive character ψ of k. For ξ ∈ k×, we
put χξ(t) = 〈ξ, t〉, where 〈 , 〉 is the Hilbert symbol.

The set Sn of symmetric matrices of degree n over k is identified with
the set of quadratic forms over k. We denote the set of non-degenerate
quadratic forms by Snd

n .
If H is a subgroup of Spn, the inverse image of H by the covering

S̃pn → Spn is denoted by H̃. For A ∈ GLn and ζ ∈ {±1}, we put

(m(A), ζ) =

((
A 0
0 tA−1

)
, ζ

)
∈ M̃n.

For B ∈ Snd
n , we define a character ψB of Sn by

ψB(z) = ψ(tr(Bz)).

We also regard ψB as a character of Nn by the isomorphism Sn � Nn.

For a smooth representation π of S̃pn, we put

WhB(π) = HomNn(π, ψB) � HomgSpn
(π, Ind

gSpn
Nn
ψB).

WhB(π) is called the space of degenerate Whittaker vectors of π with
respect to ψB. For wB ∈ WhB(π) and f ∈ π, the function

g �→ wB(π(g)f), g ∈ Spn

is called a degenerate Whittaker function associated to wB and f . The
space of degenerate Whittaker functions is denoted by WB(π).

We assume 0 < m ≤ n and n = m + n′. Let S ∈ Snd
m be a non-

degenerate symmetric matrix of size m. Put

v(x, y, z) =

⎛⎜⎜⎝
1m x
0 1n′

z y
ty 0

0 0
0 0

1m 0
− tx 1n′

⎞⎟⎟⎠ ∈ Spn

for x, y ∈ Mat(m,n′; k) and z − x · ty ∈ Sm. We define

V = Vn,m =
{
v(x, y, z) | x, y ∈ Mat(m,n′; k), z − x · ty ∈ Sm

}
,

X = Xn,m = {v(x, 0, 0) | x ∈ Mat(m,n′; k)} ,
Y = Yn,m = {v(0, y, 0) | y ∈ Mat(m,n′; k)} ,
Z = Zm = {v(0, 0, z) | z ∈ Sm} .
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Note that the quotient group

V/{v(0, 0, z) ∈ Z | tr(Sz) = 0}
is a Heisenberg group. On the group X, we give the Haar measure
dx =

∏
i,j dxij, where dxij is the self-dual Haar measure of the (i, j)-th

cordinate of X � Mat(m,n′; k). We regard S̃pn′ as a subgroup of S̃pn
by the embedding

((
A B
C D

)
, ζ

)
�→

⎛⎜⎜⎝
⎛⎜⎜⎝

1m 0
0 A

0 0
0 B

0 0
0 C

1m 0
0 D

⎞⎟⎟⎠ , ζ

⎞⎟⎟⎠ .

Let ψS be the character of Z defined by v(0, 0, z) �→ ψ(tr(Sz)). By
Stone-von Neumann theorem, there is a unique irreducible admissible
representation ωS of V on which Z acts by ψS. The representation ωS
extends to the Weil representation of the group V � S̃pn′, which we also
denote by ωS. The representation ωS can be realized on the Schwartz

space S(X). Set J = Jn,m = V � Spn′ The action of J̃ = V � S̃pn′ is
given by

ωS(v(x, y, z))φ(t) =φ(t+ x)ψ(tr(S(z + 2t ·ty + x ·ty)))

ωS ((m(A), ζ))φ(t) =ζm
(

αψ(1)

αψ(detA)

)m
χS(detA)| detA|m/2φ(tA)

ωS ((n(z), ζ))φ(t) =ζmψS(tz · tt)φ(t)

ωS ((wn′, ζ))φ(t) =ζmαS(1)−n
′| det 2S|n′/2

∫
X

φ(u)ψ(tr(2St · tu)) du.
Here

wn′ =

(
0 −1n′

1n′ 0

)
∈ Spn′.

The Weil representation ωS is unitary with respect to the inner product

(φ1, φ2) =

∫
X

φ1(t)φ2(t) dt, φ1, φ2 ∈ S(X).

Definition 2.1. For a smooth representation π of J̃ , we put

FJS(π) = (π ⊗ ωS)V .

Here, ( )V means the maximal quotient on which V acts in trivial way.
We call FJS(π) the Fourier-Jacobi module of π with index S.

Note that the functor π �→ FJS(π) is an exact functor from the

category of smooth representations of S̃pn to the category of smooth
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representations of J̃ , since V is unipotent. The image of f⊗ φ̄ ∈ π⊗ωS
on FJS(π) is denoted by [f ⊗ φ̄].

For a smooth representation π of S̃pn, we put FJS(π) = FJS((π|J̃)),
where π|J̃ is the restriction of π to J̃ . The isomorphism class of FJS(π)
depends only on the equivalence class of S ∈ Snd

m . In fact, the map
such that

[f ⊗ φ̄(x)] �→ [π(m(A) ⊕ �n′)f ⊗ φ(Ax)]

gives an isomorphism FJS(π) � FJS[A](π).
Note that for m = n, we have

WhB(π) = Hom(FJB(π),C)

for any B ∈ Snd
n .

When m = 1 and S = (ξ), we write ψS, ωS, and FJS(π) for ψξ, ωξ,
and FJξ(π), respectively.

Lemma 2.2. Assume that n = m1 +m2 +n′, S1 ∈ Snd
m1

, and S2 ∈ Snd
m2

.
Then there exists a canonical isomorphism

ρS1,S2 : FJS2(FJS1(π)) −→ FJS1⊕S2(π).

Proof. Put X0 = Mat(m1, m2; k), X1 = Mat(m1, n
′; k), and X2 =

Mat(m2, n
′; k). Then Xn,m1 = X0 ⊕ X1 and Xn,m1+m2 = X1 ⊕ X2.

Consider the multilinear map

π × S(X0) × S(X1) × S(X2) −→ FJS1⊕S2(π),

defined by

(f, φ̄0, φ̄1, φ̄2) �→ [π(φ̄0)f ⊗ (φ̄1 ⊗ φ̄2)],

where f ∈ π, φ0 ∈ S(X0), φ1 ∈ S(X1), and φ2 ∈ S(X2). Since the
induced map

π ⊗ S(X0) ⊗ S(X1) ⊗ S(X2) −→ FJS1⊕S2(π),

is Vn,m1-invariant, we have a map

FJS1(π) ⊗ S(X2) −→ FJS1⊕S2(π).

One can easily show that this map is Vn−m1,m2-invariant. Hence we
have a canonical map

ρS1,S2 : FJS2(FJS1(π)) −→ FJS1⊕S2(π).

Conversely, consider the map

π ⊗ S(X0) ⊗ S(X1) ⊗ S(X2) −→ FJS2(FJS1(π))

induced by

(f, φ̄0, φ̄1, φ̄2) �→ [[f ⊗ (φ̄0 ⊗ φ̄1)] ⊗ φ̄2].
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since this map is invariant under the action of X0, it factors through
the map

π ⊗ S(X0) ⊗ S(X1) ⊗ S(X2) −→ π ⊗ S(X1) ⊗ S(X2)

such that
f ⊗ φ̄0 ⊗ φ̄1 ⊗ φ̄2 �→ π(φ̄0)f ⊗ φ̄1 ⊗ φ̄2.

The induced map

π ⊗ S(X1) ⊗ S(X2) −→ FJS2(FJS1(π))

is Vn,m1+m2-invariant. Therefore we have a map

ρ′S1,S2
: FJS1⊕S2(π) −→ FJS2(FJS1(π)).

Clearly ρ′S1,S2
is the inverse map of ρS1,S2. Hence the lemma. �

Proposition 2.3. Let π be a smooth representation of S̃pn. Assume
S ∈ Snd

m , B′ ∈ Snd
n′ , B = S ⊕ B′ and wB ∈ WhB(π). Then

(i) The bilinear map π × S(X) → C defined by

(f, φ̄) �→ wB(π(φ̄)f).

is V -invariant.
(ii) Let FJS,B′(wB) : FJS(π) → C be the map induced from the bi-

linear form given in (i). Then we have FJS,B′(wB) ∈ WhB′(FJS(π)).

Proof. We prove (i). Note that

wB(π(φ̄)f) =

∫
x∈X

φ(x)wB(π(v(x, 0, 0)f)) dx.

It is easy to show that this map is X ⊕ Z-invariant. It is enough to
show the map is Y -invariant. Since

v(x, 0, 0) · v(0, y, 0) = v(0, y, x · ty + y · tx) · v(x, 0, 0),

we have

wB(π(ωS(v(0, y, 0)φ̄)π(v(0, y, 0)f)

=

∫
x∈X

φ(x)ψ(tr(2Sy · tx))wB(π(v(x, 0, 0)v(0, y, 0)f)) dx

=

∫
x∈X

φ(x)ψ(tr(2Sy · tx))wB(π(v(0, y, x · ty + y · tx) · v(x, 0, 0)f)) dx

Since v(0, y, x · ty + y · tx) ∈ Nn, we have

wB(π(v(0, y, x·ty+y·tx)·v(x, 0, 0)f)) = ψ(tr(2Sy·tx))wB(π(v(x, 0, 0)f)).

Hence the desired V -invariance follows. Now we prove (ii). Note that

ωS(n(z)g′)φ(x) = ψS(xz · tx)ωS(g′)φ(x)
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for z ∈ Sn′ ⊂ Spn′. On the other hand, we have

v(x, 0, 0)n

(
0 0
0 z

)
=m

(
1 x
0 1

)
n

(
0 0
0 z

)
=n

(
xz · tx xz
z · tx z

)
v(x, 0, 0)

It follows that

wB

(
π

(
v(x, 0, 0)n

(
0 0
0 z

))
f

)
= ψS(xz · tx)ψB′(z)wB(π(v(x, 0, 0))f).

Hence we have (ii). �

By Proposition 2.3, there exists a map

FJS,B′ : WhB(π) → WhB′(FJS(π))

such that

FJS,B′(wB)([f ⊗ φ̄]) = wB(π(φ̄)f).

If B′ is clear from the context, FJS,B′ is simply denoted by FJS. The
following proposition is a restatement of Proposition 2.3 in terms of
Whittaker functions.

Proposition 2.4. Let B = S ⊕ B′ be as in Proposition 2.3. If WB is
the Whittaker function associated to f ∈ π and wB ∈ WhB(π), then
the Whittaker function associated to [f ⊗ φ̄] ∈ FJS(π) and FJS(wB) is
given by ∫

x∈X
WB(v(x, 0, 0)g′)ωS(g′)φ(x) dx, g′ ∈ Spn′ .

Lemma 2.5. Suppose that S1 ∈ Snd
m1

(k), S2 ∈ Snd
m2

(k), B = S1 ⊕
S2 ⊕ B′ ∈ Snd

n (k), and wB ∈ WhB(π). Let ρS1,S2 : FJS2(FJS1(π)) →
FJS1⊕S2(π) be the canonical isomorphism defined in Lemma 2.2. Then
we have

FJS2,B′(FJS1,S2⊕B′(wB)) = FJS1⊕S2,B′(wB) ◦ ρS1,S2.

Proof. Let f , φ0 ∈ S(X0), φ1 ∈ S(X1), and φ2 ∈ S(X2) as in the
proof of Lemma 2.2. We calculate the Whittaker function associated to
FJS2(FJS1(wB)) and [[f ⊗φ0 ⊗ φ1]⊗ φ̄2]. For g′ ∈ Spn′, the Whittaker
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function is equal to∫
x0∈X0

∫
x1∈X1

∫
x2∈X2

WB

(
m
(

1 x0 x1
0 1 0
0 0 1

)
m
(

1 0 0
0 1 x2
0 0 1

)
g′
)

× ωS1(m ( 1 x2
0 1 ) g′)(φ0 ⊗ φ1)(x0, x1)ωS2(g

′)φ2(x2) dx0 dx1 dx2

=

∫
x0∈X0

∫
x1∈X1

∫
x2∈X2

WB

(
m
(

1 x0 x1+x0x2
0 1 x2
0 0 1

)
g′
)

× ωS1(g
′)(φ0 ⊗ φ1)(x0, x1 + x0x2)ωS2(g

′)φ2(x2) dx0 dx1 dx2

=

∫
x0∈X0

∫
x1∈X1

∫
x2∈X2

WB

(
m
(

1 x0 x1
0 1 x2
0 0 1

)
g′
)

× ωS1(g
′)(φ0 ⊗ φ1)(x0, x1)ωS2(g

′)φ2(x2) dx0 dx1 dx2

=

∫
x0∈X0

∫
x1∈X1

∫
x2∈X2

WB

(
m
(

1 0 x1
0 1 x2
0 0 1

)
g′m

(
1 x0 0
0 1 0
0 0 1

))
φ0(x0)

× ωS1⊕S2(g
′)(φ1 ⊗ φ2)

(
x1

x2

)
dx0 dx1 dx2,

which is the Whittaker function associated to FJS1⊕S2(wB) and [π(φ̄0)f⊗
(φ1 ⊗ φ2)]. Hence the lemma. �
Lemma 2.6. The homomorphism FJS : WhS⊕B′(π) → WhB′(FJS(π))
is an isomorphism.

Proof. By definition, WhB(π) = Hom(FJB(π),C). It follows that

WhB′(FJS(π)) = Hom(FJB′(FJS(π)),C) � Hom(FJB(π),C) = WhB(π).

�

3. degenerate principal series

Let μ : k× → C× be a (quasi-) character, and τ = B(μ, μ−1) be a
principal series of PGL2. We assume τ is unitary. Note that q−1/2 <
|μ(�)| < q1/2.

For each integer n, define a character μ(n) of M̃n by

μ(n)((m(A), ζ)) = ζm
(

αψ(1)

αψ(detA)

)n
μ(detA).

We sometimes regard μ(n) as a character of P̃n. We define an irreducible

admissible representation Πn = Π(n, τ) of Gn = S̃pn by

Π(n, τ) = Ind
gSpnfPn

(μ(n)).
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The representation Π(n, τ) is simply denoted by Πn, if there is no fear
of confusion.

