The spectrum of non-symmetric operators and Markov processes

Ichiro Shigekawa (joint work with Yusuke Ikeno)
Kyoto University
September 9, 2011
5th ICSAA at Bonn University
URL: http://www.math.kyoto-u.ac.jp//ichiro/

1. Normal operators

General framework

- \boldsymbol{H} : a complex Hilbert space
- T : a closed operator with domain $\operatorname{Dom}(T)$
- $\Theta(T)$: the numeriacl range of T defined by

$$
\Theta(T):=\{(T u, u) ; u \in \operatorname{Dom}(T)\} .
$$

- \boldsymbol{T} is called accretive if

$$
\Re(T u, u) \geq 0, \quad \forall u \in \operatorname{Dom}(T)
$$

- T is called m-accretive if $\operatorname{Ran}(T-\zeta)=H$ for some $\zeta \in \mathbb{C}$.
- T is called sectorial if $\Theta(T) \subseteq S_{\theta}, \theta \in\left[0, \frac{\pi}{2}\right)$ where $S_{\theta}=\{z \in \mathbb{C} ;|\arg z| \leq \theta\}$.

- \boldsymbol{T} is called quasi-sectorial if $\boldsymbol{T}+\gamma$ is sectorial for some $\gamma>0$.

Normal operators

- \boldsymbol{A} is called normal if

$$
A^{*} A=A A^{*}
$$

- \boldsymbol{A} has an spectral decomposition:

$$
A=\int_{\mathbb{C}} z E(d z)
$$

- \boldsymbol{A}^{*} : an adjoint operator of \boldsymbol{A}.

$$
A^{*}=\int_{\mathbb{C}} \bar{z} E(d z)
$$

- $\overline{\Theta(A)}=\overline{\operatorname{co}}(\sigma(A))$

From now on, we assume that \boldsymbol{A} is normal and m-accretive.

- \sqrt{A} is defined by

$$
\sqrt{A}=\int_{\mathbb{C}} \sqrt{z} E(d z)
$$

with

$$
\operatorname{Dom}(\sqrt{A})=\left\{u \in H ; \int_{\mathbb{C}}|z|(u, E(d z) u)<\infty\right\}
$$

- $\operatorname{Dom}(\sqrt{A})=\operatorname{Dom}\left(\sqrt{A^{*}}\right)$
- a : a sesquilinear form associated with \boldsymbol{A} is given by

$$
a(u, v)=(A u, v), \quad u, v \in \operatorname{Dom}(A)
$$

- A symmetric part of a is defied by

$$
b(u, v)=\frac{(A u, v)+\left(A^{*} u, v\right)}{2}, \quad u, v \in \operatorname{Dom}(A)
$$

- b can be written

$$
b(u, v)=\int_{\mathbb{C}} \Re z(u, E(d z) v)
$$

- $(b, \operatorname{Dom}(b))$ is closed where

$$
\operatorname{Dom}(b)=\left\{u \in H ; \int_{\mathbb{C}} \Re z(u, E(d z) u)<\infty\right\}
$$

- $\operatorname{Dom}(\sqrt{A}) \subseteq \operatorname{Dom}(b)$

Theorem 1. $\operatorname{Dom}(\sqrt{A})=\operatorname{Dom}(b)$ if and only if $1+\sigma(A) \subseteq S_{\theta}$ for some $\theta \in(0, \pi / 2)$.

2. Nomal operators and generalized Dirichlet forms

Stannat (1994) introduced the generalized Dirichlet form.
We will show that Markovivan semigroup generated by a normal opetator can be formulated in the framework of generalized Dirichlet form.

