Kolmogorov-Pearson diffusions and hypergeometric functions

Ichiro Sнigeкawa (Kyoto University) October 16, 2017, Ritsumeikan University Stochastic analysis and related topics

URL: http://www.math.kyoto-u.ac.jp/~ichiro/

Contents

1 1-dimensional diffusion processes

- 2 Doob's *h*-transformation
- 3 Black-Scholes family
- 4 Jacobi family
- 5 Fisher family
- 6 Student family

1-dimensional diffusion processes

General form of a generator:

$$\mathfrak{A} = a\frac{d^2}{dx^2} + b\frac{d}{dx}.$$
 (1)

Definition 1

If *a* is quadratic and *b* is linear, then the associated diffusion process is called a **Kolmogorov-Pearson diffusion**.

The speed measure of a Kolmogorov-Pearson diffusion is of a Pearson distribution.

Several expressions of a generator are known.

Feller's expression

Suppose we are given two smooth positive functions a and ρ on an interval I. Define a speed measure dm and a scale function s by

$$dm = \rho dx \tag{2}$$

and

$$s' = \frac{1}{a\rho}.$$
 (3)

So two functions a, ρ determine a diffusion.

The generator \mathfrak{A} can be written as follows:

$$\mathfrak{A} = \frac{d}{dm}\frac{d}{ds} = \frac{1}{\rho}\frac{d}{dx}a\rho\frac{d}{dx}$$
$$= a\frac{d^2}{dx^2} + \frac{(a\rho)'}{\rho}\frac{d}{dx}$$
$$= a\frac{d^2}{dx^2} + (a' + a(\log\rho)')\frac{d}{dx}$$

In expression of (1), b is given as

$$b = \frac{(a\rho)'}{\rho} = a' + a(\log \rho)' \tag{4}$$

	generator	dual operator	differentiation
Kolmogorov	$a\frac{d^2}{dx^2} + b\frac{d}{dx}$		
Feller	$\frac{d}{dm}\frac{d}{ds}$	$\frac{d}{dm} = -\frac{d}{ds}^*$	$\frac{d}{ds}: L^2(dm) \to L^2(ds)$
Stein	$\Big(a\frac{d}{dx}+b\Big)\frac{d}{dx}$	$a\frac{d}{dx} + b = -\frac{d}{dx}^*$	$\frac{d}{dx} \colon L^2(\rho) \to L^2(a\rho)$

By the Feller's duality and the Stein's duality, we can get the following pairings:

Feller's pair	$\frac{d}{dm}\frac{d}{ds}\longleftrightarrow \frac{d}{ds}\frac{d}{dm}$	
Stein's pair	$(a\frac{d}{dx}+b)\frac{d}{dx} \iff \frac{d}{dx}(a\frac{d}{dx}+b)$	b)

These pairs have a feature that they have the same spectrum except for 0. This is called a supersymmetry. Further we have

- If *f* is an eigenfunction, then so are f', $\frac{d}{ds}f$.
- If θ is an eigenfunction, then so are $a\theta' + b\theta$, $\frac{d}{dm}\theta$.

We can classify the diffusions according to the form of a. Based on the degree of a, we have the following six cases.

(I) a = 1 on $(-\infty, \infty)$ (II) a = x on $(0, \infty)$ (III-1) $a = x^2$ on $(0, \infty)$ (III-2-a) a = x(1 - x) on (0, 1)(III-2-b) a = x(x + 1) on $(0, \infty)$ (III-3) $a = x^2 + 1$ on $(-\infty, \infty)$

	complete family	incomplete family		special function		
α -family	<i>a</i> = 1					
β -family	a = x	$a = x^2$		$_{0}F_{1}, _{1}F_{1}$		
γ -family	a = x(1 - x)	a = x(1+x)	$a = 1 + x^2$	$_2F_1$		

To sum up, we have

Further, associated speed measures are given as follows:

	complete family	incomplete family		
α -family	$e^{\beta x^2/2}$			
β -family	$x^{lpha}e^{eta x}$	$x^{\alpha}e^{\beta/x}$		
γ -family	$x^{\alpha}(1-x)^{\beta}$	$x^{\alpha}(1+x)^{\beta}$	$(1+x^2)^{\alpha} \exp\{2\beta \arctan x\}$	

Doob's *h*-transformation

To observe the spectrum, Doob's h-transformation is an important tool. It gives a unitary equivalence with other operator. It's based on a harmonic function. We give a typical example.

