Non-symmetric diffusions on Riemannian manifolds and the ultracontractivity

Ichiro Shigekawa

Kyoto University

```
November 20, 2008
    in Nagoya
```

URL: http://www.math.kyoto-u.ac.jp//ichiro/

Contents

1. Introduction
2. Non-symmetric Markovian semigroups
3. Dirichlet forms satisfying the sector condition
4. Dirichlet forms having invariant measure
5. Non-symmetric diffusions on Riemannian manifolds

1. Introduction

Let ($\boldsymbol{X}_{\boldsymbol{t}}$) be a diffusion on a compact Riemannian manifold M generated by $\frac{1}{2} \triangle+b$. Its has a transition probability density $p(t, x, y)$. We can see that $p(t, x, y)$ converges to an invariant measure $\nu(d x)=\rho(x) \operatorname{vol}(d x)$.

We are interested in the convergence rate γ :

$$
\gamma=-\lim _{t \rightarrow \infty} \frac{1}{t} \log \sup _{x, y}|p(t, x, y)-\rho(x)| .
$$

We give a lower bound of γ.
Our main tool is the ultracontractivity of the semigorup.

Ultracontractivity

A semigroup $\left\{T_{t}\right\}$ is called ultracontractive if $T_{t}: L^{1} \rightarrow L^{\infty}$ is bounded for all $t>0$.

It is well-known that the following three conditions are equivalent for a symmetric Markovian semigroup. Let $\boldsymbol{\mu}>\mathbf{0}$ be given.
(i) $\exists c_{1}>0, \forall f \in L^{1}$:

$$
\left\|T_{t} f\right\|_{\infty} \leq c_{1} t^{-\mu / 2}\|f\|_{1}, \quad \forall t>0
$$

(ii) $\exists c_{2}>0, \forall f \in \operatorname{Dom}(\mathcal{E}) \cap L^{\infty}$:

$$
\|f\|_{2}^{2+4 / \mu} \leq c_{2} \mathcal{E}(f, f)\|f\|_{1}^{4 / \mu} .
$$

(iii) $\mu>2, \exists c_{3}>0, \forall f \in \operatorname{Dom}(\mathcal{E})$:

$$
\|f\|_{2 \mu /(\mu-2)}^{2} \leq c_{3} \mathcal{E}(f, f)
$$

We extend this result for non-symmetric Markovian semigroups.

2. Non-symmetric Markovian semigroups

We give a framework in generall Hilbert space scheme.

- H: a Hilbert space
- $\left\{T_{t}\right\}$: a contraction C_{0} semigroup
- $\left\{T_{t}^{*}\right\}$: the dual semigroup
- $\mathfrak{A}, \mathfrak{A}^{*}$: the generators of $\left\{T_{t}\right\}$ and $\left\{T_{t}^{*}\right\}$

A natural bilinear form \mathcal{E} is defined by

$$
\mathcal{E}(u, v)=-(\mathfrak{A} u, v) .
$$

We do not assume the sector condition and so we can not use this bilinear form.

We introduce a symmetric bilinear form. For this, we assume the following condition:
(A.1) $\operatorname{Dom}(\boldsymbol{A}) \cap \operatorname{Dom}\left(\mathfrak{A}^{*}\right)$ is dense in $\operatorname{Dom}(\mathfrak{A})$ and $\operatorname{Dom}\left(\mathfrak{A}^{*}\right)$.

Under this condition, we define a symmetric bilinear form $\tilde{\mathcal{E}}$ by

$$
\tilde{\mathcal{E}}(u, v)=-\frac{1}{2}\{(\mathfrak{A} u, v)+(u, \mathfrak{A} v)\}, \quad u, v \in \operatorname{Dom}(\mathfrak{A}) \cap \operatorname{Dom}\left(\mathfrak{A}^{*}\right) .
$$

Proposition 1. Under the condition (A.1), $\tilde{\mathcal{E}}$ is closable and its closure contains $\operatorname{Dom}(\mathfrak{A})$ and $\operatorname{Dom}\left(\mathfrak{A}^{*}\right)$.

