Kolmogorov-Pearson diffusions and hypergeometric functions

Ichiro Shigekawa (Kyoto University)
October 16, 2017, Ritsumeikan University
Stochastic analysis and related topics
URL: http://www.math.kyoto-u.ac.jp/iichiro/

Contents

1 1-dimensional diffusion processes
2 Doob's \boldsymbol{h}-transformation

3 Black-Scholes family
4 Jacobi family
5 Fisher family
6 Student family

1-dimensional diffusion

processes

Generator

General form of a generator:

$$
\begin{equation*}
\mathfrak{A}=a \frac{d^{2}}{d x^{2}}+b \frac{d}{d x} . \tag{1}
\end{equation*}
$$

Definition 1

If \boldsymbol{a} is quadratic and \boldsymbol{b} is linear, then the associated diffusion process is called a Kolmogorov-Pearson diffusion.

The speed measure of a Kolmogorov-Pearson diffusion is of a Pearson distribution.

Several expressions of a generator are known.

Feller's expression

Suppose we are given two smooth positive functions a and ρ on an interval \boldsymbol{I}. Define a speed measure $\boldsymbol{d m}$ and a scale function s by

$$
\begin{equation*}
d m=\rho d x \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
s^{\prime}=\frac{1}{a \rho} . \tag{3}
\end{equation*}
$$

So two functions $\boldsymbol{a}, \boldsymbol{\rho}$ determine a diffusion.

The generator \mathfrak{A} can be written as follows:

$$
\begin{aligned}
\mathfrak{A} & =\frac{d}{d m} \frac{d}{d s}=\frac{1}{\rho} \frac{d}{d x} a \rho \frac{d}{d x} \\
& =a \frac{d^{2}}{d x^{2}}+\frac{(a \rho)^{\prime}}{\rho} \frac{d}{d x} \\
& =a \frac{d^{2}}{d x^{2}}+\left(a^{\prime}+a(\log \rho)^{\prime}\right) \frac{d}{d x}
\end{aligned}
$$

In expression of (1), \boldsymbol{b} is given as

$$
\begin{equation*}
b=\frac{(a \rho)^{\prime}}{\rho}=a^{\prime}+a(\log \rho)^{\prime} \tag{4}
\end{equation*}
$$

Expressions of the generator

	generator	dual operator	differentiation
Kolmogorov	$a \frac{d^{2}}{d x^{2}}+b \frac{d}{d x}$		
Feller	$\frac{d}{d m} \frac{d}{d s}$	$\frac{d}{d m}=-\frac{d^{*}}{d s}$	$\frac{d}{d s}: L^{2}(d m) \rightarrow L^{2}(d s)$
Stein	$\left(a \frac{d}{d x}+b\right) \frac{d}{d x}$	$a \frac{d}{d x}+b=-\frac{d^{*}}{d x}$	$\frac{d}{d x}: L^{2}(\rho) \rightarrow L^{2}(a \rho)$

By the Feller's duality and the Stein's duality, we can get the following pairings:

These pairs have a feature that they have the same spectrum except for $\mathbf{0}$. This is called a supersymmetry.
Further we have

- If f is an eigenfunction, then so are $f^{\prime}, \frac{d}{d s} f$.
$■$ If $\boldsymbol{\theta}$ is an eigenfunction, then so are $\boldsymbol{a} \boldsymbol{\theta}^{\prime}+\boldsymbol{b} \boldsymbol{\theta}, \frac{\boldsymbol{d}}{\boldsymbol{d m}} \boldsymbol{\theta}$.