- M: a Hausdorff topological space
- $(M, m): \sigma$-finite measure space
- $H=L^{2}(m)$
- \mathfrak{A} : a normal operator
- We assume that \mathfrak{A} and \mathfrak{A}^{*} is m-dissipative (i.e., $-\mathfrak{A}$ and $-\mathfrak{A}^{*}$ is \boldsymbol{m}-accretive)

By spectral decomposition,

$$
\begin{equation*}
-\mathfrak{A}=\int_{\mathbb{C}} z E(d z) \tag{1}
\end{equation*}
$$

We define

$$
\begin{equation*}
-L=\int_{\mathbb{C}} \Re z E(d z), \quad-\Lambda=\int_{\mathbb{C}} i \Im z E(d z) \tag{2}
\end{equation*}
$$

L and $i \boldsymbol{\Lambda}$ are seld-adjoint with domains

$$
\begin{aligned}
\operatorname{Dom}(L) & =\left\{f ; \int_{\mathbb{C}}|\Re z|^{2}(f, E(d z) f)<\infty\right\} \\
\operatorname{Dom}(\Lambda) & =\left\{f ; \int_{\mathbb{C}}|\Im z|^{2}(f, E(d z) f)<\infty\right\}
\end{aligned}
$$

L generates a semigroup. Symmetric bilinear form $\tilde{\mathcal{E}}$ is defined by

$$
\tilde{\mathcal{E}}(f, g)=\int_{\mathbb{C}} \Re z(f, E(d z) g)
$$

with the domain

$$
\operatorname{Dom}(\tilde{\mathcal{E}})=\left\{f ; \int_{\mathbb{C}}|\Re z|(f, E(d z) f)<\infty\right\}
$$

We set $\mathcal{V}=\operatorname{Dom}(\tilde{\mathcal{E}})$.
Similarly, $\boldsymbol{\Lambda}$ generates a semigroup denoted by $\left\{U_{t}\right\}_{t \geq \mathbf{0}}$.

Proposition 2. $\left\{U_{t}\right\}$ is a C_{0}-semigroup in \mathcal{V}.
We regard $\boldsymbol{\Lambda}: \operatorname{Dom}(\boldsymbol{\Lambda}) \cap \mathcal{V} \rightarrow \mathcal{V}^{\prime}$ as an operator from \mathcal{V} to \mathcal{V}^{\prime}. Its closure is denoted by (Λ, \mathcal{F}).

Proposition 3. $f \in \mathcal{F}$ if and only if

$$
\int_{\mathbb{C}}\left(\frac{|\Im z|^{2}}{\Re z+1}+\Re z\right)(f, E(d z) f)<\infty
$$

Similar argument can be done for the dual semigroup \hat{U}_{t} of U_{t}. The generator is

$$
\hat{\Lambda}=-\int_{\mathbb{C}} i \Im z E(d z)
$$

Now we can apply the theory of generalized Dirichlet form. The Dirichlet form is defined by

$$
\mathcal{E}(f, g)= \begin{cases}\tilde{\mathcal{E}}(f, g)-\langle\Lambda f, g\rangle, & \text { if } f \in \mathcal{F}, g \in \mathcal{V} \\ \tilde{\mathcal{E}}(f, g)-\langle\hat{\Lambda} g, f\rangle, & \text { if } f \in \mathcal{V}, g \in \hat{\mathcal{F}}\end{cases}
$$

Assuming the Markovian property, we can define the capacity.
We assume the quasi-regularity of \mathcal{E}. Now applying the following theorem, we can get a Markov process associated with \mathfrak{A}.

Theorem 4. (Stannat 1994) Under the following condition (D3), there exists an m-thght special standard process.
(D3) There exists a linear subspace $\mathcal{Y} \subseteq L^{2}(m) \cap L^{\infty}(m)$ such that $\mathcal{Y} \cap \mathcal{F}$ is dense in $\mathcal{F}, \lim _{\alpha \rightarrow \infty} e_{\alpha G_{\alpha} u-u}=0$ in \boldsymbol{H} for all $u \in \mathcal{Y}$ and for the closure $\overline{\mathcal{Y}}$ of \mathcal{Y} in $L^{\infty}(m)$ it follows that $u \wedge \alpha \in \overline{\mathcal{Y}}$ for $u \in \mathcal{Y}$ and $\alpha \geq 0$.