Assume n = m+ n′ and S ∈ Snd
m . Put J = V · Spn′ and

η0 =

⎛⎜⎜⎝
0 0
0 1n′

−1m 0
0 0

1m 0
0 0

0 0
0 1n′

⎞⎟⎟⎠ .

Then Pnη0J is an open subset of Spn. Let X0 be the subspace of Π(n, τ)
which consists of all element f ∈ Π(n, τ) such that Supp(f) ⊂ P̃nη0J̃ .

For f ∈ X0, φ ∈ S(X), and g′ ∈ S̃pn′, we define an integral

R(g′; f, φ) =

∫
X

∫
Z

f(η0v(x, 0, z)g′)ωS(g′)φ(x)ψS(z) dz dx.

It is proved in [5] that R(g′; f, φ) ∈ Π(n′, τ ⊗ χS).

Lemma 3.1. The map

X0 ⊗ ωS −→ Π(n′, τ ⊗ χS)

f ⊗ φ̄ �→ R(∗; f, φ)

can be extended to a V -invariant surjective map Π(n, τ)⊗ωS → Π(n′, τ⊗
χS).

Proof. We regard S̃pm as a subgroup of S̃pn by the embedding

((
A B
C D

)
, ζ

)
�→

⎛⎜⎜⎝
⎛⎜⎜⎝

A 0
0 1m

B 0
0 0

C 0
0 0

D 0
0 1m

⎞⎟⎟⎠ , ζ

⎞⎟⎟⎠ .

Then the pullback of f ∈ Π(n, τ) can be considered as an element of
the induced representation

Ind
gSpmgPm
μ(n)| det |n′/2.

The integral ∫
Z

f(η0v(0, 0, z)g′)ψS(z) dz

is can be considered as a Whittaker integral for the element of

Ind
gSpmgPm
μ(n)| det |n′/2.

It is well-known that the Whittaker integral is absolutely convergent
for the induced representation

Ind
gSpmgPm
μ(n)| det |n′/2.
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for Re(s) � 0 and can be analytically continued to whole s ∈ C.
Therefore the integral

R(g′; f, φ) =

∫
X

[∫
Z

f(η0v(x, 0, z)g′)ψS(z) dz
]
ωS(g′)φ(x) dx

is well-defined. It is easy to see that the extended integral R(∗; f, φ)
belongs to Π(n′, τ ⊗ χS), whenever the integral is well-defined. �
Proposition 3.2. Assume that n = m + n′ and S ∈ Snd

m . Then there
exists an isomorphism

FJS(Π(n, τ)) � Π(n′, τ ⊗ χS)

In particular, we have an isomorphism

FJξ(Π(n, τ)) � Π(n− 1, τ ⊗ χξ)

for ξ ∈ k×.

Proof. It is enough to consider the case m = 1 and S = (ξ). Put
J = V · Spn−1. The double coset Pn\Spn/J has a complete set of
representatives {12n, η0}, where

η0 =

⎛⎜⎜⎝
0 0
0 1n−1

−1 0
0 0

1 0
0 0

0 0
0 1n−1

⎞⎟⎟⎠ .

Put

X0 =
{
f ∈ Π(n, τ) Supp(f) ⊂ P̃nη0J̃

}
,

X1 =Π(n, τ).

Then we have
X1/X0 � IndJ̃

J̃∩fPn
(μ(n))

as J̃-module. Since Z acts on X1/X0 trivially, we have ((X1/X0) ⊗
ωξ)V = (0). By the exactness of the functor FJW , it is enough to prove
(X0 ⊗ ωξ)V = Π(n− 1, τ ⊗ χξ). Note that f ∈ X0 is determined by the

restriction of f to J̃ . For f ∈ X0, we put

fψξ
(vg′) =

∫
Z

f(zvg′)ψξ(z)−1 dz (v ∈ V, g′ ∈ S̃pn).

Then for each g′ ∈ S̃pn, the function v �→ fψξ
(vg′) belongs to IndVY Zψ.

Since fψξ
(vg′) is right invariant by some open compact subgroup of J̃ ,∫

Z\V
fψξ

(ug′v)ϕ(v−1) dv = fψξ
(ug′)



18 TAMOTSU IKEDA

for some ϕ ∈ C(V ;ψ). For φ1, φ2 ∈ S(X), set

Φφ1,φ2(v) = (ωξ(v)φ1, φ2).

Then for u ∈ V , we have∫
Z\V

fψξ
(ug′v)Φφ1,φ2(v

−1) dv

=

∫
Z\V

fψξ
(vg′)Φφ1,φ2(g

′−1
v−1ug′) dv

=

∫
Z\V

fψξ
(vg′) · (ωξ(g′−1

v−1ug′)φ1, φ2) dv

=

∫
Z\V

fψξ
(vg′) · (ωξ(v−1ug′)φ1, ωξ(g

′)φ2) dv

=

∫
Z\V

fψξ
(vg′)Φωξ(ug′)φ1,ωξ(g′)φ2(v

−1) dv

=

∫
X

fψξ
(v(x, 0, 0)g′)ωξ(g′)φ2(x) dx · ωξ(ug′)φ1(0)

=R(g′; f, φ) · ωξ(ug′)φ1(0).

By Lemma 3.1, we have R(∗; f, φ) ∈ Π(n− 1, τ ⊗ χξ). Therefore, as a

representation of J̃ , we have

(X0)ψξ
⊂ Π(n− 1, τ ⊗ χξ) ⊗ ωξ.

It is easy to see R(∗; f, φ) 
≡ 0 for some f ∈ X0, φ ∈ S(X). It follows
that FJξ(Π(n, τ)) is a non-zero subspace of Π(n − 1, τ ⊗ χξ). Since
Π(n−1, τ ⊗χξ) is irreducible, we have FJξ(Π(n, τ)) � Π(n−1, τ ⊗χξ).
Hence the lemma. �

Proposition 3.3. For each B ∈ Snd
n , we have

dimC WhB(Πn) = 1.

Proof. We apply Proposition 3.2 to the case n = m. Then we have
WhB(Πn) = Hom(FJB(Πn),C) � C. �

Proposition 3.3 was proved by Karel [7] for degenerate principal series
of Spn. It is also easy to generalise the proof of [7] for metaplectic
groups.

We fix an isomorphism FJS(Π(n, τ)) � Π(n′, τ ⊗ χS). The we get a
V -invariant surjective map

βS : Π(n, τ) ⊗ S(X) → Π(n′, τ ⊗ χS).
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If B = S⊕B′, B′ ∈ Snd
n′ , and wB ∈ WhB(Π(n, τ)), then one can regard

FJS(wB) as a Whittaker vector for Π(n′, τ ⊗ χS). Then we have

FJS(wB)(βS(f ⊗ φ̄)) = wB(Πn(φ̄)f).

for f ∈ Πn = Π(n, τ) and φ ∈ S(X). If S = S1 ⊕ S2, the surjective
map ρS1,S2 : FJS2(FJS1(Πn)) → FJS(Πn) can be considered as an au-
tomorphism of Π(n′, τ ⊗ χS). Since Π(n′, τ) is irreducible, ρS1,S2 is a
non-zero scalar. Therefore we have

FJS2,B′ ◦ FJS1,S2⊕B′ = ρS1,S2 · FJS,B′,

where ρS1,S2 ∈ C× is a constant which does not depend on B′ ∈ Snd
n′ .

Lemma 3.4. Suppose that S ∈ Snd
m (k), B = S ⊕ B′ ∈ Snd

n (k), and
wB ∈ WhB(Πn). Set Πn = Π(n, τ) and Πn′ = Π(n′, τ ⊗ χS). Then we
have

FJS(wB ◦ Πn((1m ⊕ m(A), ζ)))

= ζm
(

αψ(1)

αψ(detA)

)m
χS(detA)| detA|m/2FJS(wB) ◦ Πn′((m(A), ζ)).

Proof. Note thatwB◦Πn((m(1m⊕A), ζ)) ∈ WhB[1m⊕A](Πn) = WhS⊕B′[A](Πn).
Let WB(g) = WB(g;wB, f) be the Whittaker function associated to
wB and f ∈ Πn. Then the Whittaker function associated to FJS(wB ◦
Πn((m(A), ζ))) and βS(f ⊗ φ̄) is equal to∫

x∈X
WB((m(1m ⊕ A), ζ)v(x, 0, 0)g′)ωS(g′)φ(x) dx

=

∫
x∈X

WB(v(xA−1, 0, 0) · (m(A), ζ)g′)ωS(g′)φ(x) dx

=| detA|m
∫
x∈X

WB(v(x, 0, 0) · (m(A), ζ)g′)ωS(g′)φ(xA) dx

=ζm
(

αψ(1)

αψ(detA)

)m
χS(detA)| detA|m/2

×
∫
x∈X

WB(v(x, 0, 0) · (m(A), ζ)g′)ωS((m(A), ζ)g′)φ(x) dx.

Hence the lemma. �

Lemma 3.5. Assume that A ∈ GLn, B ∈ Snd
n and B[A] = B. Then

we have

wB ◦ Πn((m(A), ζ)) = μ(n)((m(A), ζ)) · wB.
for any wB ∈ WhB(Πn).
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Proof. By Proposition 3.3, wB ◦ Πn((m(A), ζ)) = α · wB for some α.

Let PnwPn ⊂ Spn be the unique open coset. If Supp(f) ⊂ P̃nwP̃n, we
may assume

wB(f) =

∫
Nn

f(w · n(x))ψB(x) dx.

Then we have α = μ(n)((m(A), ζ)) by change of variables. �

Proposition 3.6. Let C ⊂ S̃pn be a compact set. Then there exists
W ∈ WB(Πn) such that W (g) 
= 0 for any g ∈ C.

Proof. Since WhB(Πn) 
= (0), there exists a Whittaker function W0

such that W0(1) 
= 0. Let U be an open subgroup of S̃pn such that W0

is invariant under right translation by gUg−1 for any g ∈ C. Choose a
finite subset g1, . . . , gm such that C ⊂ ⋃m

i=1 giU . Put Wi(g) = W0(gg
−1
i )

for i = 1, . . .m. Then Wi is invariant under right translation by U and
Wi(g) 
= 0 for g ∈ giU . Put X = 〈Wi | i = 1, . . .m〉. Then X is a
finite dimensional vector space over C and {W ∈ X |W |giU 
= 0} � X.
Hence the proposition. �

Put ν(z) = [zon+on : on] for z ∈ Sn. If z has elementary divisors z1,
. . ., zn, then ν(z) =

∏n
i=1 max(1, |zi|). The following lemma is obvious

from the definition of ν(z).

Lemma 3.7. For each open subgroup U of Sn, there exists a positive
constant L such that ψB|U 
≡ 1 for any B ∈ Snd

n with ν(B) > L.

For each g ∈ S̃pn with Iwasawa decomposition

g = (m(A), ζ)n(z)u, u ∈ S̃pn(o),

we put HB(g) = ν(B[A]).

Proposition 3.8. Let W ∈ WB(Πn) be a Whittaker function. Then

there exists a constant L > 0 such that W (g) = 0 for any g ∈ S̃pn such
that HB(g) > L.

Proof. Since W is right-finite by the action of the maximal compact

subgroup of S̃pn, it is enough to prove the case g ∈ M̃n.
Note that W is invariant under the right translation by some open

compact subgroup of Nn. On the other hand, we have

W ((m(A), ζ)n(z)) =ψB(Az · tA)W ((m(A), ζ))

=ψB[A](z)W ((m(A), ζ)).

The Proposition follows from Lemma 3.7. �
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Proposition 3.9. Let W ∈ WB(Πn) be a Whittaker function. Then
there exists a constant C > 0 such that

|W (g)| < C| detA|−n−1−ε.

for any g ∈ S̃pn with Iwasawa decomposition

g = (m(A), ζ)n(z)u, u ∈ S̃pn(o).

Proof. As in the last proposition, it is enough to prove the estimate

|W ((m(A), ζ))| < C| detA|−n−1−ε.

We may assume μ(x) = μ0(x)|x|s0 for some unitary character μ0 and

−1/2 < s0 < 1/2. Let HS(Ind
gSpnfPn
μ

(n)
0 | det |s) be the space of functions

f (s)(g) on S̃pn × C which satisfy the following conditions (1), (2), and
(3).

(1) For each s ∈ C, f (s) ∈ Ind
gSpnfPn
μ

(n)
0 | det |s.

(2) For each g ∈ S̃pn, the function s �→ f (s)(g) belongs to C[qs, q−s].
(3) There exists an open compact subgroup U ⊂ S̃pn such that

f (s)(gu) = f (s)(g) for any s ∈ C, g ∈ S̃pn, u ∈ U .

For f (s)(g) ∈ HS(Ind
gSpnfPn
μ

(n)
0 | det |s), put

wB(f (s)) =

∫
Nn

f (s) (wnn(z))ψB(z) dz.

Then wB(f (s)) is absolutely convergent for Re(s) > (n + 1)/2, and
can be analytically continued to whole s-plane. In particular, the map
f (s0) �→ wB(f (s0)) gives an element of Wh(Πn). For Re(s) > (n+ 1)/2,
we have

|wB(f (s)((m(A), ζ)))| ≤
∫
Nn

| f (s) (wnn(z)(m(A), ζ)) | dz

=

∫
Nn

|f (s)
(
(m(tA−1), ζ)wnn(Az · tA−1)

) | dz
=| detA|−s−((n+1)/2)

∫
Nn

|f (s) (wnn(z)) | dz.

Since the integral ∫
Nn

|f (s) (wnn(z)) | dz
is bounded on the vertical line Re(s) = ((n + 1)/2) + ε, there exists a
constant C > 0 such that

|wB(f (s)((m(A), ζ)))| < C| detA|−n−1−ε
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for Re(s) = ((n+ 1)/2) + ε.
Put

Mwn(f (s))(g) =

∫
Nn

f (s) (wnn(z)) dz.

Then Mwn(f (s)) is absolutely convergent for Re(s) > (n + 1)/2 and

Mwn(f (s)) ∈ Ind
gSpnfPn
ν

(n)
0 | det |−s for some character ν0. It is well-known

that there exists a polynomial γ(s) whose zeros lie on the points of

reducibility of Ind
gSpnfPn
μ

(n)
0 | det |−s such that

γ(s)Mwn(f (−s)) ∈ HS(Ind
gSpnfPn
ν

(n)
0 | det |s).

