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1. Normal operators

General framework

• H: a complex Hilbert space

• T : a closed operator with domain Dom(T )

• Θ(T ): the numeriacl range of T defined by

Θ(T ) := {(Tu, u); u ∈ Dom(T )}.

• T is called accretive if

�(Tu, u) ≥ 0, ∀u ∈ Dom(T )

• T is called m-accretive if Ran(T − ζ) = H for some ζ ∈ C.
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• T is called sectorial if Θ(T ) ⊆ Sθ, θ ∈ [0, π
2
) where

Sθ = {z ∈ C; | arg z| ≤ θ}.

Θ(T )

Sθ

• T is called quasi-sectorial if T + γ is sectorial for some γ > 0.
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Normal operators

• A is called normal if

A∗A = AA∗

• A has an spectral decomposition:

A =
∫

C

zE(dz)

• A∗: an adjoint operator of A.

A∗ =
∫

C

zE(dz)

• Θ(A) = co(σ(A))
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From now on, we assume that A is normal and m-accretive.

• √
A is defined by

√
A =

∫
C

√
zE(dz)

with

Dom(
√

A) = {u ∈ H;
∫

C

|z|(u, E(dz)u) < ∞}.

• Dom(
√

A) = Dom(
√

A∗)

• a: a sesquilinear form associated with A is given by

a(u, v) = (Au, v), u, v ∈ Dom(A)

• A symmetric part of a is defied by

b(u, v) =
(Au, v) + (A∗u, v)

2
, u, v ∈ Dom(A).



6

• b can be written

b(u, v) =
∫

C

�z(u, E(dz)v).

• (b, Dom(b)) is closed where

Dom(b) = {u ∈ H;
∫

C

�z(u, E(dz)u) < ∞}.

• Dom(
√

A) ⊆ Dom(b)

Theorem 1. Dom(
√

A) = Dom(b) if and only if 1 + σ(A) ⊆ Sθ for some
θ ∈ (0, π/2).
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2. Nomal operators and generalized Dirichlet forms

Stannat (1994) introduced the generalized Dirichlet form.

We will show that Markovivan semigroup generated by a normal opetator can be
formulated in the framework of generalized Dirichlet form.

• M : a Hausdorff topological space

• (M, m): σ-finite measure space

• H = L2(m)

• A: a normal operator

• We assume that A and A∗ is m-dissipative
(i.e., −A and −A∗ is m-accretive)

By spectral decomposition,

−A =
∫

C

zE(dz).(1)
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We define

−L =
∫

C

�zE(dz), −Λ =
∫

C

i
zE(dz).(2)

L and iΛ are seld-adjoint with domains

Dom(L) = {f ;
∫

C

|�z|2(f, E(dz)f) < ∞},

Dom(Λ) = {f ;
∫

C

|
z|2(f, E(dz)f) < ∞}.

L generates a semigroup. Symmetric bilinear form Ẽ is defined by

Ẽ(f, g) =
∫

C

�z(f, E(dz)g)

with the domain

Dom(Ẽ) = {f ;
∫

C

|�z|(f, E(dz)f) < ∞}.

We set V = Dom(Ẽ).

Similarly, Λ generates a semigroup denoted by {Ut}t≥0.
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Proposition 2. {Ut} is a C0-semigroup in V .

We regard Λ: Dom(Λ) ∩ V → V ′ as an operator from V to V ′. Its closure is
denoted by (Λ, F).

Proposition 3. f ∈ F if and only if

∫
C

( |
z|2
�z + 1

+ �z

)
(f, E(dz)f) < ∞.

Similar argument can be done for the dual semigroup Ût of Ut. The generator is

Λ̂ = −
∫

C

i
zE(dz).
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Now we can apply the theory of generalized Dirichlet form. The Dirichlet form is
defined by

E(f, g) =

⎧⎨
⎩

Ẽ(f, g) − 〈Λf, g〉, if f ∈ F , g ∈ V ,

Ẽ(f, g) − 〈Λ̂g, f〉, if f ∈ V , g ∈ F̂ .

Assuming the Markovian property, we can define the capacity.

We assume the quasi-regularity of E . Now applying the following theorem, we can
get a Markov process associated with A.

Theorem 4. (Stannat 1994) Under the following condition (D3), there exists an
m-thght special standard process.

(D3) There exists a linear subspace Y ⊆ L2(m) ∩ L∞(m) such that Y ∩ F is
dense in F , limα→∞ eαGαu−u = 0 in H for all u ∈ Y and for the closure Y of
Y in L∞(m) it follows that u ∧ α ∈ Y for u ∈ Y and α ≥ 0.
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3. Criterion for nomal operators

• H: a Hilbert space

• A, B: accretive operators on D

• Assume that A, B are m-accretive

Theorem 5. Assume that AD ⊆ D, BD ⊆ D and

AB = BA on D,

(Au, v) = (u, Bv), u, v ∈ D.

