Schrödinger operators on the Wiener space

Ichiro SHIGEKAWA

Kyoto University

August 10, 2004
Beijing Normal University

URL: http://www.math.kyoto-u.ac.jp/~ichiro/

Contents

1. Essential self-adjointness
2. Domain of Schrödinger operator
3. Spectral gap of Schrödinger operator

1. Essential self-adjointness

$(\boldsymbol{B}, \boldsymbol{H}, \boldsymbol{\mu})$: an abstract Wiener space

- B: a Banach space
- \boldsymbol{H} : a Hilbert space $\subset \boldsymbol{B}$
- $\boldsymbol{\mu}$: the Wiener measure with

$$
\begin{gathered}
\int_{B} e^{\sqrt{-1}\langle x, \varphi\rangle} \mu(d x)=\exp \left\{-\frac{1}{2}|\varphi|_{H^{*}}^{2}\right\}, \\
\varphi \in B^{*} \subset H^{*}
\end{gathered}
$$

$\mathcal{F} C_{0}^{\infty}: f: B \rightarrow \mathbb{R}$ such that

$$
\begin{aligned}
f(x)= & F\left(\left\langle x, \varphi_{1}\right\rangle, \ldots,\left\langle x, \varphi_{n}\right\rangle\right), \\
& F \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right), \varphi_{1}, \ldots, \varphi_{n} \in B^{*}
\end{aligned}
$$

$L-V:$ Schrödinger operator on $L^{2}(\mu)$
L : the Ornstein-Uhlenbeck operator
\boldsymbol{V} : a scalar potential
Question:
Is $L-V$ essentially self-adjoin on $\mathcal{F} C_{0}^{\infty}$?
|| $\|_{2}: \boldsymbol{L}^{2}$-norm
$\boldsymbol{V}_{+}:=\max \{\boldsymbol{V}, 0\}$ (the positive part)
$V_{-}:=\max \{-\boldsymbol{V}, 0\}$ (the negative part)
Proposition 1.1. Assume

- $V_{+} \in L^{2+}=\bigcup_{p>2} L^{p}$,
- there exist $0<a<1, b>0$ such that

$$
\left\|V_{-} f\right\|_{2} \leq a\|L f\|_{2}+b\|f\|_{2} .
$$

Then $\boldsymbol{L}-\boldsymbol{V}$ is essentially selfadjoint on $\mathcal{F} C_{0}^{\infty}$.

What is sufficient for

$$
\left\|V_{-} f\right\|_{2} \leq a\|L f\|_{2}+b\|f\|_{2} ?
$$

(Defective) logarithmic Sobolev inequality

$$
\int_{B}|f|^{2} \log \left(|f| /\|f\|_{2}\right) d \mu \leq \alpha \mathcal{E}(f, f)+\beta\|f\|_{2}^{2}
$$

- $(\boldsymbol{B}, \boldsymbol{\mu})$: a probability space
- \mathcal{E} : a Dirichlet form
- L : the associated generator

We assume

- \mathcal{E} admits a square field operator Γ.
- \mathcal{E} has a local property.

Hence \mathcal{E} has the following form
(1.1)

$$
\mathcal{E}(f, g)=\int_{B} \Gamma(f, g) d \mu
$$

and $\boldsymbol{\Gamma}$ has the derivation property.
E.g. On an abstract Wiener space:

- $\Gamma(\boldsymbol{f}, \boldsymbol{g})=\nabla \boldsymbol{f} \cdot \nabla \boldsymbol{g}, \quad \nabla$: the gradient operator

Theorem 1.2. Assume

$$
\int_{B}|f|^{2} \log \left(|f| /\|f\|_{2}\right) d \mu \leq \alpha \mathcal{E}(f, f)+\beta\|f\|_{2}^{2}
$$

Then, for any $\boldsymbol{\varepsilon}>\mathbf{0}$, there exist positive constants $\boldsymbol{K}_{\mathbf{1}}$,
$\boldsymbol{K}_{\mathbf{2}}$ such that

$$
\begin{aligned}
& \int_{B} f^{2} \log _{+}^{2} f d \mu \\
& \quad \leq \alpha^{2}(1+\varepsilon)\|L f\|_{2}^{2}+K_{1}+K_{2}\|f\|_{2}^{6}
\end{aligned}
$$

cf. Feissner(1975), Bakry-Meyer(1982)

