Kolmogorov-Pearson diffusions and hypergeometric functions

Ichiro SHIGEKAWA (Kyoto University)

1 Introduction

We consider diffusuions generated by $\mathfrak{A} = a \frac{d^2}{dx^2} + b \frac{d}{dx}$. Here *a* is a quadratic function and *b* is a linear function. We call these diffusions as Kolmogorof-Pearson diffusions. We are interested in spectra of these generators. We want to determin all spectra completely. To do this, hypergeometric functions play a important role.

2 Sevral expressions of generators

Our generators are of the form

$$\mathfrak{A} = a\frac{d^2}{dx^2} + b\frac{d}{dx} \tag{1}$$

where a is quadtatic and b is linear. Following Feller, we can associate a measure dm and a function s. dm is called a speed measure and s is called a scale function. In our case, dm has a density ρ of the form $\rho = \exp\{\int (f/g)dx\}$ where f is linear and g is quadratic. We call this type of density as Pearson density. Pearson considered probability densities but we may admit infinite measure cases. s defines a measure ds and it has of the form $ds = \frac{1}{a\rho}dx$. Using a and ρ , b can be expressed as $b = a' + a(\log \rho)'$.

Now we can give several expressions of the generator as follows:

	generator	duality	differential opetaor
Kolmogorov	$a\frac{d^2}{dx^2} + b\frac{d}{dx}$		
Feller	$\frac{d}{dm}\frac{d}{ds}$	$\frac{d}{dm} = -\frac{d}{ds}^*$	$\frac{d}{ds} \colon L^2(dm) \to L^2(ds)$
Stein	$\left(a\frac{d}{dx} + b\right)\frac{d}{dx}$	$a\frac{d}{dx} + b = -\frac{d}{dx}^*$	$\frac{d}{dx} \colon L^2(\rho dx) \to L^2(a\rho dx)$

Using this, we can make following correspondences.

Feller's pair	$\frac{d}{dm}\frac{d}{ds} \longleftrightarrow \frac{d}{dm}\frac{d}{ds}$
Stein's pair	$(a\frac{d}{dx}+b)\frac{d}{dx} \longleftrightarrow \frac{d}{dx}(a\frac{d}{dx}+b)$

One important thing is that the class of Kolmogorov-Pearson diffusions are closed under Feller's pair and Stein's pair. From these pairings, we can show that

- If f is an eigenfunction, then so are $f', \frac{d}{ds}f$.
- If θ is an eigenfunction, then so are $a\theta' + b\theta$, $\frac{d}{dm}\theta$.

According to the degree of a, our generators are classified as

	complete family	incomplete family		special function
α -family	a = 1			F_{1}^{0}
β -family	a = x	$a = x^2$		F_{1}^{1}
γ -family	a = x(1 - x)	a = x(1+x)	$a = 1 + x^2$	F_{1}^{2}

Further, associated speed measures are given as follows:

	complete family	incomplete family		
α -family	$e^{\beta x^2/2}$			
β -family	$x^{lpha}e^{eta x}$	$x^{\alpha}e^{\beta/x}$		
γ -family	$x^{\alpha}(1-x)^{\beta}$	$x^{\alpha}(1+x)^{\beta}$	$(1+x^2)^{\alpha} \exp\{2\beta \arctan x\}$	

3 Spectra of generators

We have the following six cases:

(i) a = 1, (ii) a = x, (iii) $a = x^2$, (iv) a = x(1 - x), (v) a = x(1 + x), (vi) $a = 1 + x^2$.

We have discussed (i) and (ii) in the previous occasion. We will discuss here (iii) - (vi). In the case of (iii), the generator has the following form:

$$\mathfrak{A} = x^2 \frac{d}{dx^2} + (\alpha x - \beta) \frac{d}{dx}.$$
(2)

In particular, in the case $\beta = -1$, spectra are given as

Other cases will be discussed in the talk.