3. Criterion for nomal operators

- \boldsymbol{H} : a Hilbert space
- $\boldsymbol{A}, \boldsymbol{B}$: accretive operators on \mathcal{D}
- Assume that \bar{A}, \bar{B} are m-accretive

Theorem 5. Assume that $A \mathcal{D} \subseteq \mathcal{D}, B \mathcal{D} \subseteq \mathcal{D}$ and

$$
\begin{aligned}
A B & =B A \quad \text { on } \mathcal{D} \\
(A u, v) & =(u, B v), \quad u, v \in \mathcal{D} .
\end{aligned}
$$

Then $\overline{\boldsymbol{A}}$ is normal and $\overline{\boldsymbol{A}}^{*}=\overline{\boldsymbol{B}}$.

Examples on a Riemannian manifold

- M: a complete Riemannian manifold
- m : the Riemannian volume

We take a function $U \in C^{\infty}(M)$ and define a measure ν by

$$
\nu=e^{-U} m
$$

Define an operator on $H=L^{2}(\nu)$ by

$$
\mathfrak{A}=\frac{1}{2} \triangle_{\nu}+b
$$

where $\triangle_{\nu}=-\nabla_{\nu}^{*} \nabla$. Then

$$
\mathfrak{A}_{\nu}^{*}=\frac{1}{2} \triangle_{\nu}-b-\operatorname{div}_{\nu} b .
$$

Here div_{ν} denotes the divergence with respect to ν.
We give a criterion for $\mathfrak{A}=\triangle_{\nu}+\boldsymbol{b}$ being a normal operator.

Theorem 6. Assume that $\operatorname{div}_{\nu} b$ is bounded from below. Then \mathfrak{A} is normal if and only if b is a Killing vector field and the following identies hold:

$$
\begin{aligned}
& \left(\frac{1}{2} \triangle_{\nu}+b\right) \operatorname{div}_{\nu} b=0 \\
& {[\nabla U, b]+\nabla \operatorname{div}_{\nu} b=0 .}
\end{aligned}
$$

4. One-dimensional Brownian motion with a drift

We consider an operator $\mathfrak{A}=\frac{d^{2}}{d x^{2}}-c \frac{d}{d x}$ on $L^{2}\left(\mathbb{R}, \nu_{1}\right)$. Here ν_{1} is a measure defined by

$$
\begin{equation*}
\nu_{1}(d x)=e^{-c x} d x \tag{3}
\end{equation*}
$$

Then \mathfrak{A} is a self-adjoint operator with

$$
(\mathfrak{A} f, g)=-\int_{\mathbb{R}} f^{\prime}(x) g^{\prime}(x) \nu_{1}(d x)
$$

To investigate the spectrum of \mathfrak{A}, we use the following isometric map $I: L^{2}\left(\nu_{1}\right) \longrightarrow L^{2}(d x):$

$$
I f(x)=e^{-c x / 2} f(x)
$$

We have

$$
I \circ \mathfrak{A} \circ I^{-1}=\frac{d^{2} f}{d x^{2}}-\frac{c^{2}}{4},
$$

i.e., the following diagram is commutative:

$$
\begin{array}{ccc}
L^{2}\left(\nu_{1}\right) & \xrightarrow{A} & L^{2}\left(\nu_{1}\right) \\
I \downarrow & \downarrow I \\
L^{2}(d x) & \xrightarrow{\frac{d^{2}}{d x^{2}}-\frac{c^{2}}{4}} & L^{2}(d x)
\end{array}
$$

Hence the spectrum $-\boldsymbol{\mathfrak { A }}$ is

$$
\begin{equation*}
\sigma(-\mathfrak{A})=\left[\frac{c^{2}}{4}, \infty\right) \tag{4}
\end{equation*}
$$

