Non symmetric diffusions on a Riemannian manifold

Ichiro Shigekawa
Kyoto University
\[\begin{gathered} July 31, 2009
SPA 2009 Berlin \end{gathered} \]

URL: http://www.math.kyoto-u.ac.jp//ichiro/

Contents

1. Non-symmetric Diffusion on a Riemannian manifold
2. Domain of the generator
3. Convergence to the invariant measure

1. Non-symmetric Diffusion on a Riemannian manifold

- (M, g): d-dimensional connected complete Riemannian manifold.
- $m=$ vol : the Riemannian volume. $\quad b$: a vector field on M.

We consider the following opetaror in $L^{2}(m)$:

$$
\begin{equation*}
\mathfrak{A}=\frac{1}{2} \triangle+\nabla_{b} . \tag{1}
\end{equation*}
$$

The dual operator is

$$
\mathfrak{A}^{*}=\frac{1}{2} \triangle-\nabla_{b}-\operatorname{div} b
$$

and the symmetrization is

$$
\begin{equation*}
\frac{1}{2}\left(\mathfrak{A}+\mathfrak{A}^{*}\right)=\frac{1}{2} \triangle-\frac{1}{2} \operatorname{div} b \tag{2}
\end{equation*}
$$

They are well-defined in $C_{0}^{\infty}(M)$.

The bilinear form \mathcal{E} associated with \mathfrak{A} is

$$
\begin{equation*}
\mathcal{E}(u, v)=-(\mathfrak{A} u, v)=\frac{1}{2} \int_{M}(\nabla u, \nabla v) d m-\int_{M}\left(\nabla_{b} u\right) v d m . \tag{3}
\end{equation*}
$$

The symmetrization of this is

$$
\begin{equation*}
\tilde{\mathcal{E}}(u, v)=\frac{1}{2} \int_{M}(\nabla u, \nabla v) d m+\frac{1}{2} \int_{M} u v \operatorname{div} b d m \tag{4}
\end{equation*}
$$

This corresponds to the operator $\frac{1}{2}\left(\mathfrak{A}+\mathfrak{A}^{*}\right)$ in (2).
We are interested in when the semigroup associated to \mathfrak{A} exists in L^{2}.
We impose the following condition to ensure that $\boldsymbol{-} \boldsymbol{A}$ is bounded from below.
(A.1) $\exists \gamma \in \mathbb{R}: \frac{1}{2} \operatorname{div} b \geq-\gamma$.

Under this condition, $\tilde{\mathcal{E}}$ is bounded from below and closable.

- d : the distance function
- $o \in M$: a fixed reference point
- $\rho(x)=d(o, x)$

We add the following condition for b :
(A.2) $\exists \kappa:[0, \infty) \rightarrow[0,1]$ with $\int_{0}^{\infty} \kappa(x) d x=\infty$ so that

$$
\kappa(\rho) \nabla_{b} \rho \geq-1 .
$$

- A typical example is $\kappa(x)=\frac{1}{x} . \quad \nabla_{b} \rho(x) \geq-\rho(x)$.

No problem

OK

No!

Theorem 1. Under the assumptions (A.1) and (A.2), the closure of ($\left.\mathfrak{A}, C_{0}^{\infty}(M)\right)$ generates a Markovian C_{0}-semigroup in $L^{2}(m)$.

We claim the following:

- the dissipativity: $((\mathfrak{A}-\gamma) u, u)_{2} \leq 0$.
- the maximality: $(\mathfrak{A}-\gamma-1)\left(C_{0}^{\infty}(M)\right)$ is dense in L^{2}.

In fact,

$$
\begin{aligned}
&((\mathfrak{A}-\gamma) u, u)_{2}=-\frac{1}{2} \int_{M}\left(|\nabla u|^{2}+u^{2} \operatorname{div} b\right) d m-\int_{M} \gamma u^{2} d m \leq 0 . \\
&(\mathfrak{A}-\gamma-1)^{*} u=0 \Rightarrow u \in C^{\infty}(M) \\
& \Rightarrow\left(u,(\mathfrak{A}-\gamma-1)\left(\chi_{n} u\right)\right)_{2}=0 \\
& \Rightarrow u=0
\end{aligned}
$$

The Markovian property is checked by the following criterion:

$$
\begin{equation*}
(\mathfrak{A} u, u-u \wedge 1)_{2} \leq \gamma\|u-u \wedge 1\|_{2}^{2} . \tag{5}
\end{equation*}
$$

Here $a \wedge b=\min \{a, b\}$.
We can also show the L^{1}-contraction property.
Proposition 2. Under the assumptions (A.1) and (A.2), $\left\{e^{-2 t \gamma} \boldsymbol{T}_{t}\right\}$ satisfies the L^{1}-contraction property.