Hausdorff-Young inequality

Set

$$
\begin{aligned}
& \Phi(x)=x \log _{+}^{2} x, \quad \psi^{-1}(x)=\Phi^{\prime}(x) \\
& \psi(x)=e^{\sqrt{x+1}-1}
\end{aligned}
$$

Define the complimentary function

$$
\Psi(x)=\int_{0}^{x} \psi(y) d y
$$

Hausdorff-Young inequality:

$$
x y \leq \Phi(x)+\Psi(y) \leq x \log _{+}^{2} x+2 \sqrt{y} e^{\sqrt{y}}
$$

Theorem 1.3. Assume the logarithmic inequality

$$
\int_{B}|f|^{2} \log \left(|f| /\|f\|_{2}\right) d \mu \leq \alpha \mathcal{E}(f, f)+\beta\|f\|_{2}^{2}
$$

and $\boldsymbol{v} \geq \mathbf{0}$,

$$
e^{v} \in L^{2 \alpha+}=\bigcup_{p>2 \alpha} L^{p}
$$

Then, there exist constants $\mathbf{0}<\boldsymbol{a}<\mathbf{1}$ and $\boldsymbol{b} \geq \mathbf{0}$ such that
(1.2)

$$
\|v f\|_{2} \leq a\|L f\|_{2}+b\|f\|_{2}
$$

We now return to an abstract Wiener space.
Gross' logarithmic Sobolev inequality
$\int_{B}|f|^{2} \log \left(|f| /\|f\|_{2}\right) d \mu \leq \int_{B}|\nabla f|^{2} d \mu$
$\Rightarrow \int_{B} f^{2} \log _{+}^{2} f d \mu \leq(1+\varepsilon)\|L f\|_{2}^{2}+K_{1}+K_{2}\|f\|_{2}^{6}$.
Theorem 1.4. Assume

- $V_{+}, e^{V_{-}} \in L^{2+}$.

Then $\boldsymbol{L}-\boldsymbol{V}$ is essentially self-adjoint on $\mathcal{F} C_{0}^{\infty}$.
cf. Segal(1969), Glimm \& Jaffe(1970), Simon(1973),
Simon \& Høegh-Krohn(1972) ${ }_{10}$

2. Domain of Schrödinger operator

We consider a Schrödinger operator $\boldsymbol{\mathfrak { A }}=\boldsymbol{L}-\boldsymbol{V}+\boldsymbol{W}$ on an abstract Wiener space $(\boldsymbol{B}, \boldsymbol{H}, \boldsymbol{\mu})$.
$\underline{\text { Basic assumptions }}$
(A.1) $V \geq 1, V \in L^{2+}$.
(A.2) $\boldsymbol{W} \geq \mathbf{0}$ and there exists a constant $\mathbf{0}<\boldsymbol{\alpha}<\mathbf{1}$ such that $e^{W} \in L^{2 / \alpha}$.
$\Rightarrow \boldsymbol{A}=\boldsymbol{L}-\boldsymbol{V}+\boldsymbol{W}$ is essentially self-adjoint on $\mathcal{F} C_{0}^{\infty}$

Aim: To determine the domain, i.e., $\operatorname{Dom}(\boldsymbol{A})=\operatorname{Dom}(L) \cap \operatorname{Dom}(V)$

Main tools

- The Lax-Milgram theorem.
- The intertwining property, i.e.,

$$
\sqrt{V} \boldsymbol{A}=A \sqrt{V}
$$

How to define an operator A ?
We define a vector field \boldsymbol{b} by

$$
b=\frac{\nabla V}{2 V}=\frac{1}{2} \nabla \log V
$$

and a bilinear form $\mathcal{E}_{\boldsymbol{A}}$ by

$$
\begin{aligned}
\mathcal{E}_{A}(f, g)= & (\nabla f, \nabla g)+(b \cdot \nabla f, g) \\
& -(f, b \cdot \nabla g)+\left(\left(V-W-|b|^{2}\right) f, g\right)
\end{aligned}
$$

By a formal computation, the associated generator is given by
(2.1) $\quad \boldsymbol{A}=\boldsymbol{L}-\mathbf{2 b} \cdot \boldsymbol{\nabla}+\left(\nabla^{*} b-\boldsymbol{V}+\boldsymbol{W}+|\boldsymbol{b}|^{\mathbf{2}}\right)$.