Note that the points of reducibility of Ind
gSpnfPn
μ

(n)
0 | det |s lie on the ver-

tical strip 1/2 ≤ |Re(s)| ≤ (n + 1)/2. It is also well-known that there
exists a function δ(s) ∈ C(qs) whose poles lie on the points of reducibil-

ity of Ind
gSpnfPn
μ

(n)
0 | det |−s such that

wB(Mwn(f (s))) = δ(s)wB(f (s)).

It follows that there exists a constant C ′ > 0 such that

|wB(f (s)((m(A), ζ)))| < C ′| detA|−n−1−ε

for Re(s) = −((n + 1)/2) − ε. Hence the proposition.
�

4. Siegel series and its functional equation

As before, let k be a non-archimedean local field. We assume that
the additive character ψ is of order 0.

For B ∈ Snd
n (k), put

DB =(−4)[n/2] det(B),

ξB =

{
〈DB, �〉 if k(

√
χDB

)/k is unramified,

0 otherwise.

Let dB be the conductor of the extension k(
√
DB)/k. We set

δB = (ordDB − orddB)/2,

where ord is the valuation of k.
We recall the theory of Siegel series (cf. Shimura [15], [16]). For

B ∈ Snd
n (k), we define a polynomial γ(B,X) ∈ Z[X] by

γ(B,X) =

{
(1 −X)(1 − qn/2ξBX)−1

∏n/2
i=1(1 − q2iX2) if n is even,

(1 −X)
∏(n−1)/2

i=1 (1 − q2iX2) if n is odd.
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Let f
(s)
0 be the function on Spn(k) defined by

f
(s)
0 (g) = | detA|s+((n+1)/2),

for

g = m(A)n(z)u, A ∈ GLn(k), z ∈ Sn, u ∈ Spn(o).

Then f
(s)
0 is a class one vector for Ind

Spn
Pn

| det |s. Set

wn =

(
0 −1n
1n 0

)
.

Consider the integral

b(B, s) =

∫
Nn(k)

f
(s−((n+1)/2))
0 (wnn(z))ψB(z) dz.

This integral is absolutely convergent for Re(s) � 0. Moreover, there
exists a polynomial F (B,X) ∈ Z[X] such that

b(B, s) = γ(B, q−s)F (B; q−s).

For a proof of this fact, see [16]. Let Sn(o)� be the dual lattice of
Sn(o). It is known that F (B,X) = 0 unless B ∈ Sn(o)�. Moreover, if
B ∈ Sn(o)�, then F (B, 0) = 1.

Proposition 4.1. The following functional equations hold.

(1) If n is even, then

F (B, q−n−1X−1) = (q(n+1)/2X)−2δBF (B,X).

(2) If n is odd, then

F (B, q−n−1X−1) = ζB(q(n+1)/2X)−ord(DB)F (B,X).

Here, the sign ζB ∈ {±1} of the functional equation is equal to
1 if and only if the quadratic form B has split rank [n/2]. In
other words,

ζB =

⎧⎪⎪⎨⎪⎪⎩1 if B � (DB) ⊕
(

0 1

1 0

)⊕[n/2]

,

−1 otherwise.

Katsurada [8] proved this proposition for k = Qp. Watanabe pointed
out that the functional equation can be proved by using representation
theory (see Remark after Proposition 3.1 of [8]). Here, we give a proof
along this line.

We prove only (1), since we do not need (2). It is possible to prove
(2) in a similar way. For the rest of this section, we assume n is even.
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To prove Proposition 4.1, we need several lemmas. For each Schwartz

function Φ ∈ S(Sn(k)), we define the Fourier transform Φ̂ of Φ by

Φ̂(x) =

∫
y∈Sn(k)

Φ(y)ψ(tr(xy)) dy.

Note that the product measure dx =
∏

i≤j dxij is not the self-dual
measure for this Fourier transform. In fact, we havê̂

Φ(x) = |2|−n(n−1)/2Φ(−x).
It is well-known that there exists some functional equation for the lo-
cal zeta integrals for a prehomogeneous vector space. Sweet [17] the
“gamma matrix” for the prehomogeneous vector space Sn for a non-
archimedean local field. Note that Sweet treated the case when n is
odd as well, although we treat only the case n is even.

For η ∈ k×, we set

Oη = {x ∈ Sn(k) |Dx ≡ (−1)n/2η mod (k×)2}.
(The set Oη is not a single orbit under the action of GLn for n > 1.)

If ω is a quasi-character of k×, then we set

ε′(s, ω, ψ) = ε(s, ω, ψ)
L(1 − s, ω−1)

L(s, ω)
,

Lemma 4.2 (Sweet). Assume that n is even. We have a functional
equation∫
Sn(k)

Φ(x)| det x|s−((n+1)/2) dx =
∑

η∈k×/(k×)2

c(s; η)

∫
x∈Oη

Φ̂(x)| det x|−s dx

where the function c(s; η) is defined by

c(s; η) =|2|−nsαψ(η)αψ(1)−1ε′(s + (1/2), χη, ψ)

× ε′(s− ((n− 1)/2), 1, ψ)−1

n/2∏
r=1

ε′(2s− n+ 2r, 1, ψ)−1.

Proof. See Sweet [17]. �

We set I(s) = Ind
Spn
Pn

| det |s. For f(g) ∈ I(s) and B ∈ Snd
n (k), put

M(s)f(g) =

∫
Sn(k)

f(wnn(x)g) dx.

WhB(s)f(g) =

∫
Sn(k)

f(wnn(x)g)ψ(trBx) dx.
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The integralsM(s) and WhB(s) are absolutely convergent for Re(s) �
0 and can be meromorphically continued to the whole complex plane.
If s is not a pole of M(s), then M(s)f(g) ∈ I(−s). Moreover, it is
known that WhB(s) is entire. It is also well-known that

M(s)f
(s)
0 =

L(s− ((n− 1)/2), 1)

L(s+ ((n + 1)/2), 1)

[n/2]∏
i=1

L(2s− n+ 2i, 1)

L(2s+ n+ 1 − 2i, 1)
f

(−s)
0 .

Lemma 4.3. The following functional equation holds:

WhB(−s) ◦M(s) = | detB|−sc(s; η0)WhB(s).

Here, η0 = (−1)n/2 detB.

Proof. Let m be a sufficiently large integer. We assume

B + pmSn(o) ⊂ {x ∈ Oη0 | | detx| = | detB|}.
Let Φ ∈ S(Sn(k)) be the characteristic function of B + pmSn(o). We
define fΦ ∈ I(s) such that

• Supp(fΦ) ⊂ Pn(k)wNn(k).

• f(wnn(x)) = Φ̂(x) for x ∈ Sn(k).
Then, we have Wh(s)fΦ =

̂̂
Φ(−B) 
= 0. On the other hand,M(s)fΦ(wn(x))

is equal to∫
y∈Sn(k)

fΦ(wnn(y)wnn(x)) dx =

∫
y∈Sn(k)

| det y|−s−((n+1)/2)Φ̂(x− y−1) dy

=

∫
y∈Sn(k)

| det y|s−((n+1)/2)Φ̂(x− y) dy.

By Lemma 4.2, this is equal to∑
η∈k×/(k×)2

c(s; η)

∫
y∈Oη

Φ(y)ψ(tr(xy))| det y|−s dy

=c(s; η0)| detB|−s
∫
y∈Sn(k)

Φ(y)ψ(tr(xy)) dy

=c(s; η0)| detB|−sΦ̂(x).

It follows that

Wh(−s)M(s)fΦ =

∫
x∈Sn(k)

M(s)fΦ(wnn(x))ψB(x) dx

=c(s; η0)| detB|−s ̂̂Φ(−B).

Hence the lemma. �
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Proof of Proposition 4.1 (1). Note that c(s; η0) is equal to

|2|−ns|dB|sL(−s + (1/2), χDB
)

L(s+ (1/2), χDB
)

L(s− ((n− 1)/2), 1)

L(−s + ((n+ 1)/2), 1)

×
n/2∏
i=1

L(2s− n+ 2i, 1)

L(−2s + n+ 1 − 2i, 1)
.

By Lemma 4.3, we have

γ(B, qs−((n+1)/2))F (B; qs−((n+1)/2))
L(s− ((n− 1)/2), 1)

L(s+ ((n+ 1)/2), 1)

×
n/2∏
i=1

L(2s− n+ 2i, 1)

L(2s + n+ 1 − 2i, 1)

=c(s; η0)| detB|−sγ(B, q−s−((n+1)/2))F (B; q−s−((n+1)/2)).

Since

γ(B, qs−((n+1)/2)) =L(−s+ ((n + 1)/2), 1)−1L(−s + (1/2), χDB
)

×
n/2∏
i=1

L(−2s+ n + 1 − 2i, 1)−1,

γ(B, q−s−((n+1)/2)) =L(s+ ((n+ 1)/2), 1)−1L(s + (1/2), χDB
)

×
n/2∏
i=1

L(2s+ n+ 1 − 2i, 1)−1,

the functional equation of F (B;X) follows. �
Proposition 4.4. Assume n is even. Set

F̃ (B,X) = X−δBF (B, q−(n+1)/2X).

Then we have F̃ (B,X−1) = F̃ (B,X).

Proof. This is a restatement of Proposition 4.1 (1). �

5. The unramified Whittaker functions

In this section, we assume 2 � q. Let τ � B(μ, μ−1) be an unramified
unitary principal series with Satake parameter α = μ(�). Set ε =

〈−1, �〉. For B ∈ Snd
n , we define the function W ur(g) on S̃pn as follows.

Consider the Iwasawa decomposition

g = n(z)(m(A), ζ)u, n(z) ∈ Nn, A ∈ GLn, u ∈ Spn(o)
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of g ∈ S̃pn. Then we set

W ur
B (g) =ψB(z)| det(B[A])|(n+1)/4

×
{
F̃ (B[A], εn/2α) if 2 |n, ,

ζαψ(detA)αψ(1)−1F̃ ((1) ⊕ B[A], ε(n+1)/2α) if 2 � n.

Here, F̃ (B,X) is as in Proposition 4.4.

Proposition 5.1. The function W ur
B (g) is a class one Whittaker func-

tion of Π(n, τ).

Proof. We first consider the case when n is even. For B ∈ Snd
n and

Re(s) � 0,

ψB(z)| det(B[A])|(n+1)/4F̃ (B[A], εn/2α) =γ(B, q−s−((n+1)/2))−1qδB ·s

×
∫
Nn(k)

f
(s)
0 (wnn(z)g)ψB(z) dz

is a class one Whittaker function for Ind
Spn
Pn

| det |s. By analytic contin-

uation, W ur
B (g) is a class one Whittaker function for Ind

Spn
Pn
μ(n). This

proves the proposition for the case n is even.

When n is odd, put Π̂ = Π(n+ 1, τ). Then FJψ(Π̂) = Π(n, τ). Then
one can easily show

W ur
B (g) = | detB|−1/4

∫
X

W ur
(1)⊕B(v(x, 0, 0)g)ωψ(g)φ0(x) dx.

Here, W ur
(1)⊕B is the normalized Whittaker function for Π̂ and φ0 ∈

S(X) = S(kn) is the characteristic function of on. It follows thatW ur
B (g)

is a class one Whittaker function for Π(n, τ) by Proposition 2.4. �

We call W ur
B the normalized Whittaker function. Fix a class one

vector f 0 ∈ Π(n, τ). The Whittaker vector w0
B ∈ WhB(Πn) such that

W ur
B (g) = w0

B(Πn(g)f
0) is called the normalized Whittaker vector. It

is easily seen that

w0
B ◦ Πn((m(A), ζ)) =

{
w0
B[A] if n is even,

ζαψ(detA)αψ(1)−1w0
B[A] if n is odd

for A ∈ GLn and ζ ∈ {±1}.
Recall that B ∈ Sndn (o) is called maximal, if for A ∈ Matn(k), B[A] ∈

Sn(o) implies A ∈ Matn(o). Note that 0 ≤ δB ≤ 1 if B is maximal.
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Lemma 5.2. Assume n is even and B ∈ Snd
n (o) is maximal. Then

F (B,X) =

{
1 if δB = 0,

1 − ξB(qn/2 + q(n/2)+1)X + qn+1X2 if δB = 1.

In other word, we have

F̃ (B,X) =

{
1 if δB = 0,

−ξB(q−1/2 + q1/2) +X +X−1 if δB = 1.

Proof. We denote the Minkowski-Hasse invariant of B by ηB. It is
enough to prove F (B, ξBq

−n/2) = 0 for δB = 1, by the functional
equation of F (B,X). Assume B is maximal and δB = 1. For an
integer m and a non-degenerate B1 ∈ Sn(o), we denote by Nm(B1, B)
the number of x ∈ Mat2n(o)/pmMat2n(o) such that txB1x ≡ B mod
pm. Let B1 ∈ Sn(o) ∩ GLn(o) be an element such that detB1 ≡ detB
mod (k×)2. Then we have ξB1 = ξB, and ηB1 = −ηB. Then Lemma 14.
8 of Shimura [16] implies

γ(B, ξBq
m)F (B, ξBq

m) = q−mn(n−1)/2Nm(B1, B)

for sufficiently large m. Note that γ(B, ξBq
m) 
= 0. For sufficiently

large m, we have Nm(B1, B) = 0, since B′ ≡ B mod pm, tB′ = B′

implies ηB = η′B. �

Lemma 5.3. Let m and n′ be even non-negative integers. Assume that
n = m + n′, B = S ⊕ B′, S ∈ Sm ∩ GLm(o), and B′ ∈ Snd

n′ . Then we
have

F (B,X) =F (B′, ξSX),

F̃ (B,X) =ξ δBS F̃ (B′, ξSX).