We check the following criterion:

$$
\left((\mathfrak{A}-2 \gamma) u, u_{+} \wedge 1\right)_{2} \leq-\gamma\left\|u_{+} \wedge 1\right\|_{2}^{2} .
$$

As for \boldsymbol{A}^{*}

$$
\mathfrak{A}^{*}=\frac{1}{2} \triangle-\nabla_{b}-\operatorname{div} b
$$

We need the following condition:

$$
(\mathrm{A} .2)^{*} \exists \kappa:[0, \infty) \rightarrow[0,1] \text { with } \int_{0}^{\infty} \kappa(x) d x=\infty \text { so that }
$$

$$
\kappa(\rho) \nabla_{b} \rho \leq 1
$$

Theorem 3. Under the assumptions (A.1), (A.2)*, the closure of ($\left.\mathfrak{A}^{*}, C_{0}^{\infty}(M)\right)$ generates a C_{0}-semigroup in $L^{2}(m)$. It satisfies L^{1}-contraction property. If, in addition, $\operatorname{div} b \geq 0$, then the semigroup is Markovian.

2. Domain of the generator

If the Ricci curvature is bounded from below, then $\operatorname{Dom}(\triangle)=\operatorname{Dom}\left(\nabla^{2}\right)$. We can get similar result for \mathfrak{A}. To do so, we need the intertwining property. The following intertwining property is well known:

$$
\nabla \triangle=\square_{1} \nabla .
$$

Here $\square_{1}=-\left(d d^{*}+d^{*} d\right)$ is the Hodge-Kodaira operator.
Now we define an operator $\overrightarrow{\mathfrak{A}}$ acting on 1 -forms by

$$
\overrightarrow{\mathfrak{A}} \theta=\frac{1}{2} \square_{1} \theta+\nabla_{b} \theta+\langle\nabla \cdot b, \theta\rangle .
$$

Then we have

$$
\nabla \mathfrak{A}=\overrightarrow{\mathfrak{A}} \nabla .
$$

As before, the bilinear form associated with the symmetrization of $\overrightarrow{\mathfrak{A}}$ is given by

$$
\overrightarrow{\mathcal{E}}(\theta, \eta)=\frac{1}{2}(\nabla \theta, \nabla \eta)_{2}+\int_{M}\left\{\frac{1}{2} \operatorname{Ric}(\theta, \eta)+\frac{1}{2} \operatorname{div} b(\theta, \eta)-(B \theta, \eta)\right\} d m .
$$

where B is the symmetrization of $\nabla b: B=\frac{1}{2}\left(\nabla b+(\nabla b)^{*}\right)$.
We have

$$
(-\overrightarrow{\mathfrak{A}} \theta, \theta)_{2}=\overrightarrow{\mathcal{E}}(\theta, \theta) .
$$

We impose the following condition so that $\overrightarrow{\mathcal{E}}$ is bounded from below.
(A.3) Ric is bounded from below and $\exists \delta: \frac{1}{2}$ Ric $+\frac{1}{2} \operatorname{div} b-B \geq-\delta$.

Note that

$$
\frac{1}{2}\|\nabla \theta\|_{2}^{2} \leq \overrightarrow{\mathcal{E}}_{\delta}(\theta, \theta)
$$

> Theorem 4. Assume (A.1), (A.2), (A.2)* and (A.3). Then $u \in \operatorname{Dom(\mathfrak {A})~if~and~}$ only if $u \in \operatorname{Dom}(\triangle)$ and $\nabla_{b} u \in L^{2}(m)$.

As for \mathfrak{A}^{*}

We have to handle $\operatorname{div} b$.