We now consider an perturbation of \mathfrak{A}. Let \boldsymbol{b} be an vector field defined by

$$
b=k \frac{d}{d x}
$$

We consider an operator of the form $\mathfrak{A}+\boldsymbol{b}$. We are interested in how the spectrum changes. b is clearly an Killing vector field. The divergence of b with respect to ν_{1}

$$
\operatorname{div}_{\nu_{1}} b=-c k
$$

and so it satisfies

$$
\begin{array}{r}
(\mathfrak{A}+b) \operatorname{div}_{\nu} b=0, \\
{\left[(\nabla U)^{\sharp}, b\right]+\nabla \operatorname{div}_{\nu} b=0 .}
\end{array}
$$

Here $\boldsymbol{U}(\boldsymbol{x})=\boldsymbol{c x}$. By Theorem 6, $\mathfrak{A}+\boldsymbol{b}$ is a normal operator. Under the transformation of I, we have

$$
I \circ(\mathfrak{A}+b) \circ I^{-1}=\frac{d^{2}}{d x^{2}}+k \frac{d}{d x}-\frac{c(c-2 k)}{4}
$$

It is enough to get the spectrum of $\frac{d^{2}}{d x^{2}}+k \frac{d}{d x}$. Recall the Fourier transform as

$$
\hat{f}(\xi)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} f(x) e^{-i \xi x} d x
$$

This gives an isometry from $L^{2}(d x)$ onto $L^{2}(d \xi)$. Note that

$$
\int_{\mathbb{R}}\left(\frac{d^{2}}{d x^{2}}+k \frac{d}{d x}\right) f(x) \overline{g(x)} d x=\int_{\mathbb{R}}\left(-\xi^{2}+i k \xi\right) \hat{f}(\xi) \overline{\hat{g}(\xi)} d \xi
$$

which means that

$$
\sigma\left(\frac{d^{2}}{d x^{2}}+k \frac{d}{d x}\right)=\left\{-\xi^{2}+i k \xi ; \xi \in \mathbb{R}\right\} .
$$

Theorem 7. We have

$$
\sigma(-\mathfrak{A})=\left[\frac{c^{2}}{4}, \infty\right)
$$

and

$$
\sigma(-\mathfrak{A}-b)=\left\{\frac{c(c-k)}{2}+\xi^{2}+i k \xi ; \xi \in \mathbb{R}\right\}
$$

$-\mathfrak{A}$

$-\boldsymbol{A}-\boldsymbol{k} \frac{\boldsymbol{d}}{\boldsymbol{d x}}$

Now we take a different point of view.
We fix an operator $\mathfrak{A}=\frac{d^{2}}{d x^{2}}-c \frac{d}{d x}$ but we change a reference measure. For $\theta \in[0,1]$, define

$$
\nu_{\theta}(d x)=(1-\theta) d x+\theta e^{-c x} d x
$$

ν_{θ} is an invariant measure for $\mathfrak{A} . \nu_{0}(d x)=d x, \nu_{1}(d x)=e^{-c x} d x$.
The computation above implies

$$
\begin{aligned}
\sigma(-\mathfrak{A}) & =\left\{\xi^{2}-i c \xi ; \xi \in \mathbb{R}\right\} \quad \text { in } L^{2}\left(\nu_{0}\right) \\
\sigma(-\mathfrak{A}) & =\left[\frac{c^{2}}{4}, \infty\right) \quad \text { in } L^{2}\left(\nu_{1}\right) .
\end{aligned}
$$

w.r.t. $\nu_{0}=d x$
w.r.t. $\nu_{1}=e^{-c \boldsymbol{x}} d \boldsymbol{x}$

What happens if we take the measure ν_{θ} ?

Does the spectrum chage continuously?

w.r.t. ν_{θ}

Theorem 8. For $\theta \in(0,1), \sigma(-\mathfrak{A})$ in $L^{2}\left(\nu_{\theta}\right)$ is

$$
\left\{\xi^{2}-i k \xi ; \xi \in \mathbb{R}\right\} \cup\left[\frac{c^{2}}{4}, \infty\right)
$$

w.r.t. $\nu_{0}=d x$

w.r.t. ν_{θ}

w.r.t. $\nu_{1}=e^{-c x} d x$

5. Perturbation by rotation

Laplacian on \mathbb{R}^{2}

Let \mathfrak{A} be

$$
\begin{equation*}
\mathfrak{A}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial}{\partial y^{2}}+k\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right) \quad \text { on } L^{2}\left(\mathbf{R}^{2}, d x d y\right) \tag{5}
\end{equation*}
$$

