Schrödinger operators on the Wiener space

Ichiro SHIGEKAWA

Kyoto University

August 10, 2004 Beijing Normal University

URL: http://www.math.kyoto-u.ac.jp/~ichiro/

Contents

- 1. Essential self-adjointness
- 2. Domain of Schrödinger operator
- 3. Spectral gap of Schrödinger operator

1. Essential self-adjointness

 (B, H, μ) : an abstract Wiener space

- **B**: a Banach space
- H: a Hilbert space $\subset B$
- μ : the Wiener measure with

$$egin{aligned} &\int_{B}e^{\sqrt{-1}\langle x,arphi
angle}\mu(dx)=\expig\{-rac{1}{2}|arphi|_{H^{*}}^{2}ig\},\ &arphi\in B^{*}\subset H^{*}. \end{aligned}$$

 $\mathcal{F}C_0^\infty$: $f\colon B o \mathbb{R}$ such that $f(x) = F(\langle x, arphi_1
angle, \dots, \langle x, arphi_n
angle),$ $F \in C_0^\infty(\mathbb{R}^n), \ arphi_1, \dots, arphi_n \in B^*.$

L - V: Schrödinger operator on $L^2(\mu)$

- L: the Ornstein-Uhlenbeck operator
- V: a scalar potential

Question:

Is L - V essentially self-adjoin on $\mathcal{F}C_0^{\infty}$?

- $\| \|_2$: L^2 -norm
- $V_+ := \max\{V, 0\}$ (the positive part)
- $V_{-} := \max\{-V, 0\}$ (the negative part)

Proposition 1.1. Assume

•
$$V_+ \in L^{2+} = \bigcup_{p>2} L^p$$
,

• there exist 0 < a < 1, b > 0 such that

$\|V_{-}f\|_{2} \leq a\|Lf\|_{2} + b\|f\|_{2}.$

Then L - V is essentially selfadjoint on $\mathcal{F}C_0^{\infty}$.

What is sufficient for

$$\|V_{-}f\|_{2} \leq a\|Lf\|_{2} + b\|f\|_{2}$$
 ?

(Defective) logarithmic Sobolev inequality

$$\int_B |f|^2 \log(|f|/\|f\|_2) \, d\mu \leq lpha \mathcal{E}(f,f) + eta \|f\|_2^2.$$

•
$$(B, \mu)$$
: a probability space

- $\boldsymbol{\mathcal{E}}$: a Dirichlet form
- L: the associated generator

We assume

- \mathcal{E} admits a square field operator Γ .
- \mathcal{E} has a **local property**.

Hence $\boldsymbol{\mathcal{E}}$ has the following form

(1.1)
$$\mathcal{E}(f,g) = \int_B \Gamma(f,g) d\mu$$

and Γ has the derivation property.

E.g. On an abstract Wiener space:

• $\Gamma(f,g) = \nabla f \cdot \nabla g$, ∇ : the gradient operator

Theorem 1.2. Assume

 $\int_B |f|^2 \log(|f|/\|f\|_2) \, d\mu \leq lpha \mathcal{E}(f,f) + eta \|f\|_2^2.$

Then, for any $\varepsilon > 0$, there exist positive constants K_1 , K_2 such that

$$egin{aligned} &\int_B f^2 \mathrm{log}_+^2 \, f \, d\mu \ &\leq lpha^2 (1+arepsilon) \|Lf\|_2^2 + K_1 + K_2 \|f\|_2^6. \end{aligned}$$

cf. Feissner (1975), Bakry-Meyer (1982)

Hausdorff-Young inequality

Set

$$egin{aligned} \Phi(x) &= x \log_+^2 x, \quad \psi^{-1}(x) = \Phi'(x), \ \psi(x) &= e^{\sqrt{x+1}-1}. \end{aligned}$$

Define the complimentary function

$$\Psi(x) = \int_0^x \psi(y) dy.$$

Hausdorff-Young inequality:

$$xy \leq \Phi(x) + \Psi(y) \leq x \log_+^2 x + 2 \sqrt{y} e^{\sqrt{y}}$$

Theorem 1.3. Assume the logarithmic inequality

$$\int_{B} |f|^2 \log(|f|/\|f\|_2) \, d\mu \leq lpha \mathcal{E}(f,f) + eta \|f\|_2^2$$

and $v \geq 0$,

$$e^v \in L^{2lpha +} = igcup_{p>2lpha} L^p.$$

Then, there exist constants 0 < a < 1 and $b \ge 0$ such that

(1.2)
$$||vf||_2 \leq a ||Lf||_2 + b ||f||_2.$$

We now return to an abstract Wiener space.