Covex set preserving property

- \boldsymbol{C} : a convex set of \boldsymbol{H}.
- Pu: the shortest point from u to C
$(u-P u, v-P u) \leq 0, \quad \forall v \in C$.

Theorem 2. If $\left\{T_{t}\right\}$ and $\left\{T_{t}^{*}\right\}$ preserve a convex set C, then $P u \in \operatorname{Dom}(\tilde{\mathcal{E}})$ for any $u \in \operatorname{Dom}(\tilde{\mathcal{E}})$ and we have

$$
\tilde{\mathcal{E}}(P u, u-P u) \geq 0 .
$$

Markovian semigroup

- ($M, m)$: a measure space
- $\boldsymbol{H}=L^{2}(\boldsymbol{m}):$ a Hilbert space
- $\left\{\boldsymbol{T}_{t}\right\}$: a Markovian semigroup

We assume that $\left\{T_{t}^{*}\right\}$ is also a Markovian semigroup.
Under the assumption (A.1), we can define a symmetric bilinear form $\tilde{\mathcal{E}}$ and $\tilde{\mathcal{E}}$ is a Dirichlet form.

We have the following implications.

$$
\begin{gathered}
\left\|T_{t} f\right\|_{\infty} \leq c_{1} t^{-\mu / 2}\|f\|_{1}, \quad \forall t>0 \\
\text { 介 } \Downarrow \text { under }(1) \\
\|f\|_{2}^{2+4 / \mu} \leq c_{2} \tilde{\mathcal{E}}(f, f)\|f\|_{1}^{4 / \mu} \\
\Uparrow \\
\|f\|_{2 \mu /(\mu-2)}^{2} \leq c_{3} \tilde{\mathcal{E}}(f, f) \quad(\mu>2)
\end{gathered}
$$

$$
\begin{equation*}
\left(\mathfrak{A}^{2} f, f\right)_{2}+(\mathfrak{A} f, \mathfrak{A} f)_{2} \geq 0 . \tag{1}
\end{equation*}
$$

(1) holds if \mathfrak{A} is normal, i.e. $\mathfrak{A A}^{*}=\mathfrak{A}^{*} \mathfrak{A}$.

Moreover

| $\\|$ | | | | | | |
|---|---|---|---|---|---|---|---|
| $\left\\|T_{t} f\right\\|_{\infty} \leq c_{1} t^{-\mu / 2}\\|f\\|_{1}, \quad \forall t \in(0,1]$ | |
| $\Uparrow \quad \Downarrow$ under (2) | |
| $\\|f\\|_{2}^{2+4 / \mu}$ | $\leq c_{2}\left(\tilde{\mathcal{E}}(f, f)+\\|f\\|_{2}^{2}\right)\\|f\\|_{1}^{4 / \mu}$ |
| \Uparrow | |
| $\\|f\\|_{2 \mu /(\mu-2)}^{2}$ | $\leq c_{3}\left(\tilde{\mathcal{E}}(f, f)+\\|f\\|_{2}^{2}\right) \quad(\mu>2)$ |

There there exists a constant $M>0$ so that for all $f \in \operatorname{Dom}\left(\mathfrak{A}^{2}\right)$

$$
\begin{equation*}
\left((\mathfrak{A}-M)^{2} f, f\right)_{2}+((\mathfrak{A}-M) f,(\mathfrak{A}-M) f)_{2} \geq 0 . \tag{2}
\end{equation*}
$$

3. Dirichlet forms satisfying the sector condition

From now on, we assume the sector condition for the Dirichlet form \mathcal{E}.
In this case, we have

$$
\begin{gathered}
\left\|T_{t} f\right\|_{\infty} \leq c_{1} t^{-\mu / 2}\|f\|_{1}, \quad \forall t \in(0,1] \\
\|f\|_{2}^{2+4 / \mu} \leq c_{2}\left(\tilde{\mathcal{E}}(f, f)+\|f\|_{2}^{2}\right)\|f\|_{1}^{4 / \mu} \\
\Uparrow \\
\|f\|_{2 \mu /(\mu-2)}^{2} \leq c_{3}\left(\tilde{\mathcal{E}}(f, f)+\|f\|_{2}^{2}\right) \quad(\mu>2)
\end{gathered}
$$

