Non-symmetric diffusions on Riemannian manifolds and the ultracontractivity

Ichiro Shigekawa

Kyoto University

November 20, 2008

in Nagoya

URL: http://www.math.kyoto-u.ac.jp/~ichiro/

Contents

- 1. Introduction
- 2. Non-symmetric Markovian semigroups
- 3. Dirichlet forms satisfying the sector condition
- 4. Dirichlet forms having invariant measure
- 5. Non-symmetric diffusions on Riemannian manifolds

1. Introduction

Let (X_t) be a diffusion on a compact Riemannian manifold M generated by $\frac{1}{2} \triangle + b$. Its has a transition probability density p(t, x, y). We can see that p(t, x, y) converges to an invariant measure $\nu(dx) = \rho(x) \operatorname{vol}(dx)$.

We are interested in the convergence rrate γ :

$$\gamma = -\lim_{t o\infty}rac{1}{t}\log\sup_{x,y}|p(t,x,y)-
ho(x)|.$$

We give a lower bound of γ .

Our main tool is the ultracontractivity of the semigorup.

A semigroup $\{T_t\}$ is called ultracontractive if $T_t \colon L^1 \to L^\infty$ is bounded for all t > 0.

It is well-known that the following three conditions are equivalent for a symmetric Markovian semigroup. Let $\mu > 0$ be given.

```
(i) \exists c_1 > 0, \forall f \in L^1:
\|T_t f\|_{\infty} \leq c_1 t^{-\mu/2} \|f\|_1, \quad \forall t > 0.
(ii) \exists c_2 > 0, \forall f \in \text{Dom}(\mathcal{E}) \cap L^{\infty}:
\|f\|_2^{2+4/\mu} \leq c_2 \mathcal{E}(f, f) \|f\|_1^{4/\mu}.
(iii) \mu > 2, \exists c_3 > 0, \forall f \in \text{Dom}(\mathcal{E}):
```

$$\|f\|^2_{2\mu/(\mu-2)} \leq c_3 \, \mathcal{E}(f,f).$$

We extend this result for non-symmetric Markovian semigroups.

2. Non-symmetric Markovian semigroups

We give a framework in generall Hilbert space scheme.

- *H*: a Hilbert space
- $\{T_t\}$: a contraction C_0 semigroup
- $\{T_t^*\}$: the dual semigroup
- $\mathfrak{A}, \mathfrak{A}^*$: the generators of $\{T_t\}$ and $\{T_t^*\}$

A natural bilinear form \mathcal{E} is defined by

$${\mathcal E}(u,v)=-({\mathfrak A} u,v).$$

We do not assume the sector condition and so we can not use this bilinear form.

We introduce a symmetric bilinear form. For this, we assume the following condition:

(A.1) $Dom(\mathfrak{A}) \cap Dom(\mathfrak{A}^*)$ is dense in $Dom(\mathfrak{A})$ and $Dom(\mathfrak{A}^*)$.

Under this condition, we define a symmetric bilinear form $\tilde{\mathcal{E}}$ by

$$ilde{\mathcal{E}}(u,v) = -rac{1}{2}\{(\mathfrak{A} u,v) + (u,\mathfrak{A} v)\}, \hspace{1em} u,v \in \mathrm{Dom}(\mathfrak{A}) \cap \mathrm{Dom}(\mathfrak{A}^*).$$

Proposition 1. Under the condition (A.1), $\tilde{\mathcal{E}}$ is closable and its closure contains $\text{Dom}(\mathfrak{A})$ and $\text{Dom}(\mathfrak{A}^*)$.

Covex set preserving property

- C: a convex set of H.
- *Pu*: the shortest point from *u* to *C*
- $(u Pu, v Pu) \leq 0, \quad \forall v \in C.$

Theorem 2. If $\{T_t\}$ and $\{T_t^*\}$ preserve a convex set C, then $Pu \in \text{Dom}(\tilde{\mathcal{E}})$ for any $u \in \text{Dom}(\tilde{\mathcal{E}})$ and we have

 $ilde{\mathcal{E}}(Pu,u-Pu)\geq 0.$

Markovian semigroup

- (M,m): a measure space
- $H = L^2(m)$: a Hilbert space
- $\{T_t\}$: a Markovian semigroup

We assume that $\{T_t^*\}$ is also a Markovian semigroup.