Proof. We shall prove the second identity. Let W ur
B (g) be the normal-

ized Whittaker function for Π(n, τ). We calculate the integral

W ′(g) = | detB|−m/4
∫
x∈X

W ur
B (v(x, 0, 0)g)ωS(g)φ0(x) dx
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for g ∈ Spn′ . By Proposition 2.4,W ′ is a class one element of WB′(Π(n′, τ⊗
χS)). It follows that W ′(g) = u ·W ur

B′(g) for some u ∈ C×. We have

W ′(m(A)) =| detB|−m/4
∫
X

W ur
B (v(x, 0, 0)m(A))ωS(m(A))φ0(x) dx

=χS(detA)

(
αψ(1)

αψ(detA)

)n
| detB|−m/4| detA|m/2

×
∫
X

W ur
B (m(A)v(xA, 0, 0))φ0(xA) dx

=ξ
ord(detA)
S | det(B′[A])|−m/4

∫
X

W ur
B (m(A)v(x, 0, 0))φ0(x) dx

=ξ
ord(detA)
S | det(B′[A])|−m/4W ur

B (m(A))

=ξ
ord(detA)
S | det(B′[A])|(n+1)/4F̃ (S ⊕ B′[A], ξSε

n′/2α).

It follows that there exists a constant u ∈ C× such that

ξ
ord(detA)
S F̃ (S ⊕ B′[A], ξSε

n′/2α) = uF̃ (B′[A], εn
′/2α)

for any A ∈ GLn. Choosing A ∈ GLn such that B′[A] is maximal,

we have u = ξ δBS by Lemma 5.2. Hence the second identity. The first
identity follows immediately from the second identity. �

Note that Kohnen [9] has proved a special case of Lemma 5.3 by
different method.

Proposition 5.4. Assume that n = m + n′, B = S ⊕ B′, S ∈ Sm ∩
GLm(o), and B′ ∈ Snd

n′ . Let φ0 ∈ S(X) be the characteristic function
of X(o) = Matmn′(o). Then we have∫

x∈X
W ur
B (v(x, 0, 0)g)ωS(g)φ0(x) dx = | detB′|m/4(εmnξS)δBW ur

B′(g)

for g ∈ S̃pn′. Here, W ur
B and W ur

B′ are the normalized Whittaker func-
tions for Π(n, τ) and Π(n′, τ ⊗ χS), respectively.

Proof. Both sides are unramified Whittaker functions for Π(n′, τ⊗χS).
Therefore the left hand side is equal to uW ur

B′(g) for some u ∈ C×. By
Lemma 5.3, one can easily show that u = (εmnξS)

δB . �
Suppose that n = m + n′, B = S ⊕ B′, S ∈ Sm ∩ GLm(o), and

B′ ∈ Snd
n′ . Let f 0 ∈ Π(n, τ) and f ′0 ∈ Π(n′, τ⊗χS) be the distinguished

class one vectors. We normalize βS : Π(n, τ) ⊗ S(X) → Π(n′, τ ⊗ χS)
by βS(f

0 ⊗ φ̄0) = f ′0. For B = S ⊕B′, B′ ∈ Snd
n′ , we consider the map

FJS : WhB(Π(n, τ)) → WhB′(Π(n′, τ ⊗ χS), which is given by

FJS(wB)(βS(f ⊗ φ̄)) = wB(Πn(φ̄)f).
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Then we have

FJS(w0
B) = | detB|m/4(εmnξS)δBw0

B′.

If S = S1 ⊕ S2 ∈ Snd
m ∩ GLm(o), B = S ⊕ B′, and B′ ∈ Snd

n′ , then

FJS2 ◦ FJS1 = FJS.
Lemma 5.5. There exists a positive constant M depending only on n
such that

|W ur
B (12n)| < | detB|−M .

Proof. As in [6], one can show that the coeffiicients of F (B,X) is at
most qM

′ord(DB) for some constant M ′ > 0 which depends only on n.
Since q−1/2 < α < q1/2, we have

W ur
B (12n)| =| detB|−1/4|F̃ (B, α)|

<| detB|−1/4(degF (B,X) + 1)qM
′ord(detB) · q(1/4)degF (B,X)

<| detB|−M ′−2.

�

6. Archimedean local theory

In this section, we consider the case k = R. We assume the additive
character ψ of R is of the form ψ(x) = e(ax) = exp(2πa

√−1x) for
a > 0. It is well-known that the Weil constant αψ(t) is equal to e(1/4)
if t > 0, and e(−1/4), if t < 0. Recall that the symplectic group Spn(R)
acts on the Siegel upper half space Hn by

g(Z) = (AZ +B)(CZ +D)−1, g =

(
A B
C D

)
.

The automorphy factor j(g, Z) is defined by j(g, Z) = det(CZ + D).
The stabilizer of i =

√−1 · 1n ∈ Hn can be identified with the unitary
group U(n) by the isomorphism Ci +D �→ (

D C
−C D

)
.

The real metaplectic group S̃pn(R) acts on the Siegel upper half space

Hn through Spn(R). The inverse image of U(n) in S̃pn(R) is denoted

by Ũ(n). There exists a unique automorphy factor j(g̃, Z)1/2 such that

(j(g̃, Z)1/2)2 = j(g, Z), where g is the image of g̃ ∈ S̃pn(R) in Spn(R).

For u ∈ U(n), put det u = e
√−1θ, −π ≤ θ < π. Then we have

j((u, ζ), i)−1/2 = ζe−
√−1θ/2.

We denote the irreducible lowest weight representation of S̃pn(R)

with lowest K-type (det)λ by D(n)
λ .
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Let τ be a discrete series representation of PGL2(R) with minimal

weight ±2κ. We set Πn = Π(n, τ) = D(n)
κ+(n/2). For B ∈ Sn(R)+, it is

known that dimC WhB(Πn) = 1. (See Yamashita [20]). Note that Πn

is a genuine representation of S̃pn(R) if and only if n is odd.

We define a function W 0
B on S̃pn(R) by

W 0
B(g)

= e(Bz) det(B[A])(2κ+n)/4exp(−2πa · tr(B[A]))j(ũ, i)−(2κ+n)/2,

for g = n(z)(m(A), 1)ũ, z = tz, A ∈ GLn(R)+, ũ ∈ Ũ(n). It is well-
known that W 0

B generates a representation isomorphic to Πn.

Lemma 6.1. For B ∈ Sn(R)+ and A ∈ GLn(R), we have

W 0
B((m(A), ζ)g) = ζn

(
αψ(1)

αψ(detA)

)2κ+n

W 0
B[A](g).

Proof. If detA > 0, then one can easily show the equality. Assume now
detA < 0. Choose U ∈ O(n) such that detU = −1 and B[A][U ] =
B[A]. Then we have

W 0
B((m(A), ζ)g) =W 0

B((m(AU−1), 1)(m(U), ζ)g)

=W 0
B[A](m(U), ζ)g).

Observe that (m(U), ζ) ∈ Ũ(n) and

j((m(U), ζ))−(2κ+n)/2 = ζn
(

αψ(1)

αψ(detA)

)2κ+n

.

Hence the lemma. �
We denote the space of lowest weight vectors of Π(n, τ) by Π(n, τ)lwt.

We fix a distinguished vector f 0 ∈ Π(n, τ)lwt. Then there exists a
Whittaker vector w0

B ∈ WhB(Πn) such that the Whittaker function
associated to w0

B and f 0 ∈ Πn is equal to W 0
B(g). Then by Lemma 6.1,

we have the following lemma.

Lemma 6.2. Let w0
B ∈ WhB(Πn) be as above. Then we have

w0
B ◦ Πn((m(A), ζ)) = ζn

(
αψ(1)

αψ(detA)

)2κ+n

w0
B[A]

for any B ∈ Sn(R)+ and A ∈ GLn(R). In particular, if B[A] = B,
then we have

w0
B ◦ Πn((m(A), ζ)) = ζn(detA)κ

(
αψ(1)

αψ(detA)

)n
w0
B.
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Assume n = m + n′, S ∈ Sm(R)+, B′ ∈ Sn′(R)+, and B = S ⊕ B′.
Put X = Matmn′(R). We define φ0

S ∈ S(X) by φ0
S(x) = e−2πa·tr(S[x]).

Note that φ0
S is a lowest weight vector of S(X) as a representation of

S̃pn′. We set S(X)lwt = C · φ0
S. The following lemma can be proved by

direct calculation.

Lemma 6.3. Assume n = m + n′, S ∈ Sm(R)+, B′ ∈ Sn′(R)+, and
B = S ⊕ B′. Then we have∫

x∈X
W 0
B(v(x, 0, 0)g′)ωS(g′)φ0

S(x) dx = | detB|m/4e−2πatr(S)W 0
B′(g′).

We also fix a distinguished vector f ′0 ∈ Π(n′, τ)lwt and obtain a
Whittaker vector w0

B′ ∈ WhB′(Πn′). We define a C-linear map

βS : Π(n, τ)lwt ⊗ S(X)lwt −→ Π(n′, τ)lwt

by

βS(f
0 ⊗ φ0

S) = f ′0.
For B = S ⊕ B′, B′ ∈ Sn′(R)+, we define the map

FJS : WhB(Π(n, τ)) → WhB′(Π(n′, τ ⊗ χS)

such that the Whittaker function WB′(g′) associated to FJS(wB) and
βS(f ⊗ φ̄) is given by

WB′(g′) =

∫
X

WB(v(x, 0, 0)g′)ωS(g′)φ(x) dx

for wB ∈ WhB(Π(n, τ)), f ∈ Π(n, τ)lwt, and φ ∈ S(X)lwt. Here, WB is
the Whittaker function associated to f and wB.

Lemma 6.4. Suppose that S ∈ Sm(R)+, B′ ∈ Sn′(R)+, and B =
S ⊕B′ ∈ Sn(R)+.

(1) We have

FJS(w0
B) = | detB|m/4e−2πatr(S)w0

B′ .

(2) If S = S1 ⊕S2 ∈ Sm(R)+, B = S⊕B′, and B′ ∈ Sn′(R)+, then

FJS2 ◦ FJS1 = (detS1)
m2/4FJS.

(3) For A ∈ GLn′(R) and wB ∈ WhB(Πn), we have

FJS(wB ◦ Πn((m(1m ⊕ A), ζ)))

= ζm
(

αψ(1)

αψ(detA)

)m
χS(detA)| detA|m/2FJS(wB) ◦ Πn′((m(A), ζ)).

Proof. (1) follows from the definition of FJS. (2) follows from (1). (3)
can be proved in the same way as Lemma 3.4. �
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Remark 6.5. Yamashita’s theorem [20] is valid for lowest weight mod-

ules of S̃pn(R). It is also possible to avoid his theorem by replacing
WhB(Πn) by C · w0

B.

7. Statement of the main theorem

From now on, k is a totally real number field with [k : Q] = d. The
subset of totally positive elements of k is denoted by k×+ . We fix an
additive character ψ of A/k. We assume ψv(x) = exp(2π

√−1avx) for
some av > 0 for each v ∈ S∞.

Let τ � ⊗vτv be an irreducible cuspidal automorphic representation
of PGL2(A). The local root number ε(1/2, τv) is given by

ε(1/2, τv) =

{
μv(−1) v /∈ S∞,
(−1)κv v ∈ S∞.

The global root number ε(1/2, τ) is defined by

ε(1/2, τ) =
∏
v

ε(1/2, τv).

We assume that τ satisfies the following conditions (A1), (A2), and
(A3).

(A1) For each v /∈ S∞, τv is a principal series B(μv, μ
−1
v ).

(A2) For each v ∈ S∞, τv is a discrete series representation with
lowest weight ±2κv.

(A3) ε(1/2, τ) = 1.

Recall that we set

Πn,v = Π(n, τv) = Ind
Spn
Pn

(μ(n)
v )

for each v /∈ S∞. When v ∈ S∞, we let Πn,v = Π(n, τv) be the lowest

weight representation of S̃pn(R) with lowest Ũ(n)-type (det)κv+(n/2).
We consider the restricted tensor product

Πn = Π(n, τ) =
⊗
v

′
Π(n, τv).

We define the multiplicity mauto(Πn) by

mauto(Πn) = dimC Hom
Ŝpn(A)

(Πn,Acusp(Spn(k)\S̃pn(A))).

Here, Acusp(Spn(k)\S̃pn(A)) is the space of cusp forms on Spn(k)\S̃pn(A).
Then the main result of this paper is as follows.
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Theorem 7.1. Let τ be an irreducible cuspidal automorphic represen-
tation of PGL2(A) which satisfies the conditions (A1), (A2), and (A3).
Then we have

mauto(Πn) = 1.

Remark 7.2. Let τ be an irreducible cuspidal automorphic representa-
tion of PGL2(A) which satisfies the conditions (A1) and (A2). It is
easy to show that mauto(Πn) = 0 if ε(1/2, τ) = −1. See the remark
after Lemma 11.4.

8. The Shimura correspondence: the case n = 1

The correspondence between modular forms of integral weight and
those of half-integral weight was first considered by Shimura [14]. Wald-
spurger ([18], [19]) treated the Shimura correspondence in terms of au-
tomorphic representations. In this section, we review Waldspurger’s
theory of the Shimura correspondence.

Let A0 be the space of genuine cusp forms of SL2(k)\S̃L2(A). The
space of cusp forms orthogonal to the Weil representations associated
to one-dimensional quadratic forms is denoted by A00. Then the mul-
tiplicity of an irreducible genuine cuspidal automorphic representation
in A00 is one ([19], Theorem 3).

Let σ be an irreducible genuine cuspidal automorphic representation
in A00. A non-trivial additive character ψξ of A/k is called a missing
character of σ, if ∫

k\A

f(n(x)g)ψξ(x) dx = 0

for any f ∈ σ and g ∈ S̃L2(A). We denote by θ(σ, ψ) the theta cor-
respondence of σ for the dual pair SL2 × PGL2. Then the theta cor-
respondence θ(σ, ψ−1

ξ ) = 0 if and only if ψξ is a missing character
([18], Proposition 26). Moreover, if ψξ is not a missing character, then
θ(σ, ψ−1

ξ ) ⊗ χξ does not depend on the choice of ξ ∈ k× ([18], Proposi-
tion 28).

Put Wd(σ, ψ) = θ(σ, ψ−1
ξ )⊗χξ. Denote by L(s, σ;ψ) the L-function

L(s,Wd(σ, ψ)). Then ψξ is not a missing character for σ if and only if
the following conditions (1) and (2) hold ([19], Proposition 21):

(1) Whψξ,v
(σv) 
= (0) for any v.