Decompose $\mathcal{E}_{\boldsymbol{A}}$ as

$$
\mathcal{E}_{A}(f, g)=\hat{\mathcal{E}}_{A}(f, g)+\check{\mathcal{E}}_{A}(f, g)
$$

symmetric skew-symmetric
where

$$
\begin{aligned}
\hat{\mathcal{E}}_{A}(f, g) & =(\nabla f, \nabla g)+\left(\left(V-W-|b|^{2}\right) f, g\right) \\
\check{\mathcal{E}}_{A}(f, g) & =(b \cdot \nabla f, g)-(f, b \cdot \nabla g)
\end{aligned}
$$

Moreover, we set

$$
\hat{\mathcal{E}}_{A-\lambda}(f, g)=\hat{\mathcal{E}}_{A}(f, g)+\lambda(f, g)
$$

The bilinear form associated to $\boldsymbol{L}-\boldsymbol{V}$ is

$$
\mathcal{E}_{L-V}(f, g)=(\nabla f, \nabla g)+(V f, g)
$$

Clearly

$$
\operatorname{Dom}\left(\mathcal{E}_{L-V}\right)=\operatorname{Dom}(\nabla) \cap \operatorname{Dom}(\sqrt{V})
$$

We will show that $\operatorname{Dom}\left(\hat{\mathcal{E}}_{\boldsymbol{A}}\right)=\operatorname{Dom}\left(\mathcal{E}_{L-\boldsymbol{V}}\right)$.
$\underline{\text { Additional assumptions }}$
We assume either
(B.1)
$e^{W+|b|^{2}} \in L^{2 / \alpha}$
or there exists a constant $\boldsymbol{C}>\mathbf{0}$ such that
(B.2)
$|b|^{2} \leq \alpha V+C$.

Proposition 2.1. Assume (A.1), (A.2) and one of (B.1) and (B.2). Then there exists a constant $\boldsymbol{\beta}$ such that

$$
\begin{gathered}
\left(\boldsymbol{W}+|\boldsymbol{b}|^{2} f, f\right) \leq \underset{\alpha}{\boldsymbol{f}} \mathcal{E}_{L-V}(\boldsymbol{f}, \boldsymbol{f})+\boldsymbol{\beta}(\boldsymbol{f}, \boldsymbol{f}) \\
\text { appeared in (A.2) }
\end{gathered}
$$

and hence

$$
\begin{aligned}
(1-\alpha) \mathcal{E}_{L-V}(f, f) & \leq \hat{\mathcal{E}}_{A}(f, f)+\beta(f, f) \\
& \leq(1+\alpha) \mathcal{E}_{L-V}(f, f)+\beta(f, f)
\end{aligned}
$$

Therefore
$\operatorname{Dom}\left(\hat{\mathcal{E}}_{A}\right)=\operatorname{Dom}\left(\mathcal{E}_{L-V}\right)=\operatorname{Dom}(\nabla) \cap \operatorname{Dom}(\sqrt{V})$.

$\underline{\text { Estimate of } \check{\mathcal{E}}_{A}}$

Proposition 2.2. Assume (A.1), (A.2) and one of (B.1) and (B.2). Then, for sufficiently large $\boldsymbol{\lambda}$, there exists a constant $\boldsymbol{K}>\mathbf{0}$ such that

$$
\left|\check{\mathcal{E}}_{A}(f, g)\right| \leq K \hat{\mathcal{E}}_{A-\lambda}(f, f)^{1 / 2} \hat{\mathcal{E}}_{A-\lambda}(g, g)^{1 / 2}
$$

Therefore $\mathcal{E}_{\boldsymbol{A}}$ satisfies the sector condition.
$\mathcal{E}_{\boldsymbol{A}}=\hat{\mathcal{E}}_{\boldsymbol{A}}+\check{\mathcal{E}}_{\boldsymbol{A}}$ is a closed bilinear form.