Gross' logarithmic Sobolev inequality

$$egin{aligned} &\int_B |f|^2 \log(|f|/\|f\|_2) \, d\mu \leq \int_B |
abla f|^2 \, d\mu \ &\Rightarrow \int_B f^2 \log_+^2 f \, d\mu \leq (1+arepsilon) \|Lf\|_2^2 + K_1 + K_2 \|f\|_2^6. \end{aligned}$$

Theorem 1.4. Assume

$$ullet$$
 $V_+, \, e^{V_-} \in L^{2+}$

Then L - V is essentially self-adjoint on $\mathcal{F}C_0^{\infty}$.

cf. Segal(1969), Glimm & Jaffe(1970), Simon(1973), Simon & Høegh-Krohn(1972)₁₀

2. Domain of Schrödinger operator

We consider a Schrödinger operator $\mathfrak{A} = L - V + W$ on an abstract Wiener space (B, H, μ) .

Basic assumptions

(A.1)
$$V \ge 1, V \in L^{2+}$$
.

(A.2) $W \ge 0$ and there exists a constant $0 < \alpha < 1$ such that $e^W \in L^{2/\alpha}$.

 $\Rightarrow \mathfrak{A} = L - V + W$ is essentially self-adjoint on $\mathcal{F}C_0^\infty$

Aim: To determine the domain, i.e., $\operatorname{Dom}(\mathfrak{A}) = \operatorname{Dom}(L) \cap \operatorname{Dom}(V)$

Main tools

- The Lax-Milgram theorem.
- The intertwining property, i.e.,

$$\sqrt{V}\mathfrak{A} = A\sqrt{V}.$$

We define a vector field \boldsymbol{b} by

$$b = rac{
abla V}{2V} = rac{1}{2}
abla \log V.$$

and a bilinear form \mathcal{E}_A by

$$egin{aligned} \mathcal{E}_A(f,g) &= (
abla f,
abla g) + (b \cdot
abla f,g) \ &- (f,b \cdot
abla g) + ((V-W-|b|^2)f,g). \end{aligned}$$

By a formal computation, the associated generator is given by

(2.1)
$$A = L - 2b \cdot \nabla + (\nabla^* b - V + W + |b|^2).$$

Decompose \mathcal{E}_A as

$$\mathcal{E}_A(f,g) = \hat{\mathcal{E}}_A(f,g) + \check{\mathcal{E}}_A(f,g)$$

symmetric skew-symmetric

where

$$egin{aligned} \hat{\mathcal{E}}_A(f,g) &= (
abla f,
abla g) + ((V-W-|b|^2)f,g), \ \check{\mathcal{E}}_A(f,g) &= (b \cdot
abla f,g) - (f,b \cdot
abla g). \end{aligned}$$

Moreover, we set

$$\hat{\mathcal{E}}_{A-\lambda}(f,g) = \hat{\mathcal{E}}_A(f,g) + \lambda(f,g).$$

The bilinear form associated to L - V is

$$\mathcal{E}_{L-V}(f,g) = (
abla f,
abla g) + (Vf,g).$$

Clearly

$\operatorname{Dom}(\mathcal{E}_{L-V}) = \operatorname{Dom}(\nabla) \cap \operatorname{Dom}(\sqrt{V}).$ We will show that $\operatorname{Dom}(\hat{\mathcal{E}}_A) = \operatorname{Dom}(\mathcal{E}_{L-V}).$

Additional assumptions

We assume either

$$(\mathbf{B.1}) \qquad \qquad e^{W+|b|^2} \in L^{2/\alpha}$$

or there exists a constant C > 0 such that

$$(B.2) |b|^2 \le \alpha V + C.$$

Proposition 2.1. Assume (A.1), (A.2) and one of (B.1) and (B.2). Then there exists a constant β such that

$$egin{aligned} & (W+|b|^2f,f) \leq lpha \mathcal{E}_{L-V}(f,f) + eta(f,f) \ & ext{appeared in (A.2)} \end{aligned}$$

and hence

$$egin{aligned} (1-lpha)\mathcal{E}_{L-V}(f,f) &\leq \hat{\mathcal{E}}_A(f,f) + eta(f,f) \ &\leq (1+lpha)\mathcal{E}_{L-V}(f,f) + eta(f,f). \end{aligned}$$

Therefore

$$\operatorname{Dom}(\hat{\mathcal{E}}_A) = \operatorname{Dom}(\mathcal{E}_{L-V}) = \operatorname{Dom}(\nabla) \cap \operatorname{Dom}(\sqrt{V}).$$

Estimate of $\check{\mathcal{E}}_A$

Proposition 2.2. Assume (A.1), (A.2) and one of (B.1) and (B.2). Then, for sufficiently large λ , there exists a constant K > 0 such that

$$|\check{\mathcal{E}}_A(f,g)| \leq K \hat{\mathcal{E}}_{A-\lambda}(f,f)^{1/2} \hat{\mathcal{E}}_{A-\lambda}(g,g)^{1/2}$$

Therefore \mathcal{E}_A satisfies the sector condition.

 $\mathcal{E}_A = \hat{\mathcal{E}}_A + \check{\mathcal{E}}_A$ is a closed bilinear form.