(2) L(1/2, σ;ψξ) 
= 0.

We also need the following theorem.
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Theorem 8.1 (Waldspurger [19], Theorem 4). Let τ be an irreducible
cuspidal automorphic representation of PGL2(A) such that ε(1/2, τ) =
1. Let Σ be a finite set of places of k and δ > 0 a positive number.
Then there exists an element ξ ∈ k× such that the following conditions
(1) and (2) hold:

(1) |ξ − 1|v < δ for each v ∈ Σ.
(2) L(1/2, τ ⊗ χξ) 
= 0.

Now let τ be an irreducible cuspidal automorphic representation of
PGL2(A) which satisfies (A1), (A2), and (A3). By Theorem 8.1, there
exists an element ξ ∈ k×+ such that L(1/2, τ ⊗ χξ) 
= 0. Put σ =
θ(τ ⊗ χξ, ψξ). Then σ is isomorphic to Π(1, τ). Thus we obtain the
following proposition.

Proposition 8.2. Let τ be an irreducible cuspidal automorphic repre-
sentation of PGL2(A) which satisfies (A1) and (A2), and (A3). Then
we have mauto(Π1) = 1. Moreover, for ξ ∈ k×+, ψξ is a missing charac-
ter of Π1 if and only if L(1/2, τ ⊗ χξ) 
= 0.

9. The Saito-Kurokawa lift: the case n = 2

Recall that the simplectic similitude group GSp2 is defined by

GSp2(k) =

{(
A B
C D

)
∈ Mat2n(k)

A· tB = B · tA, C · tD = D· tC,
A· tD −B · tC = m1n, m ∈ k×

}
.

For t ∈ k×, we set

d(t) =

(
t · 12 0

0 12

)
.

The Siegel parabolic subgroup P̌2(k) is given by

P̌2(k) = M̌2(k)N2(k),

M̌2(k) = {d(t)m(A) | t ∈ k×, A ∈ GL2(k)}.
There exists a exact sequence

1 → k× → GSp2(k) → SO(3, 2)(k) → 1.

By this exact sequence, we identify PGSp2(k) = GSp2(k)/k
× with

SO(3, 2)(k).
Now we consider the theta correspondence between SL2 and SO(3, 2).

Let σ be an irreducible genuine cuspidal automorphic representation in
A00. We denote by Θ(σ, ψ) the theta correspondence of σ for the dual

pair S̃L2 × SO(3, 2).
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The following theorem is due to Piatetski-Shapiro (cf. [10], Theorem
5.1, Theorem 5.2, Theorem 6.1, and Theorem 6.2)

Theorem 9.1 (Piatetski-Shapiro [10]). Θ(σ, ψ) is always a non-zero
representation. Θ(σ, ψ) is cuspidal if and only if ψ−1 is a missing char-
acter of σ. In this case, Θ(σ, ψ) is an irreducible cuspidal automorphic
representation of PGSp2(A).

Let τ be an irreducible cuspidal automorphic representation of PGL2(A)
which satisfies (A1), (A2), and (A3). By Proposition 8.2, there exists

an irreducible cuspidal automorphic representation σ of S̃L2(A) such
that σ � Π(1, τ). Then we have Wd(σ, ψ−1) � τ ⊗χ−1. Note that ψ−1

is a missing character for σ, since Whψ−1
v

(σ) = (0) for v ∈ S∞. Put

Π̌ = Θ(σ, ψ). Then Π̌ is an irreducible cuspidal automorphic represen-
tation of GSp2(A) with trivial central character by Theorem 9.1.

If v < ∞, then Π̌v is isomorphic to the representation Σ induced
from the character

d(t)m(A) �→ μ(2)
v (t)−1μ(2)

v (detA)

of the Siegel parabolic subgroup P̌2(kv) (see [13], p.236). It is known
that the pullback of Π̌v to Sp2(kv) is isomorphic to Π(2, τv) (see [12]
Proposition 5.4).

For v ∈ S∞, the pullback of Π̌v to Sp2(kv) is not irreducible. It

is isomorphic to the direct sum of D(2)
κv+1 and its contragredient D̄(2)

κv+1

(see [13] Lemma 4.1).
It follows that the restriction of Π to Sp2(A) is given by

Π|Sp2(A) =

(⊗
v/∈S∞

Π(2, τ)v

)⊗(⊗
v∈S∞

(
D(2)
κv+1 ⊕ D̄(2)

κv+1

))
.

We claim each irreducible component Π′ is an automorphic represen-
tation of Spn(A). Put

T =
⋃
f∈Π′

Supp(f)

Then it is enough to prove Sp2(A) ⊂ T . In fact, T is right-invariant
under

∏
v/∈S∞ GSp2(kv) ×

∏
v∈S∞ GSp2(R)+ and left-invariant under

GSp2(k). Therefore T = GSp2(A) by weak approximation.
Thus we obtain the following proposition.

Proposition 9.2. Let τ be an irreducible cuspidal automorphic rep-
resentation of PGL2(A), which satisfies (A1), (A2), and (A3). Then
Π(2, τ) is a cuspidal automorphic representation.
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The following lemma will be used later.

Lemma 9.3. (1) Let v be a finite place of k. If t · B[A] = B for
t ∈ k×v , B ∈ Snd

2 (kv), and A ∈ GL2(kv), then we have

wB ◦ Π̌v(d(t)m(A)) = μ(2)
v (t detA)wB.

for any wB ∈ WhB(Π̌v).
(2) Let v be an infinite place of k. If t · B[A] = B for t ∈ R×

+,
B ∈ S2(R)+, and A ∈ GL2(R), then we have

wB ◦ Π̌v(d(t)m(A)) =

(
detA

| detA|
)κv+1

wB.

for any wB ∈ WhB(Π̌v).
(3) If v /∈ S, then we have

w0
t·B[A] = w0

B ◦ Π̌v(d(t)m(A))

for any B ∈ Snd
2 (kv), t ∈ k×v , and A ∈ GL2(kv).

Proof. One can prove (1) and (2) as in the proof of Lemma 3.5 and
Lemma 6.2, respectively. Now we prove (3). Define a function W̌ ur

B (g)
on GSp2(kv) by

W̌ ur
B (n(z)d(t1)m(A1)u) = ψB(z)| det(t1 · B[A1])|3/4F̃ (t1 · B[A1], εα).

for

n(z) ∈ N2(kv), t1 ∈ k×v , A1 ∈ GL2(kv), u ∈ GSp2(ov).

here, ε and α are as in §5. Then as in the proof of Proposition 5.1, one
can show that W̌ ur

B (g) is a Whittaker function for Π̌v. Then (3) follows
from the equation

W̌ ur
B (d(t)m(A)g) = W̌ ur

t·B[A](g).

�

10. Some results on quadratic forms

Let B be a non-degenerate quadratic form defined over k. Recall
that the Minkowski-Hasse theorem says that B represents an element
ξ ∈ k over k if and only if B represents ξ over kv for any place v of k.

It is well-known that an isotropic quadratic form represents any el-
ement. If B is an anisotropic quadratic form of rank 4 over a non-
archimedean local field kv, then any element ξ ∈ k×v is represented
by B. If B is an anisotropic quadratic form of rank 3 over a non-
archimedean local field kv, then ξ ∈ k×v is represented by B if and only
if ξ /∈ −(detB) · (k×v )2.
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Lemma 10.1. Assume that n ≥ 3. Suppose that B1, B2, B3 ∈ Sn(k)+.
Then there exists an element ξ ∈ k×+ such that ξ ↪→ B1, B2, B3.

Proof. Let S be the set of non-archimedean places v such that at least
one of B1, B2 and B3 are anisotropic over kv. Then S is a finite set
of non-archimedean places. For each v ∈ S, there exists an element
ξv ∈ k×v which is represented by B1, B2, and B3 over kv, since [k×v :
(k×v )2] ≥ 4. By the independence of the valuations, we can choose a
totally positive element ξ such that ξ ↪→ B1, B2, B3 over kv, v ∈ S. �
Definition 10.2. The set of B ∈ Sn(k)+ such that L(1/2, τ ⊗χB) 
= 0
is denoted by Sn(k)+

τ .

Remark 10.3. Suppose that n = m+n′, S ∈ Sm(k)+, and B′ ∈ Sn′(k)+.
Then S ⊕ B′ ∈ Sn(k)+

τ if and only if B′ ∈ Sn′(k)+
τ⊗χS

.

Lemma 10.4. Assume that n ≥ 3. Suppose that ξ1, ξ2 ↪→ B ∈ S+
n (k)τ .

Then there exist η ∈ k×+, S1, S2 ∈ S2(k)
+ and T ∈ Sn(k)+

τ satisfying
the following conditions (K1), (K2), (K3), and (K4).

(K1) ξ1, η ↪→ S1.
(K2) ξ2, η ↪→ S2.
(K3) S1, S2 ↪→ B.
(K4) S1, S2, (ξ1) ⊕ (ξ2) ↪→ T .

Proof. We first consider the case n = 3. Choose vectors x, y ∈ k3 such
that B[x] = ξ1, B[y] = ξ2. If B(x, y) = 0, then B is equivalent to
(ξ1) ⊕ (ξ2) ⊕ (ξ3) for some ξ3 ∈ k×+. In this case, we can put η = ξ3,
S1 = (ξ1) ⊕ (ξ3), S2 = (ξ2) ⊕ (ξ3), and T = B.

Assume that B(x, y) 
= 0. For a vector z ∈ k3, we set

η =B(z, z),

S1 =

(
B(x, x) B(x, z)
B(x, z) B(z, z)

)
S2 =

(
B(z, z) B(y, z)
B(z, y) B(y, y)

)
,

T =

⎛⎝B(x, x) B(x, z) 0
B(x, z) B(z, z) B(y, z)

0 B(z, y) B(y, y)

⎞⎠ .

Then the condition (K1), (K2), (K3), and (K4) are satisfied. It remains
to prove that T ∈ S3(k)

×
τ for some z ∈ k3. As a function of z ∈ k3,

detT = B(x, x)B(y, y)B(z, z) − B(x, x)B(y, z)2 −B(y, y)B(x, z)2

is a quadratic form of 3 variables, which we denote by Q. Then we
have det T = Q[z]. By direct calculation, one can show that detQ =
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− detB · B(y, y)2B(x, x)2B(x, y)2 
= 0. Let SQ be the set of places of
k such that Q is anisotropic. Then the quadratic form Q represents
any element t ∈ k×+ such that t /∈ (detB) · (k×v )2 for v ∈ SQ. Note that
SQ does not contain real places, since − detQ ∈ k×+ and ξ1, ξ2 ↪→ T .
Therefore the lemma in the case n = 3 follows from Theorem 8.1.

For n > 3, take any 3-dimensional quadratic subspace B0 ↪→ B, such
that ξ1, ξ2 ↪→ B0. Then B � B0 ⊕ B′ for some B′ ∈ Sn−3(k)

+. We
apply the lemma in the case n = 3 for ξ1, ξ2 and B0 ∈ S3(k)

×
τ⊗χB′ .

Then we obtain η, S1, S2, and T0 ∈ S3(k)
+
τ⊗χB′ satisfying the condition

(K1), (K2), (K3), and (K4) for τ ⊗ χB′ . Set T = T0 ⊕B′. Then η, S1,
S2, and T ∈ Sn(k)+

τ satisfies the condition (K1), (K2), (K3), and (K4)
for τ . �
Definition 10.5. For B1, B2 ∈ Sn(k)+

τ , an admissible sequence be-
tween B1 and B2 is a sequence (T0, T1, . . . , Tr; ξ1, . . . , ξr) such that

(1) T0, T1, . . . , Tr ∈ Sn(k)+
τ .

(2) ξ1, . . . , ξr ∈ k×+.
(3) B1 = T0 and B2 = Tr.
(4) ξi ↪→ Ti−1, Ti for i = 1, . . . , r.

Lemma 10.6. Assume n ≥ 2. For B1, B2 ∈ Sn(k)+
τ , there exists an

admissible sequence between B1 and B2.

Proof. If n ≥ 3, then there exists ξ ∈ k×+ which is represented by B1

and B2 by Lemma 10.1. Then (B1, B2; ξ) is an admissible sequence.

Now assume n = 2. Set B̃1 = (1)⊕B1 and B̃2 = (1)⊕B2. Choose an
element η ∈ k×+, which is represented by B̃1 and B̃2. We may assume
that η /∈ (k×)2. We apply Lemma 10.4 to 1, η and B1. Then there exist
S1 ∈ S2(k)

+ and T̃1 ∈ S3(k)
+
τ satisfying the following (a), (b), and (c).

(a) 1 ↪→ S1.
(b) S1 ↪→ B̃1.

(c) S1, (1) ⊕ (η) ↪→ T̃1.

By (a), S1 � (1) ⊕ (ξ1), where ξ1 = detS ∈ k×+ . By (c), there exists

T1 ∈ S2(k)
+
τ such that T̃1 � (1) ⊕ T1. Then we have ξ1 ↪→ B1 and

ξ1 ↪→ T1 by (b) and (c). Moreover, η ↪→ T1 by (c).
By a similar argument, we find T2 ∈ S2(k)

+
τ and ξ2 ∈ k×+ such that

ξ2 ↪→ B2 and ξ2 ↪→ T2, and η ↪→ T2. It follows that (B1, T1, T2, B2; ξ1, η, ξ2)
is an admissible sequence between B1 and B2. �

11. Compatible family of Whittaker vectors

Let τ be an irreducible cuspidal automorphic representation of PGL2(A)
satisfying (A1) and (A2). Assume n = m + n′ and S ∈ Sm(k)+, and
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B = S ⊕ B′. For each non-archimedean place v of k, we have homo-
morphisms

βv,S : Πv(n, τv) ⊗ S(Xv) → Πv(n
′, τv ⊗ χv,dS

),

FJv,S : WhB(Πv(n, τv)) → WhB′(Πv(n
′, τv ⊗ χv,dS

))

such that the Whittaker function WB′(g′) associated to FJv,S(wB) and
βv,S(f ⊗ φ̄) is given by

WB′(g′) =

∫
Xv

WB(v(x, 0, 0)g′)ωS,v(g′)φ(x) dx

for wB ∈ WhB(Πv(n, τv)), f ∈ Πv(n, τv), and φ ∈ S(Xv). Here, WB(g)
is the Whittaker function associated to wB and f . If S1 ∈ Sm1(k)

+,
S2 ∈ Sm2(k)

+ and S = S1 ⊕ S2, then we have

FJv,S2 ◦ FJv,S1 = ρv,S1,S2 · FJv,S,
where ρv,S1,S2 is a constant which does not depend on B′ ∈ Sn′(k)+.