Key estimate:

$$
\tilde{\mathcal{E}}\left(T_{s} f, T_{s} f\right) \leq C\left\{\tilde{\mathcal{E}}(f, f)+\|f\|_{2}^{2}\right\}
$$

Theorem 3. $\mu>2$. Suppose that there exists a constant c_{1} so that for any $f \in L^{1}$

$$
\left\|T_{t} f\right\|_{\infty} \leq c_{1} t^{-\mu / 2}\|f\|_{1}, \quad \forall t \in(0,1] .
$$

Then, for any $\tilde{\mu}>\mu$, there exists a constant $c_{3}>0$ so that for all $f \in \operatorname{Dom}(\tilde{\mathcal{E}})$

$$
\|f\|_{2 \tilde{\mu} /(\tilde{\mu}-2)}^{2} \leq c_{3}\left(\tilde{\mathcal{E}}(f, f)+\|f\|_{2}^{2}\right)
$$

Key estimate: for $s<\frac{1}{2}$,

$$
\left\|(1-\mathfrak{A})^{s} f\right\|_{2}^{2} \leq C\left(\tilde{\mathcal{E}}(f, f)+\|f\|_{2}^{2}\right)
$$

4. Dirichlet forms having invariant measure

We continue to assume the sector condition. In addition, we assume

- m is an invariant probability measure.

$$
\int_{M} T_{t} f d m=\int_{M} f d m
$$

- $T_{t} 1=1$ and $\mathfrak{A} 1=0$.

The following inequality is called the Poincaré inequality

$$
\begin{equation*}
\|f-m(f)\|_{2}^{2} \leq \lambda^{-1} \tilde{\mathcal{E}}(f, f) \tag{3}
\end{equation*}
$$

where

$$
m(f)=\int_{M} f(x) m(d x)
$$

This inequality is equivalent to

$$
\left\|T_{t} f-m(f)\right\|_{2}^{2} \leq e^{-2 \lambda t}\|f-m(f)\|_{2}^{2} .
$$

Theorem 4. $\boldsymbol{\mu}>\mathbf{0}$. We consider the following two conditions.
(i) There exists a constant c_{1} so that for all $f \in L^{1}$

$$
\left\|T_{t} f-m(f)\right\|_{\infty} \leq c_{1} t^{-\mu / 2}\|f\|_{1}, \quad \forall t \in(0,1] .
$$

(ii) There exists a constant c_{2} so that for all $f \in \operatorname{Dom}(\tilde{\mathcal{E}}) \cap L^{1}(m)$

$$
\|f-m(f)\|_{2}^{2+4 / \mu} \leq c_{2} \tilde{\mathcal{E}}(f, f)\|f\|_{1}^{4 / \mu} .
$$

Then, (ii) is equivalent to (i) with the Poincaré inequality.
Under the condition (ii), there exists a constant $c_{4}>0$ so that for all $f \in L^{1}$

$$
\left\|T_{t} f-m(f)\right\|_{\infty} \leq c_{4} e^{-\lambda t}\|f\|_{1}, \quad \forall t \geq 1
$$

Here $\boldsymbol{\lambda}$ is a constant appears in the Poincaré inequality (3).

Proof.

$$
\begin{aligned}
\left\|T_{t}-m\right\|_{1 \rightarrow \infty} & =\left\|\left(T_{1}-m\right)\left(T_{t-2}-m\right)\left(T_{1}-m\right)\right\|_{1 \rightarrow \infty} \\
& \leq\left\|T_{1}-m\right\|_{2 \rightarrow \infty}\left\|T_{t-2}-m\right\|_{2 \rightarrow 2}\left\|T_{1}-m\right\|_{1 \rightarrow 2} \\
& \leq\left\|T_{1}-m\right\|_{2 \rightarrow \infty} e^{-\lambda(t-2)}\left\|T_{1}-m\right\|_{1 \rightarrow 2}
\end{aligned}
$$

Let us investigate the convergense rete. Set $a_{t}=\left\|T_{t}-m\right\|_{1 \rightarrow \infty}$ and define γ by

$$
\begin{equation*}
\gamma=-\lim _{t \rightarrow \infty} \frac{1}{t} \log a_{t} \tag{4}
\end{equation*}
$$

Theorem 5. We have

$$
\gamma \geq \lambda
$$

and the equality holds if \mathfrak{A} is normal. Here $\boldsymbol{\lambda}$ is the spectral gap (3).

