Spectra of Non-symmetric Operators*

Yusuke IKENO
Ichiro SHIGEKAWA
Kyoto University
Kyoto University

1 Introduction

In this talk, we discuss spectra of non-symmetric operators. We computed the spectra of

1. generator of Brownian motion with drift,
2. Laplacian with rotation, and
3. Ornstein Uhlenbeck operator with rotation.

2 Spectrum of a non-normal operator

Let $A:=-\frac{d^{2}}{d x^{2}}+c \frac{d}{d x}$ acting on $L^{2}\left(\mathbf{R}, \nu_{\theta}\right)$, where

$$
\begin{equation*}
\nu_{\theta}(d x)=\left\{(1-\theta)+\theta e^{-c x}\right\} d x, \tag{1}
\end{equation*}
$$

and $c \geq 0$. These $\left\{\nu_{\theta}\right\}_{0 \leq \theta \leq 1}$ are invariant measures of A.
A is a self-adjoint operator for $\theta=1$, and normal one for $\theta=0$. In these two cases, we can compute spectra of A as follows by the Fourier transform.

Theorem 1 Let σ_{0}, σ_{1} be spectra of A for $\theta=0,1$, respectively. Then

$$
\begin{equation*}
\sigma_{0}=\left\{z=x+i y \in \mathbf{C} ; c^{2} x=y^{2}\right\}, \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{1}=\left\{\frac{c^{2}}{4}+t ; 0 \leq t\right\} . \tag{3}
\end{equation*}
$$

[^0]Since A is not a normal operator for $0<\theta<1$, we need another way to compute its spectrum. The relation

$$
\begin{equation*}
L^{2}\left(\mathbf{R}, \nu_{\theta}\right)=L^{2}\left(\mathbf{R}, \nu_{0}\right) \cap L^{2}\left(\mathbf{R}, \nu_{1}\right) \tag{4}
\end{equation*}
$$

gives an idea to compute the spectrum. It is computed as follows.
Theorem 2 For $0<\theta<1$, the spectrum of A is $\sigma_{0} \cup \sigma_{1}$.

3 Perturbation by rotation

3.1 Laplacian on \mathbf{R}^{2}

Let L be

$$
\begin{equation*}
-\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial}{\partial y^{2}}+\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right) \quad \text { on } L^{2}\left(\mathbf{R}^{2}, d x d y\right) \tag{5}
\end{equation*}
$$

The spectrum of $-\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial y^{2}}$ is $\mathbf{R}_{\geq 0}$. There are many eigenfunctions corresponding to a spectrum.

Using polar coordinate, we get;
Theorem 3 The spectrum of L is

$$
\begin{equation*}
\{\lambda+i n ; \lambda \geq 0, n \in \mathbf{Z}\} \tag{6}
\end{equation*}
$$

and the corresponding eigenfunction to $\lambda+$ in is $J_{|n|}(\sqrt{\lambda} r) e^{i n \theta}$, where J_{m} is the Bessel functions of first kind of order m. Here (r, θ) is the usual polar coordinate.

3.2 Ornstein Uhlenbeck operator on \mathbf{R}^{2}

Let L_{α} be

$$
\begin{equation*}
-\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial}{\partial y^{2}}+x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+\alpha\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right) \tag{7}
\end{equation*}
$$

acting on $L^{2}\left(\mathbf{R}^{2}, e^{-\frac{x^{2}+y^{2}}{2}} d x d y\right)$.
The spectrum of Ornstein-Uhlenbeck operator L_{0} is $\{0,1,2, \ldots\}$ and corresponding eigenfunctions can be represented by Hermite polynomials.

For $\alpha \neq 0$, the spectrum is clearly determined by complex Hermite polynomials

$$
\begin{equation*}
H_{p, q}(z, \bar{z}):=(-1)^{p+q} e^{\frac{z \bar{z}}{2}}\left(\frac{\partial}{\partial \bar{z}}\right)^{p}\left(\frac{\partial}{\partial z}\right)^{q} e^{-\frac{z \bar{z}}{2}} . \tag{8}
\end{equation*}
$$

Here, we regard \mathbf{R}^{2} as \mathbf{C}. Then we have;

Theorem 4 The spectrum of L_{α} is

$$
\begin{equation*}
\{(p+q)+(p-q) \alpha i\}_{p, q=0}^{\infty} \tag{9}
\end{equation*}
$$

and corresponding eigenfunctions are $H_{p, q}$ respectively.
Let $V_{n}:=\left\{L_{0} f=n f\right\}$. Then by formulae of complex Hermite polynomials,

$$
V_{n}=\bigoplus_{p+q=n} \mathbf{C} H_{p, q} .
$$

This decomposition corresponds to a rotation group. $H_{n, n}$ is rotation invariant. Under the polar coordinate, $H_{n, n}$ satisfy a differential equation.

Theorem 5 Complex Hermite polynomials $H_{n, n}$ are expressed as following;

$$
\begin{equation*}
H_{n, n}(z, \bar{z})=c L_{n}\left(\frac{|z|^{2}}{2}\right) \tag{10}
\end{equation*}
$$

where $L_{n}=\frac{e^{x}}{n!\frac{d^{n}}{d x^{n}}}\left(e^{-x} x^{n}\right)$ are Laguerre polynomials and c is a constant.

[^0]: *November 5-7, 2009, "Stochastic Analysis and Related Topics " in Tohoku University