If v is a good prime, the we have distinguiched vectors f 0
v ∈ Πv(n, τv),

w0
B ∈ WhB(Π(n, τv)), etc. Then we have

w0
B(f 0

v ) = 1, βv,S(f
0
v ⊗ φ0

v) = f ′
v
0
, FJv,S(w0

B) = w0
B′.

Moreover, we have ρv,S1,S2 = 1.
Similarly, for real place v of k, we have homomorphisms

βv,S : Πv(n, τv)
lwt ⊗ S(Xv)

lwt → Πv(n
′, τv ⊗ χv,dS

)lwt,

FJv,S : WhB(Πv(n, τv)) → WhB′(Πv(n
′, τv ⊗ χv,dS

))

such that the Whittaker function WB′(g′) associated to FJv,S(wB) and
βv,S(f ⊗ φ̄) is given by

WB′(g′) =

∫
Xv

WB(v(x, 0, 0)g′)ωS,v(g′)φ(x) dx

for wB ∈ WhB(Πv(n, τv)), f ∈ Πv(n, τv)
lwt, and φ ∈ S(Xv). Here,

WB(g) is the Whittaker function associated to wB and f . If S1 ∈
Sm1(k)

+, S2 ∈ Sm2(k)
+ and S = S1 ⊕ S2, then we have

FJv,S2 ◦ FJv,S1 = ρv,S1,S2 · FJv,S,
where ρv,S1,S2 is a constant which does not depend on B′ ∈ Sn′(k)+.

Put

Πlwt
n = Π(n, τ)lwt =

⊗
v/∈S∞

Πv(n, τv)
⊗ ⊗

v∈S∞

Πv(n, τv)
lwt,

S(X(A))lwt =
⊗
v/∈S∞

S(Xv)
⊗⊗

v∈S∞

S(Xv)
lwt.
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Then we have a homomorphism

βS = ⊗vβv,S : Π(n, τ)lwt ⊗ S(X(A))lwt −→ Π(n′, τ ⊗ χS)
lwt

and a homomorphism

FJS,B′ = ⊗vFJv,S,B′ : WhS⊕B′(Π(n, τ)) → WhB′(Π(n′, τ ⊗ χS)).

for each B′ ∈ Sn′(k)+. By what we have explained as above, the
following two propositions hold.

Proposition 11.1. Let WB(g) be the Whittaker function associated
to wB ∈ WhS⊕B′(Π(n, τ)) and f ∈ Π(n, τ)lwt, and WB′(g′) be the
Whittaker function associated to FJS(wB) and βS(f ⊗ φ̄), where φ ∈
S(X(A))lwt. Then we have

WB′(g′) =

∫
x∈X(A)

WB(v(x, 0, 0)g′)ωS(g′)φ(x)dx.

Proposition 11.2. The homomorphism

FJS,B′ : WhS⊕B′(Π(n, τ)) → WhB′(Π(n′, τ ⊗ χS))

is an isomorphism. If n = m1 +m2 +n′, S1 ∈ Sm1(k)
+, S2 ∈ Sm2(k)

+,
and S = S1 ⊕ S2, then we have

FJS2,B′ ◦ FJS1,S2⊕B′ = ρS1,S2 · FJS,B′

for any B′ ∈ Sn′(k)+. Here, ρS1,S2 is a constant which does not depend
on B′.

When there is no fear of confusion, FJS,B′ is simply denoted by FJS.
Definition 11.3. Let τ be an irreducible cuspidal automorphic repre-
sentation of PGL2(A) which satisfies the conditions (A1) and (A2). A
family {wB}B∈Sn(k)+ is called an GLn(k)-family of Whittaker vectors
for Πn, if

wB[A] = wB ◦ Πn(m(A))

for any B ∈ Sn(k)+ and A ∈ GLn(k).

Lemma 11.4. Let τ be an irreducible cuspidal automorphic representa-
tion of PGL2(A) which satisfies the conditions (A1) and (A2). Suppose
that B ∈ Sn(k)+, A ∈ GLn(k), B[A] = B, and wB ∈ WhB(Πn). Then
we have

wB ◦ Πn(m(A)) =

{
wB if detA = 1,

ε(1/2, τ)wB if detA = −1.
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Proof. By Lemma 3.5 and Lemma 6.2, we have

wB ◦ Πn(m(A)) =
∏
v/∈S∞

μv(detA)

(
αψv(1)

αψv(detA)

)n
×
∏
v∈S∞

(detA)κv

(
αψv(1)

αψv(detA)

)n
· wB.

By the property of the Weil constant, we have∏
v

αψv(1) =
∏
v

αψv(detA) = 1.

Note that detA = ±1. If detA = −1, then∏
v/∈S∞

μv(detA)
∏
v∈S∞

(detA)κv = ε(1/2, τ).

Hence the lemma. �
By Lemma 11.4, a non-trivial GLn(k)-family of Whittaker vectors

exists if and only if ε(1/2, τ) = 1. In particular, Π(n, τ) is not auto-
morphic if ε(1/2, τ) = −1.

Hereafter, we assume τ satisfies (A1), (A2), and (A3). Fix S ∈
Sm(k)+ (0 < m < n) and set n′ = n−m.

Lemma 11.5. Let {wB}B∈Sn(k)+ be a GLn(k)-family of Whittaker vec-
tors for Π(n, τ). Then the family

{FJS,B′(wS⊕B′)}B′∈Sn′(k)+

is a GLn′(k)-family of Whittaker vectors for Π(n′, τ⊗S).

Proof. The lemma follows from Lemma 3.4 and Lemma 6.4. �
Let {wB}B∈Sn(k)+ be a family of Whittaker vectors for Πn. LetWB(g)

be the Whittaker function associated to f ∈ Πn and wB ∈ WhB(Πn)
for each B ∈ Sn(k). We consider the Fourier series

F (g) =
∑

B∈Sn(k)+

WB(g).

We do not discuss the convergence of F (g) and assume the conver-
gence of F (g) in this section. By definition, the Fourier series F (g) is
left Pn(k)-invariant if and only if {wB} is a GLn(k)-family.

Recall that for φ ∈ S(X(A)), the theta function Θφ
S(vg

′) is defined
by

Θφ(v(x, y, z)g′) =
∑
l∈X(k)

ψS(z + x · ty + 2l · ty)ωS(g′)φ(l + x)
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for v = v(x, y, z) ∈ Vn,m(A) and g′ ∈ S̃pn′(A).

Lemma 11.6. We assume that the Fourier series F (g) is absolutely
convergent. Let {wB}B∈S+

n (k) be a GLn(k)-family of Whittaker vectors
for Πn. Then we have∫

V (k)\V (A)

F (vg′)Θφ(vg′) dv

=
∑

B′∈S+
n′ (k)

∫
X(A)

WS⊕B′ (v(x, 0, 0)g′)ωS(g′)φ(x)dx

for any φ ∈ S(X(A)).

Proof. The contribution of B ∈ Sn(k)+ in∫
V (k)\V (A)

F (vg′)Θφ(vg′) dv =

∫
V (k)\V (A)

∑
B∈S+

n (k)

WB(vg′)Θφ(vg′)dv

vanishes unless the upper left m×m block of B is equal to S. In this
case,

B =

(
S 0
0 B′

)[(
1 λ
0 1

)]
for some λ ∈ X(k) and B′ ∈ Sn′(k)+. Note that

v(x, y, z) = v(0, y, z + y · tx) · v(x, 0, 0),

It follows that if B =

(
S 0
0 B′

)[(
1 λ
0 1

)]
, then

WB(v(x, y, z)g′) =WB(v(0, y, z + y · tx) · v(x, 0, 0)g′)

=ψS(z + y · tx)ψS(2λ · ty)WB(v(x, 0, 0)g′)

=ψS(z + y · tx)ψS(2λ · ty)WS⊕B′(v(λ+ x, 0, 0)g′).

We have∫
V (k)\V (A)

F (vg′)Θφ(vg′) dv

=

∫
V (k)\V (A)

∑
B∈S+

n (k)

WB(vg′)Θφ(vg′)dv

=

∫
x∈X(k)\X(A)

∫
y∈Y (k)\Y (A)

∫
z∈Z(k)\Z(A)

∑
B′∈Sn′(k)+

WS⊕B′(v(λ+ x, 0, 0)g′)

×
∑

λ∈X(k)

∑
l∈X(k)

ψS(2(λ− l)ty)ωS(g′)φ(l + x)dz dy dx.
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In this integral, only l = λ contributes. It follows that∫
V (k)\V (A)

F (vg′)Θφ(vg′) dv

=

∫
x∈X(k)\X(A)

∑
B′∈Sn′(k)+

∑
λ∈X(k)

WS⊕B′(v(λ+ x, 0, 0)g′)ωS(g′)φ(λ+ x)dx

=

∫
x∈X(A)

∑
B′∈Sn′(k)+

WS⊕B′(v(x, 0, 0)g′)ωS(g′)φ(x)dx.

Hence the lemma.
�

By Lemma 11.6, if F (g) is the Fourier series obtained from f ∈
Π(n, τ) and the family {wB}B∈Sn(k)+ , the the Fourier series obtained
from βS(f ⊗ φ̄) ∈ Π(n′, τ ⊗χS) and the family {FJS(wS⊕B′)}B′∈Sn′ (k)+

is equal to ∫
V (k)\V (A)

F (vg′)Θφ(vg′) dv.

Definition 11.7. Let

{wB}B∈Sn(k)+ ∈
∏

B∈Sn(k)+

WhB(Πn)

be a GLn(k)-family of Whittaker vectors for Π(n, τ). We shall say
that {wB}B∈Sn(k)+ is a compatible family, if the following conditions
are satisfied.

(1) When n = 1, a family {wB}B∈Sn(k)+ is compatible if it comes
from the Shimura correspondence of τ , i.e., for each f ∈ Π1,
the Fourier series

F (g) =
∑

B∈S1(k)+

WB(g)

belongs to the space of the Shimura correspondence of τ .
(2) When n ≥ 2, a family {wB}B∈Sn(k)+ is a compatible family, if

the family

{FJξ(w(ξ)⊕B′)}B′∈Sn−1(k)+

is a compatible family for Π(n− 1, τ ⊗ χξ) for each ξ ∈ k×+.

The following lemma follows immediately from the definition.

Lemma 11.8. Let {wB}B∈Sn(k)+ be a GLn(k)-family of Whittaker vec-
tors for Π(n, τ). Then {wB}B∈Sn(k)+ is a compatible family of Whit-
taker vectors for Π(n, τ), if and only if {FJS(wS⊕B′)}B′∈Sn−m(k)+ is
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a compatible family for Π(n − m, τ ⊗ χS) for any m < n and any
S ∈ Sm(k)+.

Assume that Π(n, τ) is isomorphic to an automorphic representation

of S̃pn(A). Then there exists an embedding

ι : Π(n, τ) → Acusp(Spn(k)\S̃pn(A)).

For each B ∈ Sn(k)+ and f ∈ Π(n, τ)lwt, put

wB(f) =

∫
Nn(k)\Nn(A)

ι(f)(n(x))ψB(x) dx.

Then we have

ι(f)(g) =
∑

B∈Sn(k)+

wB(Πn(g)f)

by Köcher principle. Put

ϕf,φ(g
′) =

∫
V (k)\V (A)

ι(f)(vg′)Θφ
S(vg

′) dv,

for g′ ∈ ˜Spn′(A) and φ ∈ S(X(A))lwt. Then we have∫
Nn′ (k)\Nn′ (A)

ϕf,φ(n(x)g′)ψB′(x) dx = FJS(wB)(Πn′(g′)(βS(f ⊗ φ̄)))

by Lemma 11.6.

Lemma 11.9. The family {wB}B∈Sn(k)+ arising from an embedding ι
is a non-zero compatible family.

Proof. The automorphic representation generated by∫
V (k)\V (A)

ι(f)(vg′)Θφ
S(vg

′) dv

for f ∈ Π(n, τ)lwt and φ ∈ S(X(A))lwt is isomorphic to Π(n′, τ ⊗ χS).
Therefore {wB} is a compatible family by induction. �

Recall that (see Definition 10.2)

Sn(k)+
τ = {B ∈ Sn(k)+ |L(1/2, τ ⊗ χB) 
= 0}.

Lemma 11.10. Assume that {wB}B∈Sn(k)+ is a compatible family. If
B /∈ Sn(k)+

τ , then wB = 0.

Proof. If n = 1, then the lemma follows from Proposition 8.2.
Assume n ≥ 2 and wB 
= 0 for B ∈ Sn(k)+. By replacing B by

B[A] for some A ∈ GLn(k), we may assume B = (ξ) ⊕ B′, ξ ∈ k×+,
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B′ ∈ Sn−1(k)
+. Then FJξ(wB) 
= 0, since FJξ is injective. By the

induction hypothesis, we have

L(1/2, (τ ⊗ χξ) ⊗ χB′) = L(1/2, τ ⊗ χB) 
= 0.

�
We denote the dimension of compatible family of Whittaker vectors

for Π(n, τ) by mcomp(Π(n, τ)). By definition, we have mcomp(Π(n, τ)) =
1 for n = 1. We are going to prove mcomp(Π(n, τ)) = 1. By induction
hypothesis, we assume

(H1) For any n′ < n and any cuspidal automorphic representation
τ ′ of PGL2(A) which satisfies (A1), (A2), and (A3), we have
mcomp(Π(n′, τ ′)) = 1. Moreover, if {wB′} is a non-trivial com-
patible family for Π(n′, τ ′), then wB′ 
= 0 for any B′ ∈ Sn′(k)+

τ ′.