Intertwining property

Instead of

$$
\sqrt{\boldsymbol{V}} \boldsymbol{\mathfrak { A }}=A \sqrt{\boldsymbol{V}}
$$

we show
(2.2)
$\mathcal{E}_{\mathfrak{A}}(f, \sqrt{\boldsymbol{V}} \boldsymbol{g})=\mathcal{E}_{\boldsymbol{A}}(\sqrt{\boldsymbol{V}} \boldsymbol{f}, \boldsymbol{g})$.
Proposition 2.3. Assume (A.1), (A.2) and one of (B.1) and (B.2). Then (2.2) holds for $\boldsymbol{f}, \boldsymbol{g} \in \mathcal{F} C_{0}^{\infty}$. Moreover, we have, for $\boldsymbol{f} \in \operatorname{Dom}(\boldsymbol{A}), \boldsymbol{g} \in \operatorname{Dom}\left(\boldsymbol{A}^{*}\right)$,
(2.3)
$(\boldsymbol{A} f, \sqrt{\boldsymbol{V}} \boldsymbol{g})=\left(\sqrt{\boldsymbol{V}} f, \boldsymbol{A}^{*} \boldsymbol{g}\right)$.

Domain of the Schrödinger operator

Theorem 2.4. Assume (A.1), (A.2) and one of (B.1) and (B.2). Then $\operatorname{Dom}(\boldsymbol{A})=\operatorname{Dom}(\boldsymbol{L}) \cap \operatorname{Dom}(\boldsymbol{V})$.
Moreover, for sufficiently large $\boldsymbol{\lambda}$, there exist positive constants $\boldsymbol{K}_{\mathbf{1}}, \boldsymbol{K}_{\mathbf{2}}$ such that

$$
\begin{aligned}
K_{1}\|(\mathfrak{A}-\lambda) f\|_{2} & \leq\|L f\|_{2}+\|V f\|_{2} \\
& \leq K_{2}\|(\mathfrak{A}-\lambda) f\|_{2} .
\end{aligned}
$$

Remark. $\boldsymbol{K}_{\mathbf{1}}, \boldsymbol{K}_{\mathbf{2}}$ depend only on constants in (A.1), (A.2), (B1), (B.2).

3. Spectral gap of Schrödinger operator

A Schrödinger operator $\boldsymbol{A}=\boldsymbol{L}-\boldsymbol{V}+\boldsymbol{W}$ on an abstract Wiener space $(\boldsymbol{B}, \boldsymbol{H}, \boldsymbol{\mu})$.
$\boldsymbol{\sigma}(\boldsymbol{\mathfrak { A }})$: the spectrum of $\boldsymbol{\mathfrak { A }}=\boldsymbol{L}-\boldsymbol{V}+\boldsymbol{W}$.
Bounded potential
Theorem 3.1. Assume \boldsymbol{V} is bounded and $\boldsymbol{W}=\mathbf{0}$. Then $\boldsymbol{l}=\sup \boldsymbol{\sigma}(\boldsymbol{A})$ is a point spectrum of multiplicity one and the associated eigenfunction can be chosen to be positive. Moreover, the spectrum is discrete on $(\boldsymbol{l}-\mathbf{1}, \boldsymbol{l}]$, i.e., it consists of point spectrums of finite multiplicity.

$\underline{\text { General potential }}$

Theorem 3.2. Assume (A.1), (A.2) and one of (B.1) and (B.2). Then $\boldsymbol{l}=\boldsymbol{\operatorname { s u p }} \boldsymbol{\sigma}(\boldsymbol{\mathfrak { A }})$ is a point spectrum of multiplicity one and the associated eigenfunction can be chosen to be positive. Moreover, the spectrum is discrete on $(\boldsymbol{l}-1, l]$, i.e., it consists of point spectrums of finite multiplicity.