Theorem 2

Setting $\varphi = \rho^{-1}$, we have

$$\mathfrak{A}\varphi = (a^{\prime\prime} - b^{\prime})\varphi.$$
 (5)

From our assumption, a'' - b' is a constant. Hence φ is a harmonic function.

Using this fact, we can show the following.

Theorem 3

The following operator

$$\tilde{\mathfrak{A}} = a \frac{d^2}{dx^2} + (2a' - b) \frac{d}{dx} + (a'' - b')$$
(6)

in a Hilbert space $L^2(\rho^{-1} dx)$ has the same spectrum as \mathfrak{A} .

In fact, we have the following commutative diagram.

$$L^{2}(I; \rho \, dx) \xrightarrow{\mathfrak{A}} L^{2}(I; \rho \, dx)$$

$$J \uparrow \qquad \uparrow J \qquad (7)$$

$$L^{2}(I; \rho^{-1} \, dx) \xrightarrow{\tilde{\mathfrak{A}}} L^{2}(I; \rho^{-1} \, dx)$$

Black-Scholes family

Our generator is of the form

$$\mathfrak{A} = x^2 \frac{d}{dx^2} + (\alpha x - \beta) \frac{d}{dx}.$$
 (8)

When $\beta = 0$, the associated diffusion is the Black-Scholes model. So we call this class as Black-Scholes family.

Case $\beta = 0$

The generator is of the form:

$$\mathfrak{A} = x^2 \frac{d}{dx^2} + \alpha x \frac{d}{dx}.$$
(9)

The spectrum is given by

$$\sigma(\mathfrak{A}) = (-\infty, -\frac{1}{4}(\alpha - 1)^2]$$
(10)

Case $\beta = -1$

The generator is of the form:

$$\mathfrak{A} = x^2 \frac{d}{dx^2} + (\alpha x + 1) \frac{d}{dx}.$$
 (11)

For $n = 0, 1, 2, \ldots$, define $\lambda_n(\alpha)$ by

$$\lambda_n(\alpha) = n(n-1+\alpha). \tag{12}$$

Then the spectrum is given by

$$\sigma_{\text{ess}}(\mathfrak{A}) = (-\infty, -\frac{1}{4}(\alpha - 1)^2]$$
$$\sigma_{\text{p}}(\mathfrak{A}) = \{\lambda_n(\alpha); \ 0 \le n < \frac{1 - \alpha}{2}\}$$

The associated eigenfunction is given by

$$P_{n}^{(\alpha)}(x) = x^{n} L_{n}^{(1-2n-\alpha)} \left(\frac{1}{x}\right).$$
(13)

Here, $L_n^{(1-2n-\alpha)}$ is a Laguerre polynomial.

Case $\beta = 1$

The generator is of the form:

$$\mathfrak{A} = x^2 \frac{d}{dx^2} + (\alpha x - 1) \frac{d}{dx}.$$
 (14)

For $n = 1, 2, \ldots$, define $\xi_n(\alpha)$ by

$$\xi_n(\alpha) = n(n+1-\alpha) \tag{15}$$

Then the spectrum is given as

$$\sigma_{\text{ess}}(\mathfrak{A}) = (-\infty, -\frac{1}{4}(\alpha - 1)^2]$$
$$\sigma_{\text{p}}(\mathfrak{A}) = \{\xi_n(\alpha); \ 1 \le n < \frac{\alpha - 1}{2}\}.$$

The associated eigenfunction is given by

$$x^{-\alpha+2}e^{-1/x}P_{n-1}^{(4-\alpha)}(x) = x^{n-\alpha+1}e^{-1/x}L_{n-1}^{(\alpha-2n-1)}\left(\frac{1}{x}\right).$$

Here $L_{n-1}^{(\alpha-2n-1)}$ is a Laguerre polynomial.

$\mathfrak{G} = x^2 \frac{d^2}{dx^2} + \alpha x \frac{d}{dx}$	[$ \rightarrow \alpha$
-16 -14 -12 -10 -8 -6	-4 -2 $-5 -$	2 4	68	10 12	14	16
	-10 -					
	-15 -					
	-20					
	-25 -					
	-30					
	-35					
	-40					
	-45					
	-50 -					
	-55 -					
	-60					

Jacobi family

(III-2-a)
$$a = x(1 - x), I = (0, 1)$$

Our generator is of the form

$$\mathfrak{A} = x(1-x)\frac{d^2}{dx^2} + ((\alpha+1)(1-x) - (\beta+1))x)\frac{d}{dx}.$$
 (16)

We call this family as Jacobi family since eigenfunctions are Jacobi polynomials.