Theorem 6. $\mu>2$. Assume that there exists a constant c_{1} so that

$$
\left\|T_{t} f-m(f)\right\|_{\infty} \leq c_{1} t^{-\mu / 2}\|f\|_{1}, \quad \forall t>0
$$

and the Poincaré inequality holds.
Then, for any $\tilde{\mu}>\mu$, there exists a constant $c_{3}>0$ so that for all $f \in \operatorname{Dom}(\tilde{\mathcal{E}})$

$$
\|f-m(f)\|_{2 \tilde{\mu} /(\tilde{\mu}-2)}^{2} \leq c_{3} \tilde{\mathcal{E}}(f, f)
$$

5. Non-symmetric diffusions on Riemannian manifolds

- (M, g) : a complete connected Riemannian manifold
- $m=$ vol: the Riemannian volume
- b: a smooth vector field

We consider a diffusion generated by

$$
\mathfrak{A}=\frac{1}{2} \triangle+b .
$$

We regard it as an operator in $L^{2}(m)$.
The dual operator is

$$
\mathfrak{A}^{*}=\frac{1}{2} \triangle-b-\operatorname{div} b .
$$

Associated symmetric bilinear form $\tilde{\mathcal{E}}$ is

$$
\tilde{\mathcal{E}}(u, v)=\frac{1}{2} \int_{M}(\nabla u, \nabla v) d m+\frac{1}{2} \int_{M} u v \operatorname{div} b d m .
$$

We have to show the existence of associated semigroups.

- $o \in M$: any fixed point
- d : the Riemannian distance
- $\rho(x)=d(o, x)$

We assume the following conditions:
(A.2) $\quad \operatorname{div} b \geq 0$.
(A.3) There exists a non-increasing function $\kappa:[0, \infty) \rightarrow[0, \infty)$ with
$\int_{0}^{\infty} \kappa(x) d x=\infty$ so that $\left|\nabla_{b} \rho\right| \leq \frac{1}{\kappa(\rho)}$.
Typical example of κ is $\kappa(x)=\frac{1}{c x}$.
Theorem 7. Under the conditions (A.2), (A.3), The closure of ($\left.\mathfrak{A}, C_{0}^{\infty}(M)\right)$ generates a C_{0} semigroup in $L^{2}(m)$ and the semigroup is Markovian.
The same is true for $\left(\mathfrak{A}^{*}, C_{0}^{\infty}(M)\right)$.

We denote the associated semigroups by $\left\{T_{t}\right\}$ and $\left\{T_{t}^{*}\right\}$.
Theorem 8. Assume (A.2), (A.3) and that there exists a constant c_{2} so that for all $f \in \operatorname{Dom}(\tilde{\mathcal{E}}) \cap L^{1}(m)$

$$
\|f\|_{2}^{2+4 / \mu} \leq c_{2} \tilde{\mathcal{E}}(f, f)\|f\|_{1}^{4 / \mu}
$$

Then, there exists a constant c_{1} so that for all $f \in L^{1}$

$$
\begin{equation*}
\left\|T_{t} f\right\|_{\infty} \leq c_{1} t^{-\mu / 2}\|f\|_{1}, \quad \forall t>0 \tag{5}
\end{equation*}
$$

Remark 1. Under the condition (A.2), we have

$$
\frac{1}{2} \int_{M}|\nabla u|^{2} d m \leq \tilde{\mathcal{E}}(u, u)
$$

If the Brownian motion satisfies (5), then the diffusion satisfies (5).

Case that M is compact

If M is compact, then there exists an invariant probability measure.