Define an operator $\overrightarrow{\mathfrak{D}}$ acting on 1 -fomrs by

$$
\overrightarrow{\mathfrak{D}} \theta=\frac{1}{2} \square_{1} \theta-\nabla_{b} \theta-\langle\nabla . b, \theta\rangle-\theta \operatorname{div} b
$$

The intertwining property holds as

$$
\nabla \mathfrak{A}^{*} u=\overrightarrow{\mathfrak{D}} \nabla u-u \nabla \operatorname{div} b .
$$

The bilinear form associated with the symmetrization of $\overrightarrow{\mathfrak{D}}$ is

$$
\overrightarrow{\mathcal{E}}^{\prime}(\theta, \eta)=\frac{1}{2}(\nabla \theta, \nabla \eta)_{2}+\int_{M}\left\{\frac{1}{2} \operatorname{Ric}(\theta, \eta)+\frac{1}{2}(\theta, \eta) \operatorname{div} b+(B \theta, \eta)\right\} d m
$$

We impose the following condition:
(A.4) Ric is bounded from below and $\exists \delta: \operatorname{Ric}+\frac{1}{2} \operatorname{div} b+B \geq-\delta^{\prime}$ and $\frac{\nabla \operatorname{div} b}{\operatorname{div} b+2 \gamma+2}$ is bounded.

Theorem 5. Assume (A.1), (A.2), (A.2)* and (A.4). Then $u \in \operatorname{Dom(\mathfrak {A})~if~and~}$ only if $u \in \operatorname{Dom}(\triangle)$ and $\nabla_{b} u+\frac{1}{2} u \operatorname{div} b \in L^{2}$.

3. Convergence to the invariant measure

Le M be a compact connected Riemannia maniflod.

$$
\begin{array}{ccc}
& \frac{1}{2} \triangle & p(t, x, y) \rightarrow 1 \\
\frac{1}{2} \triangle+b & (\operatorname{div} b=0) & q(t, x, y) \rightarrow 1
\end{array}
$$

How fast?

$$
\begin{aligned}
& \lambda=-\lim _{t \rightarrow \infty} \frac{1}{t} \log \sup _{x, y \in M}|p(t, x, y)-1|, \\
& \gamma=-\lim _{t \rightarrow \infty} \frac{1}{t} \log \sup _{x, y \in M}|q(t, x, y)-1| .
\end{aligned}
$$

Our aim is to show that

$$
\gamma \geq \lambda .
$$

Dirichlet forms satisfying the sector condition

- (M, m) : a measure space, $\quad H=L^{2}(m)$: a Hilbert space
- \mathcal{E} : a Dirichlet form, $\tilde{\mathcal{E}}$: symmetrization of \mathcal{E}
- \mathfrak{A} : the generator
- $\left\{T_{t}\right\}$: a Markovian semigroup

We assume that \mathcal{E} is non-negative definite and satisfies a weak sector condition:

$$
|\mathcal{E}(f, g)| \leq K \mathcal{E}_{1}(f, f)^{1 / 2} \mathcal{E}_{1}(g, g)^{1 / 2} .
$$

We also assumed that $\left\{T_{t}^{*}\right\}$ is a Markovian semigroup.

Ultracontractivity

Theorem 6. Let $\mu>0$. We have the following equivalence:

$$
\begin{gathered}
\left\|T_{t} f\right\|_{\infty} \leq c_{1} t^{-\mu / 2}\|f\|_{1}, \quad \forall t \in(0,1] \\
\|f\|_{2}^{2+4 / \mu} \leq c_{2}\left(\tilde{\mathcal{E}}(f, f)+\|f\|_{2}^{2}\right)\|f\|_{1}^{4 / \mu} \\
\hat{\mathbb{I}} \\
\|f\|_{2 \mu /(\mu-2)}^{2} \leq c_{3}\left(\tilde{\mathcal{E}}(f, f)+\|f\|_{2}^{2}\right) \quad(\mu>2)
\end{gathered}
$$

Key estimate:

$$
\tilde{\mathcal{E}}\left(T_{s} f, T_{s} f\right) \leq C\left\{\tilde{\mathcal{E}}(f, f)+\|f\|_{2}^{2}\right\}
$$

Dirichlet forms having invariant measure

We continue to assume the sector condition. In addition, we assume

- m is an invariant probability measure.

$$
\int_{M} T_{t} f d m=\int_{M} f d m
$$

- $\boldsymbol{T}_{t} \mathbf{1}=1$ and $\mathfrak{A} 1=0$.