Case $\alpha > -1, \beta > -1$.

For $n = 0, 1, 2, \ldots$ define λ_n by

$$\lambda_n(\alpha,\beta) = -n(n+\alpha+\beta+1). \tag{17}$$

The spectrum is given by

$$\sigma(\mathfrak{A}) = \{\lambda_n(\alpha, \beta); n = 0, 1, 2, \dots\}.$$
 (18)

The associated eigenfunction is given by

$$K(\alpha, \beta, n; x) = {}_2F_1(-n, \alpha + \beta + n + 1; \alpha + 1; x)$$

Here $_2F_1$ is a hypergeometric function. Since *n* is an integer, $K(\alpha, \beta, n; x)$ is a polynomial. In this case we have a complete basis of polynomials.

Other cases can be obtained similarly.

To sum up, we have the following picture of spectra. Here we choose α as a parameter and restrict to the case $\beta = \alpha + 3$.

The Stein's correspondence of differentiation is shown as

Fisher family

(III-2-b) $a = x(1 + x), I = [0, \infty)$

The generator is given by

$$\mathfrak{A} = x(1+x)\frac{d^2}{dx^2} + ((\alpha+1)(1+x) + (\beta+1))x)\frac{d}{dx}.$$
 (19)

We call this family as Fisher family since speed mesures are of Fisher distribution.

Case $\alpha > -1$

The condition $\alpha > -1$ corresponds to that the boundary 0 is entrance.

For $n = 0, 1, 2, \dots$, define $\lambda_n(\alpha, \beta) = \left(n - \frac{|\beta| + \beta}{2}\right)\left(n + \alpha - \frac{|\beta| - \beta}{2} + 1\right) = \begin{cases} (n - \beta)(n + \alpha + 1), \\ n(n + \alpha + \beta + 1), \end{cases}$

Then

Theorem 4

The spectrum of \mathfrak{A} is given as

$$\sigma_{ess}(\mathfrak{A}) = \left(-\infty, -\frac{(\alpha + \beta + 1)^2}{4}\right]$$
$$\sigma_{\rho}(\mathfrak{A}) = \{\lambda_n(\alpha, \beta); \ 0 \le n < \left[\frac{-\alpha + |\beta| - 1}{2}\right]$$

Case $\alpha < 0$

The condition $\alpha < 0$ corresponds to that the boundary 0 is exit.

For $n = 1, 2, \ldots$, define

$$\xi_n(\alpha,\beta) = \left(n - \frac{|\beta| - \beta}{2}\right) \left(n - \alpha - \frac{|\beta| + \beta}{2} + 1\right)$$
$$= \begin{cases} n(n - \alpha - \beta - 1), & \beta \ge 0, \\ (n + \beta)(n - \alpha - 1), & \beta \le 0. \end{cases}$$

Then

Theorem 5

The spectrum of \mathfrak{A} is given as

$$\sigma_{ess}(\mathfrak{A}) = \left(-\infty, -\frac{(\alpha+\beta+1)^2}{4}\right]$$
$$\sigma_{\rho}(\mathfrak{A}) = \{\xi_n(\alpha, \beta); \ 1 \le n < \left[\frac{\alpha+|\beta|+1}{2}\right]\}$$

Student family

The generator is given by

$$\mathfrak{A} = (1+x^2)\frac{d^2}{dx^2} + (2(\alpha+1)x+2\beta)\frac{d}{dx}.$$
 (20)

We call this family as Student family since speed mesures are of student's *t*-distribution when $\beta = 0$.

Theorem 6

The spectrum of \mathfrak{A} is as follows: For the essential spectrum,

$$\sigma_{ess}(\mathfrak{A}) = \left(-\infty, -(\alpha + \frac{1}{2})^2\right].$$
 (21)

For the point spectrum, in the case $\alpha < -\frac{1}{2}$, it consists of

$$\lambda_n(\alpha) = n(n+2\alpha+1), \quad 0 \le n < -\alpha - \frac{1}{2}$$
(22)

and in the case of $\alpha > \frac{1}{2}$, it consists of

$$\xi_n(\alpha) = n(n-2\alpha-1), \quad 1 \le n < \alpha + \frac{1}{2}.$$
 (23)

There is no point spectrum when $-\frac{1}{2} \le \alpha \le \frac{1}{2}$.

The associated eigenfunction is given by

$$x\mapsto K(\alpha+i\beta,\alpha-i\beta,n,\frac{1-ix}{2}).$$

We draw a picture for a fixed β .

Thank you very much