- ν : an invariant probability measure
- $\nu=e^{-U} m$

We use the following notations

- ∇ : the covariant derivative
- ∇^{*} : the dual operator of ∇ w.r.t. m
- ∇_{ν}^{*} : the dual operator of ∇ w.r.t. ν
- ω_{b} : 1-form corresponding to b

$$
\mathfrak{A} f=\frac{1}{2} \triangle f+b f=\frac{1}{2} \triangle f+\left(\nabla f, \omega_{b}\right)
$$

We now change the reference measure to ν. So our Hilbert space changes to $L^{2}(\nu)$.
Set

$$
\mathcal{G}_{\nu}=\{\mathfrak{A} ; \mathfrak{A} \text { has an invariant measure } \nu .\}
$$

We set

$$
\begin{aligned}
\tilde{b} & =\frac{1}{2}(\nabla U)^{\sharp}+b, \\
\omega_{\tilde{b}} & =\frac{1}{2} \nabla U+\omega_{b} .
\end{aligned}
$$

Theorem 9. $\mathfrak{A} \in \mathcal{G}_{\nu}$ if and ony if $\nabla_{\nu}^{*} \omega_{\tilde{b}}=0$. In this case,

$$
\mathfrak{A} f=-\frac{1}{2} \nabla_{\nu}^{*} \nabla f+\left(\omega_{\tilde{b}}, \nabla f\right)
$$

and

$$
\mathfrak{A}_{\nu}^{*} f=-\frac{1}{2} \nabla_{\nu}^{*} \nabla f-\left(\omega_{\tilde{b}}, \nabla f\right) .
$$

Further the associated symmetric Dirichlet form is given by

$$
\tilde{\mathcal{E}}(f, h)=\frac{1}{2} \int_{M}(\nabla f, \nabla h) d \nu .
$$

Normal operator

Theorem 10. \mathfrak{A} is normal if and only if \tilde{b} is a Killing field and $\left[\nabla U^{\sharp}, \tilde{b}\right]=0$.
A vector field \boldsymbol{X} is called a Killing field if $\boldsymbol{L}_{\boldsymbol{X}} \boldsymbol{g}=\mathbf{0}$. It is known that \boldsymbol{X} is a Killing field if and only if $\boldsymbol{\nabla} \boldsymbol{X}$ is skew-symmetric. This is also equivalent to

$$
\begin{gathered}
\operatorname{div} X=0 \\
\nabla^{*} \nabla X+\operatorname{Ric}(X)=0 .
\end{gathered}
$$

Recall

$$
\begin{aligned}
\mathfrak{A} & =\frac{1}{2} \triangle_{\nu}+\nabla_{\tilde{b}} \\
\mathfrak{A}^{*} & =\frac{1}{2} \triangle_{\nu}-\nabla_{\tilde{b}}
\end{aligned}
$$

Here

$$
\triangle_{\nu}=-\nabla_{\nu}^{*} \nabla=\nabla^{*} \nabla+\nabla U \cdot \nabla
$$

Then

$$
\mathfrak{A A}^{*}-\mathfrak{A}^{*} \mathfrak{A}=\left[\nabla_{\tilde{b}}, \triangle_{\nu}\right] .
$$

Moreover

$$
\left[\triangle_{\nu}, \nabla_{\tilde{b}}\right] f=2\left(\nabla \omega_{\tilde{b}}, \nabla^{2} f\right)+\left(-\nabla^{*} \nabla \omega_{\tilde{b}}+\operatorname{Ric}\left(\omega_{\tilde{b}}\right)+\left[\nabla U^{\sharp}, \tilde{b}\right]^{b}, \nabla f\right)
$$

T_{t} has a density $p(t, x, y)$ with respect to ν. Define

$$
\gamma=-\lim _{t \rightarrow \infty} \frac{1}{t} \log \sup _{x, y \in M}|p(t, x, y)-1| .
$$

Let $\boldsymbol{\lambda}$ be the spectral gap:

$$
\|f-\nu(f)\|_{\nu}^{2} \leq \lambda^{-1} \tilde{\mathcal{E}}(f, f)
$$

Theorem 11. We have

$$
\gamma \geq \lambda .
$$

The equality holds if \mathfrak{A} is normal.

Thank you!

