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1. Non-symmetric Diffusion on a Riemannian manifold

• (M, g): d-dimensional connected complete Riemannian manifold.

• m = vol : the Riemannian volume. b : a vector field on M .

We consider the following opetaror in L2(m):

A =
1

2
� + ∇b.(1)

The dual operator is

A∗ =
1

2
� − ∇b − div b

and the symmetrization is

1

2
(A + A∗) =

1

2
� − 1

2
div b(2)

They are well-defined in C∞
0 (M).
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The bilinear form E associated with A is

E(u, v) = −(Au, v) =
1

2

∫
M

(∇u, ∇v) dm −
∫

M

(∇bu)v dm.(3)

The symmetrization of this is

Ẽ(u, v) =
1

2

∫
M

(∇u, ∇v) dm +
1

2

∫
M

uv div b dm.(4)

This corresponds to the operator 1
2
(A + A∗) in (2).

We are interested in when the semigroup associated to A exists in L2.

We impose the following condition to ensure that −A is bounded from below.

(A.1) ∃ γ ∈ R : 1
2

div b ≥ −γ.

Under this condition, Ẽ is bounded from below and closable.
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• d: the distance function

• o ∈ M : a fixed reference point

• ρ(x) = d(o, x)

We add the following condition for b :

(A.2) ∃ κ : [0, ∞) → [0, 1] with
∫ ∞
0 κ(x) dx = ∞ so that

κ(ρ)∇bρ ≥ −1.

• A typical example is κ(x) = 1
x
. ∇bρ(x) ≥ −ρ(x).
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b

ρ = r

No problem

b

ρ = r

OK

b

ρ = r

No!



6

Theorem 1. Under the assumptions (A.1) and (A.2), the closure of (A, C∞
0 (M))

generates a Markovian C0-semigroup in L2(m).

We claim the following:

• the dissipativity: ((A − γ)u, u)2 ≤ 0.

• the maximality: (A − γ − 1)(C∞
0 (M)) is dense in L2.

In fact,

((A − γ)u, u)2 = −1

2

∫
M

(|∇u|2 + u2 div b) dm −
∫

M

γu2 dm ≤ 0.

(A − γ − 1)∗u = 0 ⇒ u ∈ C∞(M)

⇒ (u, (A − γ − 1)(χnu))2 = 0

⇒ u = 0
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The Markovian property is checked by the following criterion:

(Au, u − u ∧ 1)2 ≤ γ‖u − u ∧ 1‖2
2.(5)

Here a ∧ b = min{a, b}．
We can also show the L1-contraction property.

Proposition 2. Under the assumptions (A.1) and (A.2), {e−2tγTt} satisfies the
L1-contraction property.

We check the following criterion:

((A − 2γ)u, u+ ∧ 1)2 ≤ −γ‖u+ ∧ 1‖2
2.
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As for A∗

A∗ =
1

2
� − ∇b − div b.

We need the following condition:

(A.2)∗ ∃ κ : [0, ∞) → [0, 1] with
∫ ∞
0 κ(x) dx = ∞ so that

κ(ρ)∇bρ ≤ 1.

Theorem 3. Under the assumptions (A.1), (A.2)∗, the closure of (A∗, C∞
0 (M))

generates a C0-semigroup in L2(m). It satisfies L1-contraction property. If, in
addition, div b ≥ 0, then the semigroup is Markovian.
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2. Domain of the generator

If the Ricci curvature is bounded from below, then Dom(�) = Dom(∇2). We can
get similar result for A. To do so, we need the intertwining property. The following
intertwining property is well known:

∇� = �1∇.

Here �1 = −(dd∗ + d∗d) is the Hodge-Kodaira operator.

Now we define an operator �A acting on 1-forms by

�Aθ =
1

2
�1θ + ∇bθ + 〈∇·b, θ〉.

Then we have

∇A = �A∇.

As before, the bilinear form associated with the symmetrization of �A is given by

�E(θ, η) =
1

2
(∇θ, ∇η)2 +

∫
M

{1

2
Ric(θ, η) +

1

2
div b(θ, η) − (Bθ, η)} dm.
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where B is the symmetrization of ∇b : B = 1
2
(∇b + (∇b)∗).