From now on, and until the end of this section, we assume (H1).
Suppose B1, B2 ∈ Sn(k)+

τ . Let S ∈ Sm(k)+ be an element which is
represented by B1 and B2. Then we define a linear map

US
B1,B2

: WhB1(Π(n, τ)) −→ WhB2(Π(n, τ))

as follows. First assume that there exist B′
1, B

′
2 ∈ S+

n′(k) such that

B1 =

(
S 0
0 B′

1

)
, B2 =

(
S 0
0 B′

2

)
.

In this case, we set US
B1,B2

(wB1) = wB2 if and only if there exists a com-
patible family {w′

B′}B′∈S+
n′ (k)

of Π(n′, τ⊗χS) such that w′
B′

1
= FJS(wB1)

and w′
B′

2
= FJS(wB2). Note that US

B1,B2
is an isomorphism by (H1).

In general, there exists A1, A2 ∈ GLn(k) and B′
1, B

′
2 ∈ S+

n′(k) such
that

B1[A1] =

(
S 0
0 B′

1

)
, B2[A2] =

(
S 0
0 B′

2

)
.

In this case, we put

US
B1,B2

= Πn(m(A2))
−1 ◦ US

B1[A1],B2[A2]
◦ Πn(m(A1)).

The right hand side does not depend on the choice of A1, A2 ∈ GLn(k)
by Lemma 3.5, Lemma 3.4, Lemma 6.1, and Lemma 6.4. Moreover
US
B1,B2

depends only on the equivalence class of S ∈ Sm(k)+. When

S = (ξ) ∈ S1(k)
+, we simply denote U

(ξ)
B1,B2

by U ξ
B1,B2

. Note that if

S ↪→ B1, B2, B3, then we have US
B2,B3

◦ US
B1,B2

= US
B1,B3

by definition.

Lemma 11.11. Suppose that S ∈ Sm1(k)
+, T ∈ Sm2(k)

+, S ↪→ T ,
T ↪→ B1, B2 ∈ Sn(k)+

τ . When we have US
B1,B2

= UT
B1,B2

.
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Proof. Since S ↪→ T , we may assume T = S ⊕ S ′ for some S ′ ∈
Sm2−m1(k)

+. We may also assume B1 = T ⊕ B′
1 and B2 = T ⊕ B′

2.
Then we have

FJT,B′
1

=ρS,S′FJS′,B′
1
◦ FJS,S′⊕B′

1
,

FJT,B′
2

=ρS,S′FJS′,B′
2
◦ FJS,S′⊕B′

2

by Proposition 11.2. By the definition of the compatible family, FJS(wB1)
and FJS(wB2) belongs to a compatible family if and only if FJT (wB1)
and FJT (wB2) belongs to a compatible family. Hence the lemma. �

Lemma 11.12. Suppose that ξ1, ξ2 ∈ k×+ are represented by B1, B2 ∈
Sn(k)+

τ . Assume that there exists S ∈ S+
2 (k) such that

(1) S ↪→ B1, B2.
(2) ξ1, ξ2 ↪→ S.

Then we have U ξ1
B1,B2

= U ξ2
B1,B2

.

Proof. By Lemma 11.11, we have U ξ1
B1,B2

= US
B1,B2

= U ξ2
B1,B2

. Hence the
lemma. �

Lemma 11.13. Assume n ≥ 3. Suppose that ξ1, ξ2 ∈ k×+ are repre-

sented by B1, B2 ∈ S+
n (k)τ . Then we have U ξ1

B1,B2
= U ξ2

B1,B2
.

Proof. We first show that there exists T1 ∈ Sn(k)+
τ such that (ξ1) ⊕

(ξ2) ↪→ T1 and U ξ1
B1,T1

= U ξ2
B1,T1

. In fact, by Lemma 10.4, there exist

η ∈ k×+, S1, S2 ∈ S2(k)
+ and T1 ∈ Sn(k)+

τ satisfying the following
conditions (a), (b), (c), and (d).

(a) ξ1, η ↪→ S1.
(b) ξ2, η ↪→ S2.
(c) S1, S2 ↪→ B1.
(d) S1, S2, (ξ1) ⊕ (ξ2) ↪→ T1.

Then (a), (c), and (d) implies U ξ1
B1,T1

= Uη
B1,T1

by Lemma 11.12. Simi-

larly, (b), (c), and (d) implies U ξ2
B1,T1

= Uη
B1,T1

. It follows that U ξ1
B1,T1

=

Uη
B1,T1

= U ξ1
B2,T1

.

By a similar argument, there exists T2 ∈ Sn(k)+
τ such that (ξ1) ⊕

(ξ2) ↪→ T2 and U ξ1
T2,B2

= U ξ1
T2,B2

. Then we have U ξ1
T1,T2

= U ξ2
T1,T2

, since
(ξ1) ⊕ (ξ2) ↪→ T1, T2. It follows that

U ξ1
B1,B2

= U ξ1
B2,T2

◦ U ξ1
T1,T2

◦ U ξ1
B1,T1

= U ξ2
B2,T2

◦ U ξ2
T1,T2

◦ U ξ2
B1,T1

= U ξ2
B1,B2

.

Hence the Lemma. �
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If R = (T0, T1, . . . , Tr, ; ξ1, ξ2, . . . , ξr) is an admissible sequence be-
tween B1 and B2, then we set

UR
B1,B2

= U ξr
Tr−1,Tr

◦ · · ·U ξ2
T2,T1

◦ U ξ1
T0,T1

.

Then {wB}B∈Sn(k)+ is a compatible family if and only if UR
B1,B2

(wB1) =
wB2 for any B1, B2 ∈ Sn(k)+

τ and admissible sequence R between B1

and B2.

Lemma 11.14. Assume that n ≥ 3. If R and R′ are admissible se-
quences between B1 ∈ Sn(k)+

τ and B2 ∈ Sn(k)+
τ , then we have UR

B1,B2
=

UR′
B1,B2

.

Proof. It is enough to prove that if R = (T0, T1, . . . , Tr, ; ξ1, ξ2, . . . , ξr)
is an admissible sequence such that T0 = Tr, then we have UR

T0,Tr
= id.

There is nothing to prove for r = 1. The case r = 2 is Lemma 11.13.
For r ≥ 3, there exists η ∈ k×+ such that η ↪→ T0, T1, T2 by Lemma 10.1.

By Lemma 11.13, we have U ξ2
T1,T2

= Uη
T1,T2

and U ξ1
T0,T1

= Uη
T0,T1

. Then
by induction, we have

UR
T0,Tr

=U ξr
Tr−1,T0

◦ · · · ◦ U ξ3
T2,T3

◦ Uη
T1,T2

◦ Uη
T0,T1

=U ξr
Tr−1,T0

◦ · · · ◦ U ξ3
T2,T3

◦ Uη
T0,T2

=id.

Hence the lemma. �
Proposition 11.15. We have mcomp(Π(n, τ)) = 1. Moreover, if {wB}
is a non-trivial compatible family for Π(n, τ), then wB 
= 0 for any
B ∈ Sn(k)+

τ .

Proof. We first prove that mcomp(Π(n, τ)) ≤ 1. We may assume n ≥ 2.
If the family {wB}B∈Sn(k)+ is non-zero, there exists Bo ∈ Sn(k)+ such
that wB0 
= 0. By Lemma 11.10, we have B0 ∈ Sn(k)+

τ . By Lemma
10.6, there exists an admissible sequence R = (T0, . . . , Tr ; ξ1, . . . , ξr)
for B0 and B. Then we have wB = UR

B0,B
(wB). It follows that

mcomp(Π(n, τ)) ≤ 1. Moreover, if {wB} is a non-trivial compatible
family, then we have wB 
= 0 for any B ∈ Sn(τ)τ , since UR

B0,B
is an

isomorphism.
Now we prove mcomp(Π(n, τ)) ≥ 1. We may assume n ≥ 3. Choose

any B0 ∈ Sn(k)+
τ and wB0 ∈ WhB0(Π(n, τ)), wB0 
= 0. For each B ∈

Sn(k)+
τ , there exists an admissible sequence R between B0 and B. set

wB = UR
B0,B

(wB0). By Lemma 11.4, wB does not depend on the choice
of R. Then {wB} is a non-trivial compatible family. Thus Proposition
11.15 is proved. �



ON THE LIFTING OF AUTOMORPHIC REPRESENTATIONS 49

12. Convergence of the Fourier series

Let {wB}B∈S+
n (k) be a compatible family of Whittaker vectors for

Π = Π(n, τ). We fix a vector f ∈ Π(n, τ)lwt. Let WB be the Whittaker
function associated to f and wB. By definition, we have

WB(g) = wB(Π(g)f)

for each B ∈ Sn(k)+.
We consider the sum

F (g) =
∑

B∈S+
n (k)

WB(g).

We are now going to prove that the sum is convergent absolutely and

uniformly on any compact subset of S̃pn(A). By translating f from
the right, it is enough to consider the convergence of F (g) on some

neighbourhood of ˜Spn(k∞). Since f is a smooth vector, it is enough to

consider the convergence of F (g) on ˜Spn(k∞).
Note that F (g) satisfies the equation F (guv) = j(uv, i)

κv+(n/2)F (g)

for any uv ∈ Ũ(n). It follows that one can define a function F �(Z) on
HS∞ by

F �(Z) = F (g)
∏
v∈S∞

j(gv, i)
κv+(n/2),

where g ∈ ˜Spn(k∞) satisfies gv(i) = Zv for any v ∈ S∞.
We decompose the Whittaker function WB as a product of the finite

part and the infinite part as

WB = WB,fin ×
∏
v∈S∞

W 0
B,v.

Then we have

F �(Z) =
∑

B∈S+
n (k)

( ∏
v∈S∞

| detB|κv+(n/2)
v

)
WB,fin(12n)eB(Z).

Since f ∈ Π(n, τ) is a smooth vector, f is invariant from the right
by

{n(z) z ∈ Lv}
for some lattice Lv ⊂ Sn(kv) for any finite place v. We may assume
Lv = Sn(ov) for almost all v. Put

L =

{
B ∈ Sn(k) ψB is trivial on

∏
v/∈S∞

Lv
}
.
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Then L is a lattice in Sn(k). Since WB,fin(12n) = 0 unless B /∈ L, we
have

F �(Z) =
∑

B∈L∩S+
n (k)

( ∏
v∈S∞

| detB|κv+(n/2)
v

)
WB,fin(12n)eB(Z).

Let S be a finite set of places of k. We assume S contains all places
above 2 and ∞. We also assume S contains all places where τv is
ramified.

Definition 12.1. B1, B2 ∈ Sn(k)+ are S-equivalent if B1 and B2 are
equivalent over kv for any v ∈ S.

Definition 12.2. Let B be an element of Snd
n (kv). For wB, w′

B ∈
WhB(Πv), we denote wB ≈ w′

B if wB = uw′
B for some u ∈ C×, |u| = 1.

Similarly, for B ∈ Sn(k)+, wB, w
′
B ∈ WhB(Π), we denote wB ≈ w′

B if
wB = uw′

B for some u ∈ C×, |u| = 1.

For v /∈ S, there exists a distinguished vector w0
B,v ∈ WhB(Πv) for

each B ∈ Snd
n (kv). For v ∈ S∞, we have also chosen a distinguished

vector w0
B,v ∈ WhB(Πv) for each B ∈ Sn(kv)+. These distinguished

vectors satisfy the condition

w0
B[A],v ≈ w0

B,v ◦ Πv((m(A), 1))

for any A ∈ GLn(kv).
For v ∈ S, v /∈ S∞, we choose any family of non-zero vectors

{w0
B,v}B∈Snd

n (kv), w
0
B,v ∈ WhB(Πv) such that

w0
B[A],v ≈ w0

B,v ◦ Πv((m(A), 1))

for any A ∈ GLn(kv). Such a family exists by Lemma 3.5.
For B ∈ Sn(k)+, we put

w0
B =

∏
v

w0
B,v ∈ WhB(Π).

Note that

w0
B[A] ≈ w0

B ◦ Π(m(A)).

for any B ∈ Sn(k)+, A ∈ GLn(k).
Let {wB}B∈Sn(k)+ be a compatible family. For each B ∈ Sn(k)+,

there exists a non-negative number cB ≥ 0 such that

wB ≈ cB · w0
B.

Proposition 12.3. If B1 and B2 are S-equivalent and detB1 ≡ detB2

mod (k×)2, then we have cB1 = cB2.



ON THE LIFTING OF AUTOMORPHIC REPRESENTATIONS 51

Proof. Note that the proposition is valid for some choice of {w0
v,B},

then it is valid for any choice of {w0
v,B}.

We may assume detB1 = detB2. In particular, the proposition
holds for n = 1. If n = 2, then the representation Π2 = Π(2, τ) can
be extended to a cuspidal automorphic representation Π̌2 of PGSp2(A)
with trivial central character. Since detB1 = detB2, there exist t ∈ k×+
and A ∈ GL2(k) such that B2 = tB1[A]. Then we have

wB2 = wB1 ◦ Π̌2(d(t)m(A))

since Π̌2 is an automorphic representation on GSp2(A). It is enough to
prove

w0
B2,v ≈ w0

B1,v ◦ Π̌2,v(d(t)m(A)).

In fact, for v /∈ S, we have

w0
B2,v

= w0
B1,v

◦ Π̌2,v(d(t)m(A))

by Lemma 9.3 (3). For v ∈ S∞, we have w0
B2,v

≈ w0
B1,v

◦Π̌2,v(d(t)m(A))
by Lemma 9.3 (2). For v ∈ S, v /∈ S∞, there exists A′ ∈ GL2(kv)
such that B2 = B1[A

′−1], since B1 and B2 are S-equivalent. Then we
have B1 = tB1[AA

′]. Therefore d(t)m(AA′) and n(B1) commute and
t detAA′ = ±1. It follows that

w0
B1,v

◦ Π̌2,v(d(t)m(AA′)) =μ(2)
v (t detAA′)w0

B1,v

≈w0
B1,v

by Lemma 9.3 (1). Therefore we have

w0
B1,v

◦ Π̌2,v(d(t)m(A)) =w0
B1,v

◦ Π̌2,v(d(t)m(AA′)) ◦ Π̌2,v(m(A′−1
))

≈w0
B1,v

◦ Π̌2,v(m(A′−1
))

≈w0
B2,v.

