Ichiro Shigekawa[†] (Kyoto University)

1 Non-symmetric diffusions on Riemannian manifolds

Let (M, g) be a complete Riemannian manifold. We deonte the Riemannian volume by m = vol. We consider a diffusion generated by

$$\mathfrak{A} = \frac{1}{2} \triangle + b. \tag{1}$$

Here \triangle is the Laplace-Beltrami operator and b is a vector field on M. We regard it as an operator in $L^2(m)$. The dual operator is

$$\mathfrak{A}^* = \frac{1}{2} \triangle - b - \operatorname{div} b.$$

Associated symmetric bilinear form $\tilde{\mathscr{E}}$ is

$$\widetilde{\mathscr{E}}(u,v) = \frac{1}{2} \int_{M} (\nabla u, \nabla v) \, dm + \frac{1}{2} \int_{M} uv \operatorname{div} b \, dm.$$

We take a point $o \in M$ and define $\rho(x) = d(o, x)$ where d is the Riemannian distance. We assume the following conditions:

- (A.1) div $b \ge 0$.
- (A.2) There exists a non-increasing function $\kappa \colon [0,\infty) \to [0,\infty)$ with $\int_0^\infty \kappa(x) dx = \infty$ so that $|\nabla_b \rho| \leq \frac{1}{\kappa(\rho)}$.

Theorem 1. Under the conditions (A.1), (A.2), the closure of $(\mathfrak{A}, C_0^{\infty}(M))$ generates a C_0 semigroup in $L^2(m)$ and the semigroup is Markovian.

The same is true for $(\mathfrak{A}^*, C_0^{\infty}(M))$.

We denote the associated semigroups by $\{T_t\}$ and $\{T_t^*\}$.

Theorem 2. Assume (A.1), (A.2) and that there exists a constant c_2 so that for all $f \in \text{Dom}(\tilde{\mathscr{E}}) \cap L^1(m)$

$$||f||_2^{2+4/\mu} \le c_2 \,\tilde{\mathscr{E}}(f,f) \, ||f||_1^{4/\mu}.$$

Then, there exists a constant c_1 so that for all $f \in L^1$

$$||T_t f||_{\infty} \le c_1 t^{-\mu/2} ||f||_1, \quad \forall t > 0.$$
(2)

^{*}November 19-21, 2008, "Stochastic Analysis and Related Topics" in Nagoya University

[†]E-mail: ichiro@math.kyoto-u.ac.jp URL: http://www.math.kyoto-u.ac.jp/~ichiro/

Remark 1. Under the condition (A.2), we have

$$\frac{1}{2}\int_{M}|\nabla u|^{2}\,dm\leq\tilde{\mathscr{E}}(u,u).$$

If the Brownian motion satisfies (2), then the diffusion satisfies (2).

2 Non-symmetric diffusions on compact Riemannian manifolds

If M is compact, then there exists an invariant probability measure. We denote it by ν . We now change the reference measure to ν . The operator \mathfrak{A} of the form (1) can be written as

$$\mathfrak{A}f = -\frac{1}{2}\nabla^*_{\nu}\nabla f + (\tilde{b}, \nabla f)$$

where \tilde{b} is a vector field with $\operatorname{div}_{\nu} \tilde{b} = 0$. Here ∇_{ν}^* is the dual operator of ∇ with respect to ν . div_{ν} is defined similarly.

The generator of the dual semigroup is

$$\mathfrak{A}_{\nu}^{*}g = -\frac{1}{2}\nabla_{\nu}^{*}\nabla g - (\omega_{\tilde{b}}, \nabla g).$$

Further the associated symmetric Dirichlet form is given by

$$\tilde{\mathscr{E}}(f,g) = \frac{1}{2} \int_{M} (\nabla f, \nabla g) d\nu.$$

By Using these, we have

Theorem 3. The semigroup $\{T_t\}$ generated by \mathfrak{A} has a density p(t, x, y) with respect to ν and there exists a constant C so that

$$\sup_{x,y} |p(t,x,y) - 1| \le Ce^{-\lambda t}, \quad \forall t \ge 1.$$

Here λ is the spectral gap of $\tilde{\mathscr{E}}$.