Then A is normal and A
∗

= B.
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Examples on a Riemannian manifold

• M : a complete Riemannian manifold

• m: the Riemannian volume

We take a function U ∈ C∞(M) and define a measure ν by

ν = e−Um

Define an operator on H = L2(ν) by

A =
1

2
�ν + b

where �ν = −∇∗
ν∇. Then

A∗
ν =

1

2
�ν − b − divν b.

Here divν denotes the divergence with respect to ν.

We give a criterion for A = �ν + b being a normal operator.
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Theorem 6. Assume that divν b is bounded from below. Then A is normal if and
only if b is a Killing vector field and the following identies hold:

(
1

2
�ν + b) divν b = 0,

[∇U, b] + ∇ divν b = 0.
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4. One-dimensional Brownian motion with a drift

We consider an operator A = d2

dx2 − c d
dx

on L2(R, ν1). Here ν1 is a measure
defined by

ν1(dx) = e−cxdx.(3)

Then A is a self-adjoint operator with

(Af, g) = −
∫

R

f ′(x)g′(x) ν1(dx).

To investigate the spectrum of A, we use the following isometric map
I : L2(ν1) −→ L2(dx):

If(x) = e−cx/2f(x).

We have

I ◦ A ◦ I−1 =
d2f

dx2
− c2

4
,
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i.e., the following diagram is commutative:

L2(ν1)
A−−−→ L2(ν1)

I

⏐⏐	
⏐⏐	I

L2(dx)
d2

dx2 − c2

4−−−−−→ L2(dx)

Hence the spectrum −A is

σ(−A) = [
c2

4
, ∞).(4)

We now consider an perturbation of A. Let b be an vector field defined by

b = k
d

dx
.

We consider an operator of the form A + b. We are interested in how the spectrum
changes. b is clearly an Killing vector field. The divergence of b with respect to ν1

divν1 b = −ck
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and so it satisfies

(A + b) divν b = 0,

[(∇U)�, b] + ∇ divν b = 0.

Here U(x) = cx. By Theorem 6, A + b is a normal operator. Under the
transformation of I, we have

I ◦ (A + b) ◦ I−1 =
d2

dx2
+ k

d

dx
− c(c − 2k)

4
.

It is enough to get the spectrum of d2

dx2 + k d
dx

. Recall the Fourier transform as

f̂(ξ) =
1√
2π

∫
R

f(x)e−iξx dx.

This gives an isometry from L2(dx) onto L2(dξ). Note that

∫
R

(
d2

dx2
+ k

d

dx
)f(x)g(x) dx =

∫
R

(−ξ2 + ikξ)f̂(ξ)ĝ(ξ) dξ
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which means that

σ(
d2

dx2
+ k

d

dx
) = {−ξ2 + ikξ; ξ ∈ R}.

Theorem 7. We have

σ(−A) = [
c2

4
, ∞)

and

σ(−A − b) = {c(c − k)

2
+ ξ2 + ikξ; ξ ∈ R}.
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c2

4

−A

c(c−2k)
4

−A − k d
dx
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Now we take a different point of view.

We fix an operator A = d2

dx2 − c d
dx

but we change a reference measure. For
θ ∈ [0, 1], define

νθ(dx) = (1 − θ)dx + θe−cxdx

νθ is an invariant measure for A. ν0(dx) = dx, ν1(dx) = e−cx dx.

The computation above implies

σ(−A) = {ξ2 − icξ; ξ ∈ R} in L2(ν0)

σ(−A) = [
c2

4
, ∞) in L2(ν1).
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w.r.t. ν0 = dx

c2

4

w.r.t. ν1 = e−cxdx

What happens if we take the measure νθ?
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Does the spectrum chage continuously?

w.r.t. νθ

?
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Theorem 8. For θ ∈ (0, 1), σ(−A) in L2(νθ) is

{ξ2 − ikξ; ξ ∈ R} ∪ [
c2

4
, ∞).

w.r.t. ν0 = dx w.r.t. νθ

c2

4

w.r.t. ν1 = e−cxdx
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5. Perturbation by rotation

Laplacian on R2

Let A be

A =
∂2

∂x2
+

∂

∂y2
+ k

(
x

∂

∂y
− y

∂

∂x

)
on L2(R2, dxdy).(5)

The spectrum of − ∂2

∂x2 − ∂2

∂y2 is [0, ∞).