We have

(−�Aθ, θ)2 = �E(θ, θ).

We impose the following condition so that �E is bounded from below.

(A.3) Ric is bounded from below and ∃δ : 1
2

Ric +1
2

div b − B ≥ −δ.

Note that
1

2
‖∇θ‖2

2 ≤ �Eδ(θ, θ).

Theorem 4. Assume (A.1), (A.2), (A.2)∗ and (A.3). Then u ∈ Dom(A) if and
only if u ∈ Dom(�) and ∇bu ∈ L2(m).

As for A∗

We have to handle div b.
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Define an operator �D acting on 1-fomrs by

�Dθ =
1

2
�1θ − ∇bθ − 〈∇·b, θ〉 − θ div b.

The intertwining property holds as

∇A∗u = �D∇u − u∇ div b.

The bilinear form associated with the symmetrization of �D is

�E ′(θ, η) =
1

2
(∇θ, ∇η)2 +

∫
M

{1

2
Ric(θ, η) +

1

2
(θ, η) div b + (Bθ, η)} dm

We impose the following condition:

(A.4) Ric is bounded from below and ∃δ : Ric +1
2

div b + B ≥ −δ′ and
∇ div b

div b+2γ+2
is bounded.

Theorem 5. Assume (A.1), (A.2), (A.2)∗ and (A.4). Then u ∈ Dom(A) if and
only if u ∈ Dom(�) and ∇bu + 1

2
u div b ∈ L2.
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3. Convergence to the invariant measure

Le M be a compact connected Riemannia maniflod.

1
2
� p(t, x, y) → 1

1
2
� + b (div b = 0) q(t, x, y) → 1

How fast?

λ = − lim
t→∞

1

t
log sup

x,y∈M
|p(t, x, y) − 1|,

γ = − lim
t→∞

1

t
log sup

x,y∈M
|q(t, x, y) − 1|.

Our aim is to show that

γ ≥ λ.
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Dirichlet forms satisfying the sector condition

• (M, m): a measure space, H = L2(m): a Hilbert space

• E : a Dirichlet form, Ẽ : symmetrization of E

• A: the generator

• {Tt}: a Markovian semigroup

We assume that E is non-negative definite and satisfies a weak sector condition:

|E(f, g)| ≤ KE1(f, f)1/2E1(g, g)1/2.

We also assumed that {T ∗
t } is a Markovian semigroup.
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Ultracontractivity

Theorem 6. Let μ > 0. We have the following equivalence:

‖Ttf‖∞ ≤ c1t−μ/2‖f‖1, ∀t ∈ (0, 1]

�
‖f‖2+4/μ

2 ≤ c2(Ẽ(f, f) + ‖f‖2
2) ‖f‖4/μ

1

�
‖f‖2

2μ/(μ−2) ≤ c3(Ẽ(f, f) + ‖f‖2
2) (μ > 2)

Key estimate:

Ẽ(Tsf, Tsf) ≤ C{Ẽ(f, f) + ‖f‖2
2}
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Dirichlet forms having invariant measure

We continue to assume the sector condition. In addition, we assume

• m is an invariant probability measure.∫
M

Ttf dm =
∫

M

f dm

• Tt1 = 1 and A1 = 0.

The following inequality is called the Poincaré inequality

‖f − m(f)‖2
2 ≤ λ−1Ẽ(f, f)(6)

where

m(f) =
∫

M

f(x) m(dx).

This inequality is equivalent to

‖Ttf − m(f)‖2
2 ≤ e−2λt‖f − m(f)‖2

2.
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Theorem 7. Let μ > 0. We consider the following two conditions.

(i) There exists a constant c1 so that for all f ∈ L1

‖Ttf − m(f)‖∞ ≤ c1t−μ/2‖f‖1, ∀t ∈ (0, 1].

(ii) There exists a constant c2 so that for all f ∈ Dom(Ẽ) ∩ L1(m)

‖f − m(f)‖2+4/μ
2 ≤ c2 Ẽ(f, f) ‖f‖4/μ

1 .