Now assume n ≥ 3. We may assume detB1 = detB2. Let T be the
set of places v where B1 and B2 are not equivalent. Let ξ ∈ k×+ be an
element such that ξ ↪→ B1, B2. We may assume ξ ∈ o×v for v ∈ T, since
either B1 or B2 is isotropic over kv. Note that T is a finite set and
T ∩ (S ∪ S′) = ∅, where S′ = {v | v /∈ S, ordvξ 
= 0}. By replacing B1

and B2 by equivalent forms, we may assume

B1 = (ξ) ⊕ B′
1, B2 = (ξ) ⊕ B′

2,

where B′
1, B

′
2 ∈ Sn−1(k)

+. Consider FJξ(wB1) and FJξ(wB2). Since
wB1 and wB2 belong to a compatible family, FJξ(wB1) and FJξ(wB2)
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also belong to a compatible family for Πn−1 = Π(n − 1, τ ⊗ χξ). Note
that

FJξ(wBi
) ≈ cBi

∏
v/∈S∪S′

FJξ(w0
Bi,v

)
∏
v∈S′

FJξ(w0
Bi,v

)
∏
v∈S

FJξ(w0
Bi,v

),

≈ cBi

∏
v/∈S∪S′

|DBi
|1/4v w0

B′
i,v

∏
v∈S′

FJξ(w0
Bi,v

)
∏
v∈S

FJξ(w0
Bi,v

)

for i = 1, 2. For v ∈ S∪S′, there exists Av ∈ GLn−1(kv) such thatB′
2 =

B′
1[Av], since B1 and B2 are S∪S′-equivalent. Note that detAv = ±1,

since detB1 = detB2. By Lemma 3.4 and Lemma 6.4 (3), we have

FJξ(w0
B2,v

) ≈ FJξ(w0
B1,v

) ◦ Πn−1((m(Av), 1))

for v ∈ S ∪ S′. Note that B′
1 and B′

2 are S ∪ S′-equivalent and
detB′

1 = detB′
2. By the induction hypothesis, we have cB1 = cB2 .

�
Lemma 12.4. Put

QS =

{
x ∈ k×

0 ≤ ordvx ≤ 1 for v /∈ S,
0 ≤ ordvx < 2hk for v ∈ Sfin

}
,

where hk is the class number of k. If S is sufficiently large, then we
have k× = QS · (k×)2.

Proof. We may assume {pv | v ∈ S, v /∈ S∞} generate the ideal class
of k. Consider the map

k× →
⊕
v/∈S

Z

given by x �→ (ordvx)v/∈S. Then this map is surjective. For each x ∈ k×,
there exists an element y ∈ k× such that 0 ≤ ordv(xy

2) ≤ 1 for any
v /∈ S. Moreover, we may assume 0 ≤ ordv(xy

2) < 2hk for v ∈ Sfin,
since phk

v is a principal ideal for any v. Hence the lemma. �
Lemma 12.5. Let {wB}B∈S(k)+ and cB be as in Proposition 12.3. Then
there exist constants A,M ∈ R, A > 0 such that

cB < A|dB|M .
Here, dB is the conductor of k(

√
DB)/k, as in §4.

Proof. Let S be a set of bad places, which satisfies the condition of
Lemma 12.4. Since there are only finitely many S-equivalence classes,
it is enough to consider an S-equivalence class. Fix S ∈ S+

n−1. By
enlarging S, if necessary, we may assume S ∈ Sn−1(ov) for v /∈ S.
By Proposition 12.3, it is enough to prove that there exist A,M ∈ R,
A > 0 such that

cξ⊕S < A|dξ⊕S|M
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for any ξ ∈ k×+. Put N (ξ) =
∏

v∈S∞ |ξ|v. By Lemma 12.4, we may
assume ξ ∈ QS. Note that there exists A′ > 0 such that

|dξ⊕S| < A′ · N (ξ),

for any ξ ∈ QS. As in the proof of Proposition 12.3, we have

FJS(wξ⊕S) ≈ cξ⊕S
∏
v/∈S

|ξ|(n−1)/4
v wur

v,ξ

∏
v∈S

FJS(w0
v,ξ⊕S).

Therefore the problem is reduced to the case n = 1. Consider the
Fourier series

F �(Z) =
∑
ξ∈k×+

( ∏
v∈S∞

| detB|κv+(1/2)
v

)
Wξ,fin(12)e(ξZ).

Since ξ ∈ QS, we have 0 ≤ ordvξ ≤ 1 for any v /∈ S. It follows that

F �(Z) =
∑
ξ∈k×+

cξuξ

( ∏
v∈S∞

| detB|κv+(1/2)
v

)∏
v∈S

Wv,ξ(12)e(ξZ).

for some |uξ| = 1. By Proposition 3.6, for each v ∈ Sfin, one can
choose a vector fv ∈ Π1,v such that |Wv,ξ(12)| > C for some constant
C > 0. Since the Fourier coefficients of a Hilbert modular form is
slowly increasing, we obtain the proposition. �
Proposition 12.6. Let {wB}B∈S(k)+ be a compatible family. For each
f ∈ Πlwt

n = Π(n, τ)lwt, the Fourier series

F (g) =
∑

B∈Sn(k)+

wB(Πn(g)f)

converges absolutely and uniformly on each compact subset of S̃pn(A).

Proof. The proposition follows from Proposition 3.9, Lemma 5.5, and
Lemma 12.5. �

13. End of the proof of Theorem 7.1.

Let {wB}B∈Sn(k)+ be a compatible family of Whittaker vectors for
Πn = Π(n, τ). For each B ∈ Sn(k)+, let WB be a Whittaker function
associated to wB and f ∈ Πlwt

n . To prove Theorem 7.1, it is enough to
show that the convergent Fourier series

F (g) =
∑

B∈Sn(k)+

WB(g)

is left Spn(k)-invariant. Since {wB} is an GLn(k)-family, F (g) is left
Pn(k)-invariant. We are going to show that F (g) is left Jn,m(k)-invariant.
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Assume n = m+n′ and S ∈ Sn(k)+. Consider the “S-th Fourier-Jacobi
coefficient”

FS(g) =

∫
Zm(k)\Zm(A)

F (zg)ψS(z) dz =
∑

B=
“
S λ
tλ N

”WB(g).

Let C be a compact open subgroup of ˜Spn(Afin) such that F (g) is right

C-invariant. Put C ′ = C ∩ ˜Jn,m(Afin) and set

V = {φ ∈ S(X(A))lwt | ωS(C ′)φ = φ}.
Then V is a finite-dimensional subspace of S(X(A))lwt. Let φ1, . . ., φr
be an orthonormal basis of V. Then we have

FS(vg
′c) =

r∑
i=1

Θφi

S (vg′)
∫
v∈V (k)\V (A)

F (vg′)Θφi

S (vg′) dv.

for any g′ ∈ S̃pn′(A) and c ∈ C ′ by Proposition 1.3 of [5]. By Lemma
11.6, we have∫

V (k)\V (A)

F (vg′)Θφ(vg′) dv

=
∑

B′∈S+
n′(k)

∫
X(A)

WS⊕B′ (v(x, 0, 0)g′)ωS(g′)φ(x)dx,

which is an automorphic form on S̃pn′(A) by induction hypothesis.
Therefore FS(g) is left Jn,m(k)-invariant. Since Spn(k) is generated by
Pn(k) and Jn,m(k), the Fourier series F (g) is left Spn(k)-invariant, as
desired.

14. Relation to the Arthur conjecture

In this section, we discuss the relation to the Arthur conjecture.
Since the Arthur conjecture is not formulated for metaplectic group,
we assume the degree is even in this section. We also assume that κ is

sufficiently large so that the representation D(2n)
κ+n of Sp2n(R) is a holo-

morphic discrete series representation. Let Lk be the (hypothetical)
Langlands group over k. Hypothetically, there is a one-to-one corre-
spondence between the set of all equivalence classes of r-dimensional
irreducible representations of Lk and set of all irreducible cuspidal au-
tomorphic representations of GLr(A). Let τ be an irreducible cuspidal
representation of GL2(A) with trivial central character. We assume
the conditions (A1), (A2), and (A3) hold for τ . Let ρτ be the cor-
responding 2-dimensional irreducible representation of Lk. Note that
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Im(ρτ ) ⊂ SL2(C). Let χ be a quadratic Hecke character of A×
k /k

×.
Then we have Im(ρτ⊗χ) = Im(ρτ ⊗ χ) ⊂ SL2(C).

Set G = Sp2n. The dual group Ĝ of G is SO4n+1(C). Let sym2n−1

be the irreducible 2n-dimensional representation of SL2(C). There is
an non-degenerate SL2(C)-invariant alternating form on sym2n−1. It
follows that the 4n-dimensional representation ρτ⊗χ � sym2n−1 of Lk×
SL2(C) is orthogonal. It follows that there exists a non-degenerate L×
SL2(C)-invariant symmetric bilinear form. Therefore ρτ⊗χ � sym2n−1

gives rise to a homomorphism Lk × SL2(C) → SO4n(C). Embedding

SO4n(C) into Ĝ = SO4n+1(C), we get a homomorphism

(ρτ⊗χ � sym2n−1) � 1 : Lk × SL2(C) → Ĝ.

If we admit the Arthur conjecture, then Π(2n, τ) belongs to the A-
packet for (ρτ⊗χ(−1)n

� sym2n−1) � 1.

Let st : Ĝ = SO4n+1(C) → GL4n+1(C) be the standard representa-

tion of Ĝ. Then we have

L(s,Π(2n, τ), st) = ζk(s)

2n∏
i=1

L(s+ n− i+ (1/2), τ ⊗ χ(−1)n),

up to bad Euler factors.
The Arthur conjecture suggest that mauto(Π(2n, τ)) = 1 if and only

if

ε(1/2, τ ⊗ χ(−1)n) =
∏
v∈S∞

(−1)n = (−1)n[k:Q].

We claim that

ε(1/2, τ ⊗ χ(−1)n) = ε(1/2, τ) · (−1)n[k:Q]

under the assumptions (A1) and (A2). In fact,

ε(1/2, (τ ⊗ χ(−1)nv)v) =

{
ε(1/2, τv) · 〈−1,−1〉nv if v /∈ S∞,
ε(1/2, τv) if v ∈ S∞.

It follows that

ε(1/2, τ ⊗ χ(−1)n) =ε(1/2, τ)
∏
v/∈S∞

〈−1,−1〉nv

=ε(1/2, τ)
∏
v∈S∞

〈−1,−1〉nv

=ε(1/2, τ) · (−1)n[k:Q].

Therefore Theorem 7.1 is compatible with the Arthur conjecture.
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15. The case k = Q.

Let

f =
∞∑
n=1

a(n, f)qn ∈ S2κ(Γ0(N))

be a primitive form of level N , and τ be the irreducible cuspidal auto-
morphic representation of PGL2(AQ) generated by f . Then the condi-
tion (A2) is satisfied.

We shall explain the condition (A1) and (A3) in terms of classical
modular forms. The root number ε(1/2, τ) is equal to the sign of the
functional equation. It follows that the condition (A3) holds if and
only if the L-function L(s, f) =

∑
n a(n, f)n−s of f has a functional

equation

L(s, f) = N2κ−2sL(2κ− s, f).

Next, we explain the condition (A1). Recall that for each Dirichlet
character η mod M , there exists a primitive form

fη =
∞∑
n=1

a(n, fη)q
n ∈ S2κ(Γ0(N

′), (η2)0)

with the following properties (1) and (2):

(1) N ′|NM2.
(2) a(n, fη) = η(n)a(n, f) for (n,NM) = 1.

Here, (η2)0 be the primitive Dirichlet character equivalent to η2. Then
exactly one of the following three conditions holds:

(a) The condition (A1) holds at v = p. In other words, τp is a
principal series.

(b) τp is a quadratic twist of the Steinberg representation.
(c) τp is a supercuspidal representation.

If p � N , then the condition (A1) holds for v = p. The condition (b)
holds if and only if p ||N ′ for some quadratic Dirichlet character η. The
condition (c) holds if and only if a(p, fη) = 0 for any Dirichlet character
η.

If f satisfy the condition (A1), (A2), and (A3), then Theorem 7.1
implies there exists a Siegel modular form

F ∈ Sκ+(n/2)(Γ)

for some congruence subgroup Γ ⊂ Spn(Z), which is a common eigen-
form for Hecke operators for Γ\Spn(Z[1/p])/Γ for almost all p. The
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Hecke eigenvalue can be calculated by Satake isomorphism (in princi-
ple). If n = 2r is even, the standard L-function of F is equal to

L(s, F, st) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ζ(s)

n∏
i=1

L(s+ r + κ− i, f), if r ≡ 0 mod 2,

ζ(s)
n∏
i=1

L(s+ r + κ− i, fχ(−1)
), if r ≡ 1 mod 2,

up to bad Euler factors. Here, χ(−1) is the odd primitive Dirichlet
character mod 4.

Now let n be an integer such that κ ≡ n mod 2. Let f ∈ S2κ(SL2(Z))
be a normalized Hecke eigenform, and τ be the irreducible cuspidal
automorphic representation of GL2(AQ) generated by f . Then, we
have

ε(1/2, τ ⊗ χ(−1)n) = (−1)κ+n = 1.

By the result of [6], there exists a Hecke eigenform F ∈ Sκ+n(Sp2n(Z)),
whose standard L-function is ζ(s)

∏2n
i=1 L(s + n + κ − i, f). Then

one can easily show that the automorphic representation generated
by F is isomorphic to Π(2n, τ ⊗ χ(−1)n). By Theorem 7.1, we have
mauto(Π(2n, τ ⊗χ(−1)n)) = 1. It follows that Π(2n, τ ⊗χ(−1)n) is gener-
ated by F . Therefore Theorem 7.1 can be considered as a generaliza-
tion of [6]. The half-integral weight analogue of [6] was considered by
Hayashida [4].
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