Under the assumption (A.1), we can define a symmetric bilinear form $\tilde{\mathcal{E}}$ and $\tilde{\mathcal{E}}$ is a Dirichlet form.

We have the following implications.

$$egin{aligned} \|T_t f\|_\infty &\leq c_1 t^{-\mu/2} \|f\|_1, &orall t>0\ &\Uparrow & \Downarrow ext{ under }(1)\ \|f\|_2^{2+4/\mu} &\leq c_2 \, ilde{\mathcal{E}}(f,f) \, \|f\|_1^{4/\mu}\ &\Uparrow\ &\parallel f\|_2^{2} &\leq c_3 \, ilde{\mathcal{E}}(f,f) &(\mu>2) \end{aligned}$$

(1) $(\mathfrak{A}^{2}f,f)_{2} + (\mathfrak{A}f,\mathfrak{A}f)_{2} \geq 0.$

(1) holds if \mathfrak{A} is normal, i.e. $\mathfrak{A}\mathfrak{A}^* = \mathfrak{A}^*\mathfrak{A}$.

$$\begin{split} \|T_t f\|_{\infty} &\leq c_1 t^{-\mu/2} \|f\|_1, \quad \forall t \in (0,1] \\ & \uparrow \quad \Downarrow \text{ under } (2) \\ \|f\|_2^{2+4/\mu} &\leq c_2 (\tilde{\mathcal{E}}(f,f) + \|f\|_2^2) \|f\|_1^{4/\mu} \\ & \uparrow \\ \|f\|_{2\mu/(\mu-2)}^2 &\leq c_3 (\tilde{\mathcal{E}}(f,f) + \|f\|_2^2) \quad (\mu > 2) \end{split}$$

There there exists a constant M > 0 so that for all $f \in \text{Dom}(\mathfrak{A}^2)$

(2) $((\mathfrak{A}-M)^2 f, f)_2 + ((\mathfrak{A}-M)f, (\mathfrak{A}-M)f)_2 \ge 0.$

3. Dirichlet forms satisfying the sector condition

From now on, we assume the sector condition for the Dirichlet form \mathcal{E} .

In this case, we have

$$egin{aligned} \|T_t f\|_\infty &\leq c_1 t^{-\mu/2} \|f\|_1, &orall t\in (0,1] \ &\& \ \|f\|_2^{2+4/\mu} &\leq c_2 (ilde{\mathcal{E}}(f,f)+\|f\|_2^2) \,\|f\|_1^{4/\mu} \ &\& \ \|f\|_{2\mu/(\mu-2)}^2 &\leq c_3 (ilde{\mathcal{E}}(f,f)+\|f\|_2^2) &(\mu>2) \end{aligned}$$

Key estimate:

$$ilde{\mathcal{E}}(T_sf,T_sf) \leq C\{ ilde{\mathcal{E}}(f,f)+\|f\|_2^2\}$$

Theorem 3. $\mu > 2$. Suppose that there exists a constant c_1 so that for any $f \in L^1$ $\|T_t f\|_{\infty} \leq c_1 t^{-\mu/2} \|f\|_1, \quad \forall t \in (0, 1].$ Then, for any $\tilde{\mu} > \mu$, there exists a constant $c_3 > 0$ so that for all $f \in \text{Dom}(\tilde{\mathcal{E}})$ $\|f\|_{2\tilde{\mu}/(\tilde{\mu}-2)}^2 \leq c_3(\tilde{\mathcal{E}}(f, f) + \|f\|_2^2)$

Key estimate: for $s < \frac{1}{2}$,

 $\|(1-\mathfrak{A})^s f\|_2^2 \leq C(ilde{\mathcal{E}}(f,f)+\|f\|_2^2).$

4. Dirichlet forms having invariant measure

We continue to assume the sector condition. In addition, we assume

• *m* is an invariant probability measure.

$$\int_M T_t f \, dm = \int_M f \, dm$$

• $T_t 1 = 1$ and $\mathfrak{A} 1 = 0$.

The following inequality is called the Poincaré inequality

(3)
$$\|f - m(f)\|_2^2 \leq \lambda^{-1} \tilde{\mathcal{E}}(f, f)$$

where

$$m(f) = \int_M f(x) \, m(dx).$$

This inequality is equivalent to

$$\|T_tf - m(f)\|_2^2 \le e^{-2\lambda t} \|f - m(f)\|_2^2.$$

Theorem 4. $\mu > 0$. We consider the following two conditions.