Classification of the diffusions

We can classify the diffusions according to the form of \boldsymbol{a}.
Based on the degree of \boldsymbol{a}, we have the following six cases.

$$
\begin{array}{rl}
\text { (I) } a=1 \text { on }(-\infty, \infty) \\
\text { (II) } a=x \text { on }(0, \infty) \\
\text { (III-1) } a=x^{2} \text { on }(0, \infty) \\
\text { (III-2-a) } a=x(\mathbf{1}-\boldsymbol{x}) \text { on }(\mathbf{0}, \mathbf{1}) \\
\text { (III-2-b) } a & a=x(x+1) \text { on }(0, \infty) \\
\text { (III-3) } & a=x^{2}+1 \text { on }(-\infty, \infty)
\end{array}
$$

To sum up, we have

	complete family	incomplete family		special function
α-family	$a=1$			
β-family	$a=x$	$a=x^{2}$		${ }_{0} F_{1},{ }_{1} F_{1}$
γ-family	$a=x(1-x)$	$a=x(1+x)$	$a=1+x^{2}$	${ }_{2} F_{1}$

Further, associated speed measures are given as follows:

	complete family	incomplete family	
α-family	$e^{\beta x^{2} / 2}$		
β-family	$x^{\alpha} e^{\beta x}$	$x^{\alpha} e^{\beta / x}$	
γ-family	$x^{\alpha}(1-\boldsymbol{x})^{\beta}$	$x^{\alpha}(1+\boldsymbol{x})^{\beta}$	$\left(1+x^{2}\right)^{\alpha} \exp \{2 \beta \arctan \boldsymbol{x}\}$

Doob's \boldsymbol{h}-transformation

To observe the spectrum, Doob's \boldsymbol{h}-transformation is an important tool. It gives a unitary equivalence with other operator. It's based on a harmonic function. We give a typical example.

Theorem 2

Setting $\varphi=\rho^{-1}$, we have

$$
\begin{equation*}
\mathfrak{A} \varphi=\left(a^{\prime \prime}-b^{\prime}\right) \varphi \tag{5}
\end{equation*}
$$

From our assumption, $\boldsymbol{a}^{\prime \prime}-\boldsymbol{b}^{\prime}$ is a constant. Hence φ is a harmonic function.

Using this fact, we can show the following.

Theorem 3

The following operator

$$
\begin{equation*}
\tilde{\mathfrak{M}}=a \frac{d^{2}}{d x^{2}}+\left(2 a^{\prime}-b\right) \frac{d}{d x}+\left(a^{\prime \prime}-b^{\prime}\right) \tag{6}
\end{equation*}
$$

in a Hilbert space $L^{2}\left(\rho^{-1} d x\right)$ has the same spectrum as \mathfrak{N}.
In fact, we have the following commutative diagram.

$$
\begin{array}{ccc}
L^{2}(I ; \rho d x) & \xrightarrow{\mathfrak{H}} & L^{2}(I ; \rho d x) \\
{ }_{J} \uparrow & & \uparrow_{J} \tag{7}\\
L^{2}\left(I ; \rho^{-1} d x\right) & \xrightarrow{\tilde{\mathfrak{I}}} & L^{2}\left(I ; \rho^{-1} d x\right)
\end{array}
$$

Black-Scholes family

$(I I-1) a=x^{2}, I=(0, \infty)$.

Our generator is of the form

$$
\begin{equation*}
\mathfrak{A}=x^{2} \frac{d}{d x^{2}}+(\alpha x-\beta) \frac{d}{d x} \tag{8}
\end{equation*}
$$

When $\beta=\mathbf{0}$, the associated diffusion is the Black-Scholes model. So we call this class as Black-Scholes family.

Case $\beta=0$
The generator is of the form:

$$
\begin{equation*}
\mathfrak{A}=x^{2} \frac{d}{d x^{2}}+\alpha x \frac{d}{d x} \tag{9}
\end{equation*}
$$

The spectrum is given by

$$
\begin{equation*}
\sigma(\mathfrak{A})=\left(-\infty,-\frac{1}{4}(\alpha-1)^{2}\right] \tag{10}
\end{equation*}
$$

Case $\beta=-1$

The generator is of the form:

$$
\begin{equation*}
\mathfrak{A}=x^{2} \frac{d}{d x^{2}}+(\alpha x+1) \frac{d}{d x} \tag{11}
\end{equation*}
$$

For $n=\mathbf{0}, 1,2, \ldots$, define $\lambda_{n}(\alpha)$ by

$$
\begin{equation*}
\lambda_{n}(\alpha)=n(n-1+\alpha) \tag{12}
\end{equation*}
$$

