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The following norm equivalence is well-known on the Euclidean space:

‖
√

−�f‖p ∼ ‖∇f‖p. (1)

Here, � denotes the Laplacian, ‖ · ‖p denotes the Lp norm (1 < p < ∞) and the notation
A ∼ B means that cA ≤ B ≤ CA for some constants c > 0 and C > 0 which is inde-
pendent of f . This equivalence leads the Lp-boundedness of the Riesz transform, which
is formally expressed by ∇√−�−1

. Moreover the equivalence is extended to Riemannian
manifolds (at least compace case).

In this talk, we extend this equiavlence to the case of Schrödinger operator �− V on
a Riemannian manifold M . Here � is the Laplace-Beltrami operator and V is a scalar
function. We assume the following. First, the Ricci curvature is bounded from below.
Second, the potential function V is bounded from below. By adding a positive constant,
we can and do assume that V is uniformly positive. This is just for notational convenience.
We further assume that ∇V/max{V, 1} and �V/max{V, 1} are bounded. Under these
condtions we have the following

Theorem 1. For 1 < p < ∞, the following norm equivalence holds

‖
√

V −�f‖p ∼ ‖∇f‖p + ‖
√

V f‖p, ∀f ∈ C∞
0 (M). (2)

To show the theorem above, the following two properties are fundamental.

• the intertwining property

• the Littlewood-Paley inequality

The first one takes the following form.
√

V (�− V ) = A
√

V . (3)

The operator A satisfying this condition is given by

A = � + b − 1

2
∇∗b +

1

4
|b|2 − V (4)

where b = −∇V/V .
To state the second one, we need to introduce the Littlewood-Paley G-functions. They

are defined as follows:

G→f(x) =
{∫ ∞

0

t|∂te
−t

√
V −�f(x)|2dt

}1/2

,

G↑f(x) =
{∫ ∞

0

t|∇e−t
√

V −�f(x)|2dt
}1/2

,

GV f(x) =
{∫ ∞

0

t|
√

V e−t
√

V −�f(x)|2dt
}1/2

.

We have the following domination which is called the Littlewood-Paley inequality.
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Proposition 2. For 1 < p < ∞, it holds that

‖f‖p � ‖G→f‖p,� ‖f‖p

‖G↑f‖p � ‖f‖p,

‖GV f‖p � ‖f‖p.

Here the notation A � B means that A ≤ CB for some constants C > 0 which is
independent of f .

To combine this with the intertwining property, we need to introduce the Littlewood-
Paley G-functions for the operator A. To do this, we just replace � − V with A and
denote the Littlewood-Paley G-functions by G→

A , G↑
A, etc. Similar inequality holds for A,

e.g., ‖f‖p � ‖G→
A f‖p � ‖f‖p. The intertwining property yields that G→

A

√
V f = GV f .

Using this relation, we can show that

‖
√

V f‖p � ‖
√

V −�f‖p.

Remaining inequality can be shown similarly.

So far, we have considered
√

V −�. If we consider �− V itself, then we have

Theorem 3. For 1 < p < ∞, the following norm equivalence holds

‖(�− V )f‖p ∼ ‖�f‖p + ‖V f‖p, ∀f ∈ C∞
0 (M). (5)

We can also extend the above theorem for the Hodeg-Kodaira operator dd∗ + d∗d plus
the potential V . In this case, we need the positivity of the Riemannian curvature.
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