(i) There exists a constant c_1 so that for all $f \in L^1$

 $\|T_tf - m(f)\|_\infty \le c_1t^{-\mu/2}\|f\|_1, \quad \forall t \in (0,1].$

(ii) There exists a constant c_2 so that for all $f \in \mathrm{Dom}(\tilde{\mathcal{E}}) \cap L^1(m)$

$$\|f-m(f)\|_2^{2+4/\mu} \leq c_2 \, ilde{\mathcal{E}}(f,f) \, \|f\|_1^{4/\mu}.$$

Then, (ii) is equivalent to (i) with the Poincaré inequality. Under the condition (ii), there exists a constant $c_4 > 0$ so that for all $f \in L^1$

$$\|T_t f - m(f)\|_{\infty} \le c_4 e^{-\lambda t} \|f\|_1, \quad \forall t \ge 1.$$

Here λ is a constant appears in the Poincaré inequality (3).

Proof.

$$||T_t - m||_{1 \to \infty} = ||(T_1 - m)(T_{t-2} - m)(T_1 - m)||_{1 \to \infty}$$

$$\leq ||T_1 - m||_{2 \to \infty} ||T_{t-2} - m||_{2 \to 2} ||T_1 - m||_{1 \to 2}$$

$$\leq ||T_1 - m||_{2 \to \infty} e^{-\lambda(t-2)} ||T_1 - m||_{1 \to 2}$$

Let us investigate the convergense rete. Set $a_t = \|T_t - m\|_{1
ightarrow \infty}$ and define γ by

(4)
$$\gamma = -\lim_{t \to \infty} \frac{1}{t} \log a_t.$$

Theorem 5. We have

 $\gamma \geq \lambda$

and the equality holds if \mathfrak{A} is normal. Here λ is the spectral gap (3).

Theorem 6. $\mu > 2$. Assume that there exists a constant c_1 so that

 $\|T_t f - m(f)\|_{\infty} \le c_1 t^{-\mu/2} \|f\|_1, \quad \forall t > 0$

and the Poincaré inequality holds.

Then, for any $\tilde{\mu} > \mu$, there exists a constant $c_3 > 0$ so that for all $f \in \mathrm{Dom}(\tilde{\mathcal{E}})$

 $\|f-m(f)\|^2_{2 ilde{\mu}/(ilde{\mu}-2)}\leq c_3 ilde{\mathcal{E}}(f,f).$

5. Non-symmetric diffusions on Riemannian manifolds

- (M, g): a complete connected Riemannian manifold
- m = vol: the Riemannian volume
- **b**: a smooth vector field

We consider a diffusion generated by

$$\mathfrak{A}=rac{1}{2} riangle+b.$$

We regard it as an operator in $L^2(m)$.

The dual operator is

$$\mathfrak{A}^* = rac{1}{2} riangle - b - \operatorname{div} b.$$

Associated symmetric bilinear form $\tilde{\mathcal{E}}$ is

$$ilde{\mathcal{E}}(u,v) = rac{1}{2} \int_M (
abla u,
abla v) \, dm + rac{1}{2} \int_M uv \operatorname{div} b \, dm.$$

We have to show the existence of associated semigroups.

- $o \in M$: any fixed point
- d: the Riemannian distance
- $\rho(x) = d(o, x)$

We assume the following conditions:

 $(A.2) \quad \operatorname{div} b \geq 0 \ .$

(A.3) There exists a non-increasing function $\kappa \colon [0, \infty) \to [0, \infty)$ with $\int_0^\infty \kappa(x) \, dx = \infty$ so that $|\nabla_b \rho| \leq \frac{1}{\kappa(\rho)}$.

Typical example of κ is $\kappa(x) = \frac{1}{cx}$.

Theorem 7. Under the conditions (A.2), (A.3), The closure of $(\mathfrak{A}, C_0^{\infty}(M))$ generates a C_0 semigroup in $L^2(m)$ and the semigroup is Markovian. The same is true for $(\mathfrak{A}^*, C_0^{\infty}(M))$. We denote the associated semigroups by $\{T_t\}$ and $\{T_t^*\}$.

