One dimensional diffusions conditioned to be non-explosive^{*}

Ichiro Shigekawa[†] (Kyoto University)

We consider one dimensional diffusions conditioned to be non-explosive. Suppose we are given a diffusion process $\{X_t, P_x\}$ on a state space D. Let ζ be its explosion time. If $P_x[\zeta = \infty] > 0$, then the measure conditioned to be non-explosive is defied by

$$P_x[\cdot | \zeta = \infty] = P_x[\cdot \cap \zeta = \infty] / P_x[\zeta = \infty].$$

If $P_x[\zeta = \infty] = 0$, then the measure conditioned to be non-explosive is defined as the limit

$$\lim_{T \to \infty} P_x[\cdot |\zeta > T]. \tag{1}$$

If the limit exists and the limit is a diffufin process, we call it a *surviving diffusion*. We are interested in the following problems:

- 1. When does the surviving diffusion?
- 2. Characterization of the surviving diffusion.

Since

$$E_x[\cdot |\zeta > T] = E_x \left[\cdot \frac{1_{\{\zeta > t\}} P_{X_t}[\zeta > T - t]]}{P_x[\zeta > T]} \right],$$

our problem is reduce to show the existence of the limit

$$M_t = \lim_{T \to \infty} \frac{\mathbb{1}_{\{\zeta > t\}} E_{X_t}[\zeta > T - t]}{P_x[\zeta > T]}$$
(2)

and to show that (M_t) is a martingale. To do this, we show that there exist a λ -harmonic function φ so that

$$\lim_{T \to \infty} \frac{P_y[\zeta > T - t]}{P_x[\zeta > T]} = \frac{\varphi(y)e^{-\lambda t}}{\varphi(x)}.$$
(3)

We consider one dimensional (minimal) diffusions on an interval (l_1, l_2) . The problem is divided into sevral cases according to the classification of the boundary. The the surviving diffusion is characterized as a *h*-transform of the original process by the λ -harmonic function φ .

^{*}February 21-24, 2006, "Stochastic Analysis for Markov processes and its applications" at Kansai University

[†]E-mail: ichiro@math.kyoto-u.ac.jp URL: http://www.math.kyoto-u.ac.jp/~ichiro