Then, (i) & Poincaré inequality ⇔ (ii).
Under the condition (ii), there exists a constant c4 > 0 so that for all f ∈ L1

‖Ttf − m(f)‖∞ ≤ c4e−λt‖f‖1, ∀t ≥ 1.

Here λ is a constant appears in the Poincaré inequality (6).
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Proof.

‖Tt − m‖1→∞ = ‖(T1 − m)(Tt−2 − m)(T1 − m)‖1→∞

≤ ‖T1 − m‖2→∞ ‖Tt−2 − m‖2→2 ‖T1 − m‖1→2

≤ ‖T1 − m‖2→∞ e−λ(t−2) ‖T1 − m‖1→2 �

Let us investigate the convergense rete. Set at = ‖Tt − m‖1→∞ and define γ by

γ = − lim
t→∞

1

t
log at.(7)

Theorem 8. We have

γ ≥ λ

and the equality holds if A is normal. Here λ is the spectral gap (6).
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Case that M is compact

Let us return to the diffusion on a Riemannian manifold M generated by

Af =
1

2
�f + bf =

1

2
�f + (∇f, ωb).

If M is compact, then there exists an invariant probability measure.

• ν: an invariant probability measure: ν = e−Um

We use the following notations

• ∇: the Levi-Civita covariant derivative

• ∇∗: the dual operator of ∇ w.r.t. m

• ∇∗
ν : the dual operator of ∇ w.r.t. ν

• ωb: 1-form corresponding to b
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We now change the reference measure to ν. So our Hilbert space changes to
L2(ν).

Set

Gν = {A ; A has an invariant measure ν.}

We set

b̃ =
1

2
(∇U)� + b,

ωb̃ =
1

2
∇U + ωb.
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Theorem 9. A ∈ Gν if and ony if ∇∗
νωb̃ = 0. In this case,

Af = −1

2
∇∗

ν∇f + (ωb̃, ∇f)

and

A∗
νf = −1

2
∇∗

ν∇f − (ωb̃, ∇f).

Further the associated symmetric Dirichlet form is given by

Ẽ(f, h) =
1

2

∫
M

(∇f, ∇h)dν.
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Normal operator

Theorem 10. A is normal if and only if b̃ is a Killing field and [∇U �, b̃] = 0.

A vector field X is called a Killing field if LXg = 0. It is known that X is a Killing
field if and only if ∇X is skew-symmetric. This is also equivalent to

div X = 0,

∇∗∇X + Ric(X) = 0.
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Recall

A =
1

2
�ν + ∇b̃,

A∗ =
1

2
�ν − ∇b̃.

Here

�ν = −∇∗
ν∇ = −∇∗∇ + ∇U · ∇.

Then

AA∗ − A∗A = [∇b̃, �ν ].

Moreover

[�ν , ∇b̃]f = 2(∇ωb̃, ∇2f) + (−∇∗∇ωb̃ + Ric(ωb̃) + [∇U �, b̃]�, ∇f)
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Tt has a density p(t, x, y) with respect to ν. Define

γ = − lim
t→∞

1

t
log sup

x,y∈M
|p(t, x, y) − 1|.

Let λ be the spectral gap:

λ = inf
f �=ν(f)

Ẽ(f, f)

‖f − ν(f)‖2
ν

Theorem 11. We have

γ ≥ λ.

The equality holds if A is normal.

We can give a characterization of γ in terms of the spectrum:

γ = inf{�η; η ∈ σ(−A)}

Theorem 12. If γ = λ, then −A has an eigenvalue ξ so that �ξ = λ and its
eigenfunctions is also an eigenfunction of 1

2
∇∗

ν∇ for an eigenvalue λ.
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Example: 2-dimensional torus

• M = T 2

• (x, y): the standard local coordinate

• b = f(x)
∂

∂y
+ g(y)

∂

∂x

Then

f = constant, g = constant ⇒ γ = λ

f = 0 ⇒ γ = λ

f �= constant, g �= constant ⇒ γ > λ.
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Thanks a lot!