Theorem 8. Assume (A.2), (A.3) and that there exists a constant c_2 so that for all $f \in \text{Dom}(\tilde{\mathcal{E}}) \cap L^1(m)$

 $\|f\|_2^{2+4/\mu} \leq c_2 \, ilde{\mathcal{E}}(f,f) \, \|f\|_1^{4/\mu}.$

Then, there exists a constant c_1 so that for all $f \in L^1$

 $\|T_t f\|_{\infty} \leq c_1 t^{-\mu/2} \|f\|_1, \quad \forall t > 0.$

Remark 1. Under the condition (A.2), we have

(5)

$$rac{1}{2}\int_M |
abla u|^2\,dm\leq ilde{\mathcal{E}}(u,u).$$

If the Brownian motion satisfies (5), then the diffusion satisfies (5).

If M is compact, then there exists an invariant probability measure.

• ν : an invariant probability measure

•
$$\nu = e^{-U}m$$

We use the following notations

- ∇ : the covariant derivative
- ∇^* : the dual operator of ∇ w.r.t. m
- ∇^*_{ν} : the dual operator of ∇ w.r.t. ν
- ω_b : 1-form corresponding to b

$$\mathfrak{A}f=rac{1}{2} riangle f+bf=rac{1}{2} riangle f+(
abla f,\omega_b)$$

We now change the reference measure to ν . So our Hilbert space changes to $L^2(\nu)$.

Set

 $\mathcal{G}_{\nu} = \{\mathfrak{A}; \mathfrak{A} \text{ has an invariant measure } \nu.\}$

We set

$$egin{aligned} & ilde{b} = rac{1}{2} (
abla U)^{\sharp} + b, \ &\omega_{ ilde{b}} = rac{1}{2}
abla U + \omega_{b}. \end{aligned}$$

Theorem 9. $\mathfrak{A} \in \mathcal{G}_{\nu}$ if and ony if $\nabla^*_{\nu}\omega_{\tilde{b}} = 0$. In this case,

$$\mathfrak{A}f=-rac{1}{2}
abla^{st}_{
u}
abla f+(\omega_{ ilde{b}},
abla f)$$

and

$$\mathfrak{A}^*_
u f = -rac{1}{2}
abla^*_
u
abla f - (\omega_{ ilde{b}},
abla f).$$

Further the associated symmetric Dirichlet form is given by

$$ilde{\mathcal{E}}(f,h) = rac{1}{2} \int_M (
abla f,
abla h) d
u.$$

Normal operator

Theorem 10. \mathfrak{A} is normal if and only if \tilde{b} is a Killing field and $[\nabla U^{\sharp}, \tilde{b}] = 0$.

A vector field X is called a Killing field if $L_X g = 0$. It is known that X is a Killing field if and only if ∇X is skew-symmetric. This is also equivalent to

 $\operatorname{div} X = 0,$ $abla^*
abla X + \operatorname{Ric}(X) = 0.$

Recall

$$\mathfrak{A} = rac{1}{2} riangle_
u +
abla_{ ilde{b}},
onumber \ \mathfrak{A}^* = rac{1}{2} riangle_
u -
abla_{ ilde{b}}.$$

Here

$$riangle_
u = -
abla^*_
u
abla =
abla^*
abla +
abla U \cdot
abla.$$

Then

$$\mathfrak{A}\mathfrak{A}^*-\mathfrak{A}^*\mathfrak{A}=[
abla_{ ilde{b}}, riangle_
u].$$

Moreover

 $[riangle_
u,
abla_{ ilde{b}}]f = 2(
abla \omega_{ ilde{b}},
abla^2 f) + (abla^*
abla \omega_{ ilde{b}} + \operatorname{Ric}(\omega_{ ilde{b}}) + [
abla U^\sharp, ilde{b}]^\flat,
abla f)$

 T_t has a density p(t, x, y) with respect to ν . Define

$$\gamma = -\lim_{t o\infty}rac{1}{t}\log\sup_{x,y\in M}|p(t,x,y)-1|.$$

Let λ be the spectral gap:

$$\|f-
u(f)\|_{
u}^2\leq\lambda^{-1} ilde{\mathcal{E}}(f,f)$$

Theorem 11. We have

$$\gamma \geq \lambda.$$

The equality holds if \mathfrak{A} is normal.

24-1

Thank you!