Then the spectrum is given by

$$
\begin{aligned}
\sigma_{\text {ess }}(\mathfrak{A}) & =\left(-\infty,-\frac{1}{4}(\alpha-1)^{2}\right] \\
\sigma_{\mathrm{p}}(\mathfrak{A}) & =\left\{\lambda_{n}(\alpha) ; 0 \leq n<\frac{1-\alpha}{2}\right\} .
\end{aligned}
$$

The associated eigenfunction is given by

$$
\begin{equation*}
P_{n}^{(\alpha)}(x)=x^{n} L_{n}^{(1-2 n-\alpha)}\left(\frac{1}{x}\right) \tag{13}
\end{equation*}
$$

Here, $\boldsymbol{L}_{n}^{(\mathbf{1 - 2 n - \alpha)}}$ is a Laguerre polynomial.

Case $\beta=1$

The generator is of the form:

$$
\begin{equation*}
\mathfrak{A}=x^{2} \frac{d}{d x^{2}}+(\alpha x-1) \frac{d}{d x} \tag{14}
\end{equation*}
$$

For $n=1,2, \ldots$, define $\xi_{n}(\alpha)$ by

$$
\begin{equation*}
\xi_{n}(\alpha)=n(n+1-\alpha) \tag{15}
\end{equation*}
$$

Then the spectrum is given as

$$
\begin{aligned}
\sigma_{\text {ess }}(\mathfrak{H}) & =\left(-\infty,-\frac{1}{4}(\alpha-1)^{2}\right] \\
\sigma_{\mathrm{p}}(\mathfrak{H}) & =\left\{\xi_{n}(\alpha) ; 1 \leq n<\frac{\alpha-1}{2}\right\} .
\end{aligned}
$$

The associated eigenfunction is given by

$$
x^{-\alpha+2} e^{-1 / x} P_{n-1}^{(4-\alpha)}(x)=x^{n-\alpha+1} e^{-1 / x} L_{n-1}^{(\alpha-2 n-1)}\left(\frac{1}{x}\right)
$$

Here $\boldsymbol{L}_{n-1}^{(\alpha-2 n-1)}$ is a Laguerre polynomial.

Jacobi family

(III-2-a) $a=x(1-x), I=(0,1)$

Our generator is of the form

$$
\begin{equation*}
\left.\mathfrak{A}=x(1-x) \frac{d^{2}}{d x^{2}}+((\alpha+1)(1-x)-(\beta+1)) x\right) \frac{d}{d x} . \tag{16}
\end{equation*}
$$

We call this family as Jacobi family since eigenfunctions are Jacobi polynomials.

Case $\alpha>-1, \beta>-1$.
For $\boldsymbol{n}=\mathbf{0}, \mathbf{1}, \mathbf{2}, \ldots$ define λ_{n} by

$$
\begin{equation*}
\lambda_{n}(\alpha, \beta)=-n(n+\alpha+\beta+1) . \tag{17}
\end{equation*}
$$

The spectrum is given by

$$
\begin{equation*}
\sigma(\mathfrak{A})=\left\{\lambda_{n}(\alpha, \beta) ; n=0,1,2, \ldots\right\} . \tag{18}
\end{equation*}
$$

The associated eigenfunction is given by

$$
K(\alpha, \beta, n ; x)={ }_{2} F_{1}(-n, \alpha+\beta+n+1 ; \alpha+1 ; x)
$$

Here ${ }_{2} F_{1}$ is a hypergeometric function. Since \boldsymbol{n} is an integer, $K(\alpha, \beta, n ; \boldsymbol{x})$ is a polynomial. In this case we have a complete basis of polynomials.

Other cases can be obtained similarly.

To sum up, we have the following picture of spectra. Here we choose α as a parameter and restrict to the case $\beta=\alpha+3$.

The Stein's correspondence of differentiation is shown as

Fisher family

(III-2-b) $a=x(1+x), I=[0, \infty)$

The generator is given by

$$
\begin{equation*}
\left.\mathfrak{A}=x(1+x) \frac{d^{2}}{d x^{2}}+((\alpha+1)(1+x)+(\beta+1)) x\right) \frac{d}{d x} . \tag{19}
\end{equation*}
$$

We call this family as Fisher family since speed mesures are of Fisher distribution.