Proof of Theorem 3.1

Approximation method
$\left\{\varphi_{i}\right\}_{i=1}^{\infty} \subseteq \boldsymbol{B}^{*}:$ a c.o.n.s of \boldsymbol{H}^{*}.
$\mathcal{F}_{n}:=\sigma\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}\right)$.
$\boldsymbol{V}_{n}=\boldsymbol{E}\left[\boldsymbol{V} \mid \mathcal{F}_{n}\right]$.
$\Rightarrow\left\{\begin{array}{l}\boldsymbol{\sigma}\left(\boldsymbol{L}-\boldsymbol{V}_{n}\right) \text { is discrete on }\left(\boldsymbol{\lambda}\left(\boldsymbol{V}_{n}\right)-1, \boldsymbol{\lambda}\left(\boldsymbol{V}_{n}\right)\right] \\ \text { where } \boldsymbol{\lambda}\left(\boldsymbol{V}_{n}\right)=\sup \sigma\left(\boldsymbol{L}-\boldsymbol{V}_{n}\right) .\end{array}\right.$

We set

$$
\begin{aligned}
& G^{(n)}=\left(\lambda-L+V_{n}\right)^{-1}, \\
& G=(\lambda-L+V)^{-1} .
\end{aligned}
$$

claim: $G^{(n)} \rightarrow G$ in norm sense

$$
G-G^{(n)}=G^{(n)}\left(V-V_{n}\right) G
$$

We show $\left\|\left(\boldsymbol{V}-\boldsymbol{V}_{\boldsymbol{n}}\right) \boldsymbol{G}\right\|_{\text {op }} \boldsymbol{\rightarrow} \mathbf{0}$.
By the logarithmic Sobolev inequality and the Hausdorff-Young inequality $\boldsymbol{x y} \leq \boldsymbol{x} \log \boldsymbol{x}-\boldsymbol{x}+e^{y}$

$$
\begin{aligned}
& \left\|\left(V-V_{n}\right) G f\right\|_{2}^{2} \\
& =E\left[\left(V-V_{n}\right)^{2}(G f)^{2}\right] \\
& =\frac{1}{N} E\left[N\left(V-V_{n}\right)^{2}(G f)^{2}\right] \\
& \leq \frac{1}{N} E\left[(G f)^{2} \log (G f)^{2}-(G f)^{2}+e^{\left.N\left(V-V_{n}\right)^{2}\right]}\right. \\
& \leq \frac{1}{N}\left\{2 E\left[\|\left. G G\right|^{2}\right]+\|G f\|_{2}^{2} \log \|G f\|_{2}^{2}\right. \\
& \left.\quad \quad-\|G f\|_{2}^{2}+E\left[e^{N\left(V-V_{n}\right)^{2}}\right]\right\} .
\end{aligned}
$$

Now replacing \boldsymbol{f} with $\boldsymbol{f} /\|\boldsymbol{G} \boldsymbol{f}\|_{\mathbf{2}}$,

$$
\begin{aligned}
& \left\|\left(V-V_{n}\right) G f\right\|_{2}^{2} \\
& \leq \frac{1}{N}\left\{2 E\left[|\nabla G f|^{2}\right]+E\left[e^{N\left(V-V_{n}\right)^{2}}-1\right]\|G f\|_{2}^{2}\right\} \\
& \leq \frac{1}{N}\left\{E\left[f^{2}\right]+E\left[(G f)^{2}\right]+E\left[|V|(G f)^{2}\right]\right. \\
& \left.\quad+E\left[e^{N\left(V-V_{n}\right)^{2}}-1\right]\|f\|_{2}^{2}\right\}
\end{aligned}
$$

$$
\leq \frac{1}{N}\left\{\left(2+\|V\|_{\infty}\right)\|f\|_{2}^{2}+E\left[e^{N\left(V-V_{n}\right)^{2}}-1\right]\|f\|_{2}^{2}\right\}
$$

Hence
$\left\|\left(V-V_{n}\right) G\right\|_{\mathrm{op}}^{2} \leq \frac{1}{N}\left\{2+\|V\|_{\infty}+E\left[e^{N\left(V-V_{n}\right)^{2}}-1\right]\right\}$.

Now letting $\boldsymbol{n} \rightarrow \infty$ and then letting $\boldsymbol{N} \rightarrow \infty$, we have

$$
\lim _{n \rightarrow \infty}\left\|\left(V-V_{n}\right) G\right\|_{\mathrm{op}}=0
$$

This completes the proof.