The spectrum of $-\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial y^{2}}$ is $[0, \infty)$.
For the spectrum of \mathfrak{A}, we recall the Bessel functions:

$$
J_{\nu}(x)=\left(\frac{x}{2}\right)^{\nu} \sum_{l=0}^{\infty} \frac{(i x / 2)^{2 l}}{l!\Gamma(\nu+l+1)}, \quad \Re \nu>0
$$

which satisfies the following differential equation

$$
I^{\prime \prime}+\frac{1}{x} I^{\prime}+\left(1-\frac{\nu^{2}}{x^{2}}\right) I=0
$$

Since our space is \mathbb{R}^{2}, we only need the case that ν is a non-negative integer. We use the plar coordinate:

$$
\left\{\begin{array}{l}
x=r \cos \theta, \\
y=r \sin \theta,
\end{array} \quad r \geq 0, \theta \in[0,2 \pi)\right.
$$

Using this, \mathfrak{A} can be written as

$$
\mathfrak{A}=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}+k \frac{\partial}{\partial \theta} .
$$

If $F=f(r) e^{i n \theta}$, then

$$
\mathfrak{A} F=\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}-n^{2} \frac{1}{r^{2}}\right) f(r) e^{i n \theta}+i k n f(r) e^{i n \theta}
$$

Further

$$
\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}-n^{2} \frac{1}{r^{2}}\right) J_{n}(\lambda r)=-\lambda^{2} J_{n}(\lambda r) .
$$

The spectral decomposition is given by
$f(r, \theta)=\sum_{n \in \mathbb{Z}} \int\left\{\int\left(\frac{1}{2 \pi} \int f(\rho, \phi) e^{-i n \phi} d \phi\right) J_{|n|}(\lambda \rho) \rho d \rho\right\} e^{i n \theta} J_{|n|}(\lambda r) \lambda d \lambda$.

Theorem 9. The spectrum of $-\mathfrak{A}$ is

$$
\begin{equation*}
\left\{\lambda^{2}-i k n ; \lambda \geq 0, n \in \mathbb{Z}\right\} \tag{6}
\end{equation*}
$$

and the corresponding eigenfunction to $\lambda^{2}-i k n$ is $J_{|n|}(\lambda r) e^{i n \theta}$.

the spectrum of $-\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial y^{2}}$

the spectrum of \mathfrak{A}

Ornstein Uhlenbeck operator on \mathbb{R}^{2}

Let L_{α} be

$$
\begin{equation*}
L_{\alpha}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}-x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}+\alpha\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right) \tag{7}
\end{equation*}
$$

acting on $L^{2}\left(\mathbb{R}^{2}, \frac{1}{2 \pi} e^{-\left(x^{2}+y^{2}\right) / 2} d x d y\right)$.
The spectrum of Ornstein-Uhlenbeck operator L_{0} is $\{0,-1,-2, \ldots\}$. In fact, define Hermite polynomials by

$$
H_{n}(x)=(-1)^{n} e^{x^{2} / 2} \frac{d^{n}}{d x^{n}} e^{-x^{2} / 2}
$$

Then

$$
L_{0} H_{k}(x) H_{n-k}(y)=-n H_{k}(x) H_{n-k}(y) .
$$

To get the spectram of L_{α}, we need the complex Hermite polynomials defined by

$$
\begin{equation*}
H_{p, q}(z, \bar{z})=(-1)^{p+q} e^{\frac{z \bar{z}}{2}}\left(\frac{\partial}{\partial \bar{z}}\right)^{p}\left(\frac{\partial}{\partial z}\right)^{q} e^{-\frac{z \bar{z}}{2}} \tag{8}
\end{equation*}
$$

Here, we regard \mathbb{R}^{2} as \mathbb{C} with $z=x+i y$. We denote

$$
\frac{\partial}{\partial z}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right), \quad \frac{\partial}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)
$$