Case $\alpha>\mathbf{- 1}$
The condition $\alpha>\mathbf{- 1}$ corresponds to that the boundary $\mathbf{0}$ is entrance.

For $\boldsymbol{n}=\mathbf{0}, \mathbf{1}, \mathbf{2}, \ldots$, define

$$
\lambda_{n}(\alpha, \beta)=\left(n-\frac{|\beta|+\beta}{2}\right)\left(n+\alpha-\frac{|\beta|-\beta}{2}+1\right)=\left\{\begin{array}{l}
(n-\beta)(n+\alpha+1), \\
n(n+\alpha+\beta+1),
\end{array}\right.
$$

Then
Theorem 4
The spectrum of $\mathfrak{\mathfrak { A }}$ is given as

$$
\begin{aligned}
\sigma_{\text {ess }}(\mathfrak{A}) & =\left(-\infty,-\frac{(\alpha+\beta+1)^{2}}{4}\right] \\
\sigma_{p}(\mathfrak{A}) & =\left\{\lambda_{n}(\alpha, \beta) ; 0 \leq n<\left[\frac{-\alpha+|\beta|-1}{2}\right]\right\}
\end{aligned}
$$

Case $\alpha<0$
The condition $\alpha<\mathbf{0}$ corresponds to that the boundary $\mathbf{0}$ is exit.

For $n=1,2, \ldots$, define

$$
\begin{aligned}
\xi_{n}(\alpha, \beta) & =\left(n-\frac{|\beta|-\beta}{2}\right)\left(n-\alpha-\frac{|\beta|+\beta}{2}+1\right) \\
& = \begin{cases}n(n-\alpha-\beta-1), & \beta \geq 0 \\
(n+\beta)(n-\alpha-1), & \beta \leq 0\end{cases}
\end{aligned}
$$

Then

Theorem 5

The spectrum of $\mathfrak{\mathfrak { A }}$ is given as

$$
\begin{aligned}
\sigma_{\text {ess }}(\mathfrak{H}) & =\left(-\infty,-\frac{(\alpha+\beta+1)^{2}}{4}\right] \\
\sigma_{p}(\mathfrak{H}) & =\left\{\xi_{n}(\alpha, \beta) ; 1 \leq n<\left[\frac{\alpha+|\beta|+1}{2}\right]\right\}
\end{aligned}
$$

Student family

(III-3) $a=1+x^{2}, I=(-\infty, \infty)$

The generator is given by

$$
\begin{equation*}
\mathfrak{A}=\left(1+x^{2}\right) \frac{d^{2}}{d x^{2}}+(2(\alpha+1) x+2 \beta) \frac{d}{d x} . \tag{20}
\end{equation*}
$$

We call this family as Student family since speed mesures are of student's t-distribution when $\beta=\mathbf{0}$.

Theorem 6

The spectrum of \mathfrak{A} is as follows: For the essential spectrum,

$$
\begin{equation*}
\sigma_{\text {ess }}(\mathfrak{A})=\left(-\infty,-\left(\alpha+\frac{1}{2}\right)^{2}\right] . \tag{21}
\end{equation*}
$$

For the point spectrum, in the case $\alpha<-\frac{1}{2}$, it consists of

$$
\begin{equation*}
\lambda_{n}(\alpha)=n(n+2 \alpha+1), \quad 0 \leq n<-\alpha-\frac{1}{2} \tag{22}
\end{equation*}
$$

and in the case of $\alpha>\frac{1}{2}$, it consists of

$$
\begin{equation*}
\xi_{n}(\alpha)=n(n-2 \alpha-1), \quad 1 \leq n<\alpha+\frac{1}{2} . \tag{23}
\end{equation*}
$$

There is no point spectrum when $-\frac{1}{2} \leq \alpha \leq \frac{1}{2}$.

The associated eigenfunction is given by

$$
x \mapsto K\left(\alpha+i \beta, \alpha-i \beta, n, \frac{1-i x}{2}\right)
$$

We draw a picture for a fixed β.

Thank you very much