The following inequality is called the Poincare inequality

$$
\begin{equation*}
\|f-m(f)\|_{2}^{2} \leq \lambda^{-1} \tilde{\mathcal{E}}(f, f) \tag{6}
\end{equation*}
$$

where

$$
m(f)=\int_{M} f(x) m(d x)
$$

This inequality is equivalent to

$$
\left\|T_{t} f-m(f)\right\|_{2}^{2} \leq e^{-2 \lambda t}\|f-m(f)\|_{2}^{2}
$$

Theorem 7. Let $\mu>0$. We consider the following two conditions.
(i) There exists a constant c_{1} so that for all $f \in L^{1}$

$$
\left\|T_{t} f-m(f)\right\|_{\infty} \leq c_{1} t^{-\mu / 2}\|f\|_{1}, \quad \forall t \in(0,1] .
$$

(ii) There exists a constant c_{2} so that for all $f \in \operatorname{Dom}(\tilde{\mathcal{E}}) \cap L^{1}(m)$

$$
\|f-m(f)\|_{2}^{2+4 / \mu} \leq c_{2} \tilde{\mathcal{E}}(f, f)\|f\|_{1}^{4 / \mu} .
$$

Then, (i) \& Poincaré inequality \Leftrightarrow (ii).
Under the condition (ii), there exists a constant $c_{4}>0$ so that for all $f \in L^{1}$

$$
\left\|T_{t} f-m(f)\right\|_{\infty} \leq c_{4} e^{-\lambda t}\|f\|_{1}, \quad \forall t \geq 1
$$

Here $\boldsymbol{\lambda}$ is a constant appears in the Poincaré inequality (6).

Proof.

$$
\begin{aligned}
\left\|T_{t}-m\right\|_{1 \rightarrow \infty} & =\left\|\left(T_{1}-m\right)\left(T_{t-2}-m\right)\left(T_{1}-m\right)\right\|_{1 \rightarrow \infty} \\
& \leq\left\|T_{1}-m\right\|_{2 \rightarrow \infty}\left\|T_{t-2}-m\right\|_{2 \rightarrow 2}\left\|T_{1}-m\right\|_{1 \rightarrow 2} \\
& \leq\left\|T_{1}-m\right\|_{2 \rightarrow \infty} e^{-\lambda(t-2)}\left\|T_{1}-m\right\|_{1 \rightarrow 2}
\end{aligned}
$$

Let us investigate the convergense rete. Set $a_{t}=\left\|T_{t}-m\right\|_{1 \rightarrow \infty}$ and define γ by

$$
\begin{equation*}
\gamma=-\lim _{t \rightarrow \infty} \frac{1}{t} \log a_{t} . \tag{7}
\end{equation*}
$$

Theorem 8. We have

$$
\gamma \geq \lambda
$$

and the equality holds if \boldsymbol{A} is normal. Here $\boldsymbol{\lambda}$ is the spectral gap (6).

Case that M is compact

Let us return to the diffusion on a Riemannian manifold M generated by

$$
\mathfrak{A} f=\frac{1}{2} \triangle f+b f=\frac{1}{2} \triangle f+\left(\nabla f, \omega_{b}\right) .
$$

If M is compact, then there exists an invariant probability measure.

- ν : an invariant probability measure: $\quad \nu=e^{-U} m$

We use the following notations

- ∇ : the Levi-Civita covariant derivative
- ∇^{*} : the dual operator of ∇ w.r.t. m
- ∇_{ν}^{*} : the dual operator of ∇ w.r.t. ν
- ω_{b} : 1-form corresponding to b

We now change the reference measure to ν. So our Hilbert space changes to $L^{2}(\nu)$.

