Kolmogorov-Pearson diffusions and hypergeometric functions

Ichiro Shigekawa (Kyoto University)

1 Introduction

We consider diffusuions generated by $\mathfrak{A}=a \frac{d^{2}}{d x^{2}}+b \frac{d}{d x}$. Here a is a quadratic function and b is a linear function. We call these diffusions as Kolmogorof-Pearson diffusions. We are interested in spectra of these generators. We want to determin all spectra completely. To do this, hypergeometric functions play a important role.

2 Sevral expressions of generators

Our generators are of the form

$$
\begin{equation*}
\mathfrak{A}=a \frac{d^{2}}{d x^{2}}+b \frac{d}{d x} \tag{1}
\end{equation*}
$$

where a is quadtatic and b is linear. Following Feller, we can associate a measure $d m$ and a function $s . d m$ is called a speed measure and s is called a scale function. In our case, $d m$ has a density ρ of the form $\rho=\exp \left\{\int(f / g) d x\right\}$ where f is linear and g is quadratic. We call this type of density as Pearson density. Pearson considered probability densities but we may admit infinite measure cases. s defines a measure $d s$ and it has of the form $d s=\frac{1}{a \rho} d x$. Using a and ρ, b can be expressed as $b=a^{\prime}+a(\log \rho)^{\prime}$.

Now we can give several expressions of the generator as follows:

	generator	duality	differential opetaor
Kolmogorov	$a \frac{d^{2}}{d x^{2}}+b \frac{d}{d x}$		
Feller	$\frac{d}{d m} \frac{d}{d s}$	$\frac{d}{d m}=-\frac{d^{*}}{d s}$	$\frac{d}{d s}: L^{2}(d m) \rightarrow L^{2}(d s)$
Stein	$\left(a \frac{d}{d x}+b\right) \frac{d}{d x}$	$a \frac{d}{d x}+b=-\frac{d^{*}}{d x}$	$\frac{d}{d x}: L^{2}(\rho d x) \rightarrow L^{2}(a \rho d x)$

Using this, we can make following correspondences.

Feller's pair	$\frac{d}{d m} \frac{d}{d s} \longleftrightarrow \frac{d}{d m} \frac{d}{d s}$
Stein's pair	$\left(a \frac{d}{d x}+b\right) \frac{d}{d x} \longleftrightarrow \frac{d}{d x}\left(a \frac{d}{d x}+b\right)$

One important thing is that the class of Kolmogorov-Pearson diffusions are closed under Feller's pair and Stein's pair. From these pairings, we can show that

- If f is an eigenfunction, then so are $f^{\prime}, \frac{d}{d s} f$.
- If θ is an eigenfunction, then so are $a \theta^{\prime}+b \theta, \frac{d}{d m} \theta$.

According to the degree of a, our generators are classified as

	complete family	incomplete family		special function
α-family	$a=1$			F_{1}^{0}
β-family	$a=x$	$a=x^{2}$		F_{1}^{1}
γ-family	$a=x(1-x)$	$a=x(1+x)$	$a=1+x^{2}$	F_{1}^{2}

Further, associated speed measures are given as follows:

	complete family	incomplete family	
α-family	$e^{\beta x^{2} / 2}$		
β-family	$x^{\alpha} e^{\beta x}$	$x^{\alpha} e^{\beta / x}$	
γ-family	$x^{\alpha}(1-x)^{\beta}$	$x^{\alpha}(1+x)^{\beta}$	$\left(1+x^{2}\right)^{\alpha} \exp \{2 \beta \arctan x\}$

3 Spectra of generators

We have the following six cases:
(i) $a=1$, (ii) $a=x$, (iii) $a=x^{2}$, (iv) $a=x(1-x)$, (v) $a=x(1+x)$, (vi) $a=1+x^{2}$.

We have discussed (i) and (ii) in the previous occasion. We will discuss here (iii) - (vi). In the case of (iii), the generator has the following form:

$$
\begin{equation*}
\mathfrak{A}=x^{2} \frac{d}{d x^{2}}+(\alpha x-\beta) \frac{d}{d x} . \tag{2}
\end{equation*}
$$

In particular, in the case $\beta=-1$, spectra are given as

Other cases will be discussed in the talk.