In the sequel, we write

$$
\partial=\frac{\partial}{\partial z}, \quad \bar{\partial}=\frac{\partial}{\partial \bar{z}}
$$

for short. We have

$$
\begin{equation*}
\partial^{*}=-\bar{\partial}+\frac{z}{2}, \quad \bar{\partial}^{*}=-\partial+\frac{\bar{z}}{2} \tag{9}
\end{equation*}
$$

Proposition 10. The following identities hold:

$$
\begin{gathered}
\partial H_{p, q}=\frac{p}{2} H_{p-1, q}, \quad \bar{\partial} H_{p, q}=\frac{q}{2} H_{p, q-1} \\
\partial^{*} H_{p, q}=H_{p+1, q}, \quad \bar{\partial}^{*} H_{p, q}=H_{p, q+1} \\
(2 \partial \bar{\partial}-z \partial) H_{p, q}=-p H_{p, q} \\
(2 \partial \bar{\partial}-\bar{z} \bar{\partial}) H_{p, q}=-q H_{p, q} \\
(z \partial-\bar{z} \bar{\partial}) H_{p, q}=(p-q) H_{p, q}
\end{gathered}
$$

We can write

$$
L_{\alpha}=(2 \partial \bar{\partial}-z \partial)+(2 \partial \bar{\partial}-\bar{z} \bar{\partial})+\alpha i(z \partial-\bar{z} \bar{\partial})
$$

Hence

$$
L_{\alpha} H_{p, q}=(-p-q+(p-q) \alpha i) H_{p, q}
$$

Theorem 11. The spectrum of $-L_{\alpha}$ is

$$
\begin{equation*}
\{(p+q)-(p-q) \alpha i\}_{p, q=0}^{\infty} \tag{10}
\end{equation*}
$$

and corresponding eigenfunctions are $\boldsymbol{H}_{\boldsymbol{p}, \boldsymbol{q}}$ respectively.

the spectrum of $-\boldsymbol{L}_{0}$

the spectrum of $-\boldsymbol{L}_{\alpha}$

Connection to the Laguerre polynomials

The eigenfunction $\boldsymbol{H}_{n, n}$ for the eigenvalue $2 \boldsymbol{n},\left(\boldsymbol{n} \in \mathbb{Z}_{+}\right)$is rotation invariant since $\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right) \boldsymbol{H}_{n, n}=0$. So $H_{n, n}$ is a function of $r=|z|$ and

$$
\left(\frac{d^{2}}{d r^{2}}+\frac{1}{r} \frac{d}{d r}-r \frac{d}{d r}\right) H_{n, n}=-2 n H_{n, n} .
$$

Now, by the change of variable $r=\sqrt{2 u}$, we have

$$
\frac{d^{2}}{d r^{2}}+\frac{1}{r} \frac{d}{d r}-r \frac{d}{d r}=2 u \frac{d^{2}}{d u^{2}}+2(1-u) \frac{d}{d u} .
$$

$\boldsymbol{F}(\boldsymbol{u})=\boldsymbol{H}_{n, \boldsymbol{n}}(\boldsymbol{r})$ satisfies

$$
2 u \frac{d^{2}}{d u^{2}} F+2(1-u) \frac{d}{d u} F+n F=0 .
$$

The Laguere polynomial satisfies this differential equation. Here the Laguere polynomial polynomial is defined by

$$
\begin{equation*}
L_{n}=\frac{e^{x}}{n!} \frac{d^{n}}{d x^{n}}\left(e^{-x} x^{n}\right) \tag{11}
\end{equation*}
$$

Now we have
Theorem 12. Complex Hermite polynomials $H_{n, n}$ are expressed as following;

$$
\begin{equation*}
H_{n, n}(z, \bar{z})=\frac{(-1)^{n} n!}{2^{n}} L_{n}\left(\frac{|z|^{2}}{2}\right) \tag{12}
\end{equation*}
$$

where c is a constant.

Thanks a lot!