Set

$$
\mathcal{G}_{\nu}=\{\mathfrak{A} ; \mathfrak{A} \text { has an invariant measure } \nu .\}
$$

We set

$$
\begin{aligned}
\tilde{b} & =\frac{1}{2}(\nabla U)^{\sharp}+b, \\
\omega_{\tilde{b}} & =\frac{1}{2} \nabla U+\omega_{b} .
\end{aligned}
$$

Theorem 9. $\mathfrak{A} \in \mathcal{G}_{\nu}$ if and ony if $\nabla_{\nu}^{*} \omega_{\tilde{b}}=0$. In this case,

$$
\mathfrak{A} f=-\frac{1}{2} \nabla_{\nu}^{*} \nabla f+\left(\omega_{\tilde{b}}, \nabla f\right)
$$

and

$$
\mathfrak{A}_{\nu}^{*} f=-\frac{1}{2} \nabla_{\nu}^{*} \nabla f-\left(\omega_{\tilde{b}}, \nabla f\right)
$$

Further the associated symmetric Dirichlet form is given by

$$
\tilde{\mathcal{E}}(f, h)=\frac{1}{2} \int_{M}(\nabla f, \nabla h) d \nu
$$

Normal operator

Theorem 10. \mathfrak{A} is normal if and only if \tilde{b} is a Killing field and $\left[\nabla U^{\sharp}, \tilde{b}\right]=0$.
A vector field \boldsymbol{X} is called a Killing field if $\boldsymbol{L}_{\boldsymbol{X}} \boldsymbol{g}=0$. It is known that \boldsymbol{X} is a Killing field if and only if $\boldsymbol{\nabla} \boldsymbol{X}$ is skew-symmetric. This is also equivalent to

$$
\begin{gathered}
\operatorname{div} X=0 \\
\nabla^{*} \nabla X+\operatorname{Ric}(X)=0 .
\end{gathered}
$$

Recall

$$
\begin{aligned}
\mathfrak{A} & =\frac{1}{2} \triangle_{\nu}+\nabla_{\tilde{b}}, \\
\mathfrak{A}^{*} & =\frac{1}{2} \triangle_{\nu}-\nabla_{\tilde{b}} .
\end{aligned}
$$

Here

$$
\triangle_{\nu}=-\nabla_{\nu}^{*} \nabla=-\nabla^{*} \nabla+\nabla U \cdot \nabla
$$

Then

$$
\mathfrak{A A}^{*}-\mathfrak{A}^{*} \mathfrak{A}=\left[\nabla_{\tilde{b}}, \triangle_{\nu}\right] .
$$

Moreover

$$
\left[\triangle_{\nu}, \nabla_{\tilde{b}}\right] f=2\left(\nabla \omega_{\tilde{b}}, \nabla^{2} f\right)+\left(-\nabla^{*} \nabla \omega_{\tilde{b}}+\operatorname{Ric}\left(\omega_{\tilde{b}}\right)+\left[\nabla U^{\sharp}, \tilde{b}\right]^{b}, \nabla f\right)
$$

T_{t} has a density $p(t, x, y)$ with respect to ν. Define

$$
\gamma=-\lim _{t \rightarrow \infty} \frac{1}{t} \log \sup _{x, y \in M}|p(t, x, y)-1| .
$$

Let $\boldsymbol{\lambda}$ be the spectral gap:

$$
\lambda=\inf _{f \neq \nu(f)} \frac{\tilde{\mathcal{E}}(f, f)}{\|f-\nu(f)\|_{\nu}^{2}}
$$

Theorem 11. We have

$$
\gamma \geq \lambda
$$

The equality holds if \mathfrak{A} is normal.
We can give a characterization of γ in terms of the spectrum:

$$
\gamma=\inf \{\Re \eta ; \eta \in \sigma(-\mathfrak{A})\}
$$

Theorem 12. If $\gamma=\lambda$, then $-\boldsymbol{A}$ has an eigenvalue $\boldsymbol{\xi}$ so that $\Re \xi=\lambda$ and its eigenfunctions is also an eigenfunction of $\frac{1}{2} \nabla_{\nu}^{*} \nabla$ for an eigenvalue λ.

Example: 2-dimensional torus

- $M=T^{2}$
- (x, y) : the standard local coordinate
$b=f(x) \frac{\partial}{\partial y}+g(y) \frac{\partial}{\partial x}$

Then

$$
\begin{aligned}
f=\text { constant, } \boldsymbol{g}=\mathrm{constant} & \Rightarrow \gamma=\lambda \\
f=0 & \Rightarrow \gamma=\lambda \\
f \neq \mathrm{constant}, \boldsymbol{g} \neq \mathrm{constant} & \Rightarrow \gamma>\lambda
\end{aligned}
$$

Thanks a lot!