For the spectrum of A, we recall the Bessel functions:

Jν(x) =
(

x

2

)ν ∞∑
l=0

(ix/2)2l

l!Γ(ν + l + 1)
, �ν > 0

which satisfies the following differential equation

I′′ +
1

x
I′ +

(
1 − ν2

x2

)
I = 0
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Since our space is R2, we only need the case that ν is a non-negative integer. We
use the plar coordinate:

⎧⎨
⎩

x = r cos θ,

y = r sin θ,
r ≥ 0, θ ∈ [0, 2π)

Using this, A can be written as

A =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
+ k

∂

∂θ
.

If F = f(r)einθ, then

AF =
(

∂2

∂r2
+

1

r

∂

∂r
− n2 1

r2

)
f(r)einθ + iknf(r)einθ.

Further
(

∂2

∂r2
+

1

r

∂

∂r
− n2 1

r2

)
Jn(λr) = −λ2Jn(λr).
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The spectral decomposition is given by

f(r, θ) =
∑
n∈Z

∫ {∫ (
1

2π

∫
f(ρ, φ)e−inφ dφ

)
J|n|(λρ)ρ dρ

}
einθJ|n|(λr)λ dλ.

Theorem 9. The spectrum of −A is

{
λ2 − ikn ; λ ≥ 0, n ∈ Z

}
(6)

and the corresponding eigenfunction to λ2 − ikn is J|n|(λr)einθ.
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the spectrum of − ∂2

∂x2 − ∂2

∂y2

0

k

2k

3k

−k

−2k

−3k

the spectrum of A

...

...
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Ornstein Uhlenbeck operator on R2

Let Lα be

Lα =
∂2

∂x2
+

∂2

∂y2
− x

∂

∂x
− y

∂

∂y
+ α

(
x

∂

∂y
− y

∂

∂x

)
(7)

acting on L2(R2,
1

2π
e−(x2+y2)/2dxdy).

The spectrum of Ornstein-Uhlenbeck operator L0 is {0, −1, −2, . . . }. In fact,
define Hermite polynomials by

Hn(x) = (−1)nex2/2 dn

dxn
e−x2/2.

Then

L0Hk(x)Hn−k(y) = −nHk(x)Hn−k(y).

To get the spectram of Lα, we need the complex Hermite polynomials defined by

Hp,q(z, z̄) = (−1)p+qe
zz̄
2

(
∂

∂z̄

)p (
∂

∂z

)q

e− zz̄
2 .(8)
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Here, we regard R
2 as C with z = x + iy. We denote

∂

∂z
=

1

2

(
∂

∂x
− i

∂

∂y

)
,

∂

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)
.

In the sequel, we write

∂ =
∂

∂z
, ∂̄ =

∂

∂z̄

for short. We have

∂∗ = −∂̄ +
z

2
, ∂̄∗ = −∂ +

z̄

2
(9)
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Proposition 10. The following identities hold:

∂Hp,q =
p

2
Hp−1,q, ∂̄Hp,q =

q

2
Hp,q−1,

∂∗Hp,q = Hp+1,q, ∂̄∗Hp,q = Hp,q+1,

(2∂∂̄ − z∂)Hp,q = −pHp,q

(2∂∂̄ − z̄∂̄)Hp,q = −qHp,q

(z∂ − z̄∂̄)Hp,q = (p − q)Hp,q

We can write

Lα = (2∂∂̄ − z∂) + (2∂∂̄ − z̄∂̄) + αi(z∂ − z̄∂̄).

Hence

LαHp,q = (−p − q + (p − q)αi)Hp,q.
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Theorem 11. The spectrum of −Lα is

{(p + q) − (p − q)αi}∞
p,q=0(10)

and corresponding eigenfunctions are Hp,q respectively.
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the spectrum of −L0 the spectrum of −Lα
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Connection to the Laguerre polynomials

The eigenfunction Hn,n for the eigenvalue 2n, (n ∈ Z+) is rotation invariant since(
x ∂

∂y
− y ∂

∂x

)
Hn,n = 0. So Hn,n is a function of r = |z| and

(
d2

dr2
+

1

r

d

dr
− r

d

dr

)
Hn,n = −2nHn,n.

Now, by the change of variable r =
√

2u, we have

d2

dr2
+

1

r

d

dr
− r

d

dr
= 2u

d2

du2
+ 2(1 − u)

d

du
.

F (u) = Hn,n(r) satisfies

2u
d2

du2
F + 2(1 − u)

d

du
F + nF = 0.

The Laguere polynomial satisfies this differential equation. Here the Laguere
polynomial polynomial is defined by

Ln =
ex

n!

dn

dxn
(e−xxn)(11)
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Now we have

Theorem 12. Complex Hermite polynomials Hn,n are expressed as following;

Hn,n(z, z̄) =
(−1)nn!

2n
Ln

( |z|2
2

)
(12)

where c is a constant.
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Thanks a lot!