Intertwining property

Instead of

 $\sqrt{V\mathfrak{A}} = A\sqrt{V}.$

we show

(2.2)
$$\mathcal{E}_{\mathfrak{A}}(f,\sqrt{V}g) = \mathcal{E}_A(\sqrt{V}f,g).$$

Proposition 2.3. Assume (A.1), (A.2) and one of (B.1) and (B.2). Then (2.2) holds for $f,g \in \mathcal{F}C_0^{\infty}$. Moreover, we have, for $f \in \text{Dom}(\mathfrak{A}), g \in \text{Dom}(A^*)$,

(2.3)
$$(\mathfrak{A}f, \sqrt{V}g) = (\sqrt{V}f, A^*g).$$

Theorem 2.4. Assume (A.1), (A.2) and one of (B.1) and (B.2). Then $\text{Dom}(\mathfrak{A}) = \text{Dom}(L) \cap \text{Dom}(V)$. Moreover, for sufficiently large λ , there exist positive constants K_1 , K_2 such that

 $egin{aligned} K_1 \| (\mathfrak{A}-\lambda)f \|_2 &\leq \|Lf\|_2 + \|Vf\|_2 \ &\leq K_2 \| (\mathfrak{A}-\lambda)f \|_2. \end{aligned}$

Remark. K_1 , K_2 depend only on constants in (A.1), (A.2), (B1), (B.2).

3. Spectral gap of Schrödinger operator

A Schrödinger operator $\mathfrak{A} = L - V + W$ on an abstract Wiener space (B, H, μ) .

 $\sigma(\mathfrak{A})$: the spectrum of $\mathfrak{A} = L - V + W$.

Bounded potential

Theorem 3.1. Assume V is bounded and W = 0. Then $l = \sup \sigma(\mathfrak{A})$ is a point spectrum of multiplicity one and the associated eigenfunction can be chosen to be positive. Moreover, the spectrum is discrete on (l-1, l], i.e., it consists of point spectrums of finite multiplicity.

General potential

Theorem 3.2. Assume (A.1), (A.2) and one of (B.1) and (B.2). Then $l = \sup \sigma(\mathfrak{A})$ is a point spectrum of multiplicity one and the associated eigenfunction can be chosen to be positive. Moreover, the spectrum is discrete on (l - 1, l], i.e., it consists of point spectrums of finite multiplicity.

Proof of Theorem 3.1

Approximation method

$$\{ arphi_i \}_{i=1}^{\infty} \subseteq B^*$$
: a c.o.n.s of H^* .
 $\mathcal{F}_n := \sigma(arphi_1, arphi_2, \dots, arphi_n)$.
 $V_n = E[V|\mathcal{F}_n]$.
 $\Rightarrow \left\{ egin{array}{l} \sigma(L - V_n) ext{ is discrete on } (\lambda(V_n) - 1, \lambda(V_n)] \\ ext{ where } \lambda(V_n) = \sup \sigma(L - V_n). \end{array}
ight.$

We set

$$egin{aligned} G^{(n)} &= (\lambda-L+V_n)^{-1}, \ G &= (\lambda-L+V)^{-1}. \end{aligned}$$

<u>claim</u>: $G^{(n)} \rightarrow G$ in norm sense

$$G - G^{(n)} = G^{(n)}(V - V_n)G.$$

We show $\|(V - V_n)G\|_{op} \to 0$. By the logarithmic Sobolev inequality and the Hausdorff-Young inequality $xy \leq x \log x - x + e^y$

$$egin{aligned} &\|(V-V_n)Gf\|_2^2\ &=E[(V-V_n)^2(Gf)^2]\ &=rac{1}{N}E[N(V-V_n)^2(Gf)^2]\ &\leqrac{1}{N}E[(Gf)^2\log(Gf)^2-(Gf)^2+e^{N(V-V_n)^2}]\ &\leqrac{1}{N}\{2E[|
abla Gf||^2]+\|Gf\|_2^2\log\|Gf\|_2^2\ &-\|Gf\|_2^2+E[e^{N(V-V_n)^2}]\}. \end{aligned}$$

Now replacing f with $f/||Gf||_2$,

$$egin{aligned} &\|(V-V_n)Gf\|_2^2\ &\leq rac{1}{N}\{2E[|
abla Gf|^2]+E[e^{N(V-V_n)^2}-1]\|Gf\|_2^2\}\ &\leq rac{1}{N}\{E[f^2]+E[(Gf)^2]+E[|V|(Gf)^2]\ &+E[e^{N(V-V_n)^2}-1]\|f\|_2^2\}\ &\leq rac{1}{N}\{(2+\|V\|_\infty)\|f\|_2^2+E[e^{N(V-V_n)^2}-1]\|f\|_2^2\}. \end{aligned}$$

Hence

$$\|(V-V_n)G\|_{ ext{op}}^2 \leq rac{1}{N}\{2+\|V\|_\infty+E[e^{N(V-V_n)^2}-1]\}.$$

Now letting $n \to \infty$ and then letting $N \to \infty$, we have $\lim_{n \to \infty} \|(V - V_n)G\|_{\mathrm{op}} = 0.$

